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Abstract. Let Tn(x) and Un(x) be the Chebyshev’s polynomial of the first

kind and second kind of degree n, respectively. For n ≥ 1, U2n−1(x) =

2Tn(x)Un−1(x) and U2n(x) = (−1)nAn(x)An(−x), whereAn(x) = 2n
∏n
i=1(x−

cos iθ), θ = 2π/(2n + 1). In this paper, we will study the polynomial An(x).

Let An(x) =
∑n
m=0 an,mx

m. We prove that an,m = (−1)k2m
( l
k

)
, where

k = bn−m
2
c and l = bn+m

2
c. We also completely factorize An(x) into irre-

ducible factors over Z and obtain a condition for determining when Ar(x) is

divisible by As(x). Furthermore we determine the greatest common divisor of
Ar(x) and As(x) and also greatest common divisor of Ar(x) and the Cheby-

shev’s polynomials. Finally we prove certain combinatorial identities that arise

from the polynomial An(x).
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1. Introduction

Chebyshev’s polynomials are of great importance in many area of mathematics,
particularly approximation theory. Interesting properties of the Chebyshev’s poly-
nomials can be found in [9] and [10]. Certain algebraic properties of Chebyshev’s
polynomials have been studied by Bang [1], Carlitz [3], and Rankin [7]. In 1984,
Hsiao [5] gave a complete factorization of Chebyshev’s polynomials of the first kind
into irreducible factors over the ring of integer Z. Using Hsiao’s method, Rivlin [9]
extended it to complete factorization of Chebyshev’s polynomials of the second kind.
Certain decomposition properties of Chebyshev’s polynomials including factorization
and divisibility have been studied by Rayes, Trevisan, and Wang [8].

The Chebyshev’s polynomials of the first kind Tn(x) can be defined inductively as
follow:

T0(x) = 1, T1(x) = x, and
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Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, . . .(1.1)

Alternatively, it may be defined as

Tn(x) = cosn(arccosx),

where 0 ≤ arccosx ≤ π. The roots of Tn(x) are

cos
(2k − 1)π

2n
, k = 1, 2, . . . , n.

The Chebyshev’s polynomials of the second kind Un(x) is defined inductively as
follow:

U0(x) = 1, U1(x) = 2x, and

Un(x) = 2xUn−1(x)− Un−2(x), n = 2, 3, . . .(1.2)

Alternatively, it may be defined as

Un(x) =
sin((n+ 1) arccosx)

sin(arccosx)
,

where 0 ≤ arccosx ≤ π. The roots of Un(x) are

cos
kπ

n+ 1
, k = 1, 2, . . . , n.

Note that the leading coefficients of Tn(x) and Un(x) are 2n−1 and 2n, respectively,
for n ≥ 1. By looking at the roots of U2n−1(x), we see that

(1.3) U2n−1(x) = 2Tn(x)Un−1(x), n = 1, 2, . . . .

For U2n(x), the roots are cos(kπ/(2n+ 1)), where k = 1, 2, . . . , 2n. Note that for
1 ≤ i ≤ n, cos((2i− 1)π/(2n+ 1)) = − cos(2(n− i+ 1)π/(2n+ 1)). Therefore

(1.4) U2n(x) = (−1)nAn(x)An(−x), n = 1, 2, . . . ,

where An(x) = 2n
∏n
i=1(x− cos(2iπ/(2n+ 1))).

In this paper, we will study the polynomial An(x). We will completely factorize
An(x) into irreducible factors over Z and prove certain combinatorial identities that
arise from the polynomial An(x).

2. Properties of An(x)

Let θ = 2π/(2n+ 1). The θ will be fixed throughout the paper.
Let us look at the polynomial Tn+1(x) − Tn(x). Note that Tn+1(1) − Tn(1) = 0

and for i = 1, 2, . . . , n,

Tn+1(cos iθ)− Tn(cos iθ) = −2 sin
(

(2n+ 1)iθ
2

)
sin
(
iθ

2

)
= −2 sin(iπ) sin

(
iθ

2

)
= 0.

This implies Lemma 2.1.

Lemma 2.1. (x− 1)An(x) = Tn+1(x)− Tn(x) for n = 1, 2, . . . .



On Chebyshev’s Polynomials and Combinatorial Identities 281

For the sake of completeness, we define A0(x) = 1. This leads (1.4) and Lemma
2.1 to be true even for n = 0. Now by Lemma 2.1 and (1.1), A1(x) = 2x + 1.
Furthermore one can deduce Lemma 2.2.

Lemma 2.2. An(x) = 2xAn−1(x)−An−2(x) for n = 2, 3, . . . .

Recall that a polynomial p(x) ∈ Z[x] is said to divide h(x) ∈ Z[x] or is a divisor
of h(x) if h(x) = p(x)l(x) for some l(x) ∈ Z[x]. A polynomial h(x) ∈ Z[x] is said to
be irreducible if the only divisors of h(x) are ±1 and ±h(x).

A number ζ ∈ C is said to be an algebraic number if there is a p(x) ∈ Z[x] with
p(ζ) = 0. Furthermore if p(x) is irreducible and of degree k, we say ζ is algebraic
of degree k. Let p(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 where ai ∈ Z for all i.

If an = 1, we say ζ is an algebraic integer. So an algebraic integer is an algebraic
number.

Given any r(x), s(x) ∈ Z[x], the greatest common divisor of r(x) and s(x) will be
denoted by gcd(r(x), s(x)). Note that the leading coefficient of the greatest common
divisor will be chosen to be positive. Consider a fixed integer n ≥ 1. Let lh denote
the number of elements in

Sh = {i : gcd(i, 2n+ 1) = h, 1 ≤ i ≤ n}.

Clearly lh = φ((2n+ 1)/h)/2, where φ is the Euler’s totient function. Properties of
φ can be found in [4, p. 52]. Now let

Fh(x) = 2lh
∏

1≤i≤n
gcd(i,2n+1)=h

(x− cos iθ).

Theorem 2.1. For n ≥ 1,

An(x) =
∏
h

Fh(x),

where h ≤ n runs through all positive divisors of 2n + 1. All the Fh are irreducible
over Z.

Proof. Clearly An(x) =
∏
h Fh(x). So it is sufficient to show that Fh are irreducible

over Z. By Lehmer’s Theorem [6, Theorem 1], if gcd(i, 2n+ 1) = 1 then 2 cos(iθ) is
an algebraic integer of degree φ(2n+1)/2. Following the proof of Lehmer’s Theorem,
we see that all 2 cos(iθ) with gcd(i, 2n+ 1) = 1 are the roots of the same irreducible
polynomial, say Q(x). Note that Q(2x) is also irreducible and F1(x) = Q(2x). Now
if gcd(i, 2n + 1) = h then gcd(i/h, (2n + 1)/h) = 1 and 2 cos(iθ/h) is an algebraic
integer of degree φ((2n+1)/h)/2. As in the previous paragraph, Fh is irreducible.

An immediate consequence of Theorem 2.1 is the following corollary.

Corollary 2.1. For all n ∈ N,

(a) F1(x) is the irreducible factor of An(x) of the largest degree = φ(2n+ 1)/2.
(b) The number of irreducible factors of An(x) equal to the number of divisors

h ≤ n of 2n+ 1.

Corollary 2.2. An(x) is irreducible if and only if n = (p− 1)/2 for some prime p.
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Proof. If n = (p − 1)/2 for some prime p, then by (b) of Corollary 2.1, An(x) is
irreducible. Suppose An(x) is irreducible. If 2n+ 1 is not a prime, then 2n+ 1 = rs
for some r, s ∈ N, r > s > 1. This implies that 2n + 1 > s2 and s ≤ n. But then
by (b) of Corollary 2.1, the number of irreducible factors of An(x) is at least 2, a
contradiction. Hence 2n+ 1 is a prime.

Let ψm(x) be the minimal polynomial of cos(2π/m). If m = 2n + 1, then (see
[12, Theorem])

Tn+1(x)− Tn(x) = 2n
∏
d|m

ψd(x).

Therefore by Lemma 2.1, An(x) =
(

2n
∏
d|m ψd(x)

)
/(x− 1) = 2n

∏
d|m,d 6=1 ψd(x).

When m is a prime, An(x) = 2nψm(x). The polynomial ψm(x) when m is a prime
has been studied by Beslin and de Angelis [2], and Surowski and McCombs [11].

Let An(x) =
∑n
m=0 an,mx

m. Given any real number x ∈ R, we shall denote the
greatest integer less than or equal to x by bxc, and we shall denote the smallest
integer greater than or equal to x by dxe. As usual, the binomial coefficient

(
r
t

)
is

the coefficient of xt in the polynomial expansion of (1 + x)r. Recall that A0(x) = 1
and A1(x) = 2x+ 1. By Lemma 2.2, A2(x) = 4x2 + 2x− 1.

Theorem 2.2. Let k =
⌊
n−m

2

⌋
and l =

⌊
n+m

2

⌋
. Then

an,m = (−1)k2m
(
l

k

)
for 0 ≤ m ≤ n.

Proof. It can be verified that an,m = (−1)k2m
(
l
k

)
for all 0 ≤ m ≤ n where n = 0, 1, 2.

Let n ≥ 3. Assume that the formula holds for an′,m′ , for all 0 ≤ m′ ≤ n′ with
1 ≤ n′ < n. Now An(x) = 2xAn−1(x)−An−2(x) (Lemma 2.2) implies that

an,0 = −an−2,0,

an,m = 2an−1,m−1 − an−2,m for 1 ≤ m ≤ n− 2,
an,m = 2an−1,m−1 for n− 1 ≤ m ≤ n.

Therefore an,0 = (−1)bn/2c, an,n−1 = 2n−1, an,n = 2n and for all 1 ≤ m ≤ n− 2,

an,m = 2an−1,m−1 − an−2,m

= (−1)k2m
(
l′

k

)
+ (−1)k2m

(
l′

k − 1

)
= (−1)k2m

(
l

k

)
,

where l′ = b(n+m−2)/2c. Here we make use of the facts that b(t−2)/2c = bt/2c−1
for all t ∈ Z,

(
r
s

)
+
(
r
s−1

)
=
(
r+1
s

)
for all r, s ∈ N, and induction hypothesis. Hence

the proof is complete.
Note that an,0 = (−1)bn/2c and an,n = 2n. Recall that a polynomial p(x) =

anx
n + an−1x

n−1 + · · · + a1x + a0 ∈ Z[x] is said to be primitive if an > 0 and
gcd(an, an−1, . . . , a1, a0) = 1. Therefore An(x) is primitive.

Corollary 2.3. An(x) is primitive for all integer n ≥ 0.
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Theorem 2.3. Let r ≥ s be two positive integers. Then As(x) divides Ar(x) if and
only if r = (2l + 1)s+ l for some integer l ≥ 0.

Proof. Suppose r = (2l+ 1)s+ l for some integer l ≥ 0. Then the roots of Ar(x) are

cos
(

2iπ
2r + 1

)
= cos

(
2iπ

(2l + 1)(2s+ 1)

)
for i = 1, 2, . . . , r.

By taking ij = (2l + 1)j for j = 1, 2, . . . , s, we see that cos(2jπ/(2s + 1)) are
roots of Ar(x). Note that cos(2jπ/(2s + 1)) are roots of As(x). So together with
the division algorithm, we have Ar(x) = H(x)As(x) for some H(x) ∈ Q[x]. By
Corollary 2.3, Ar(x) and As(x) are primitive. Using a standard argument as in [4,
Proof of Theorem 237 on p. 205], we may assume that H(x) ∈ Z[x]. Hence As(x)
divides Ar(x).

Suppose As(x) divides Ar(x). Then As(−x) divides Ar(−x). By (1.4), U2s(x)
divides U2r(x). Then by [8, Theorem 3], 2r = (l′ + 1)2s+ l′ for some integer l′ ≥ 0.
Clearly, l′ = 2l for some integer l. Hence r = (2l + 1)s+ l.

Corollary 2.4. Let r, s be two nonnegative integers and gcd(2r + 1, 2s + 1) = t.
Then gcd(Ar(x), As(x)) = A(t−1)/2(x).

Proof. Let gcd(Ar(x), As(x)) = g(x). By Theorem 2.3, A(t−1)/2(x) divides Ar(x)
and As(x). If g(x) is of degree (t − 1)/2, then g(x) = A(t−1)/2(x), and we are
done. Suppose the degree of g(x) is greater than (t − 1)/2. Note that g(−x) di-
vides Ar(−x) and As(−x). This implies that g(x)g(−x) divides Ar(x)Ar(−x) and
As(x)As(−x). By (1.4), we see that g(x)g(−x) divides U2r(x) and U2s(x). Now
gcd(U2r(x), U2s(x)) = Ut−1(x) (see [8, Theorem 4]). But then g(x)g(−x) divides
Ut−1(x), a contradiction, for the degree of g(x)g(−x) is greater than t − 1. Hence
gcd(Ar(x), As(x)) = A(t−1)/2(x).

Theorem 2.4. Let r, s be two nonnegative integers. Then gcd(Ar(x), As(−x)) = 1.

Proof. If either r = 0 or s = 0, we are done. So we may assume r ≥ s ≥ 1. Suppose
gcd(Ar(x), As(−x)) 6= 1. Then − cos(2i′π/(2s + 1)) is a root of Ar(x) for some
1 ≤ i′ ≤ s. This implies that cos(2i′π/(2s + 1)) + cos(2iπ/(2r + 1)) = 0 for some
1 ≤ i ≤ r. Therefore

(2.1) 2 cos
(

(2r + 1)i′ + (2s+ 1)i
(2s+ 1)(2r + 1)

π

)
cos
(

(2r + 1)i′ − (2s+ 1)i
(2s+ 1)(2r + 1)

π

)
= 0.

Note that the first term in (2.1) is zero if and only if 2((2r + 1)i′ + (2s + 1)i) =
(2s + 1)(2r + 1)t for some odd t. But this is impossible. Now the second term in
(2.1) is zero if and only if 2((2r+ 1)i′ − (2s+ 1)i) = (2s+ 1)(2r+ 1)t1 for some odd
t1, which is again impossible. Hence gcd(Ar(x), As(−x)) = 1.

Corollary 2.5. For any nonnegative integers r, s,
(a) gcd(Ar(x), Ar(−x)) = 1.
(b) gcd(Ur(x), As(x)) = A(t−1)/2, where t = gcd(r + 1, 2s+ 1).
(c) gcd(Tr(x), As(x)) = 1.

Proof. (a) follows from Theorem 2.4.
(b) By [8, Theorem 4], gcd(Ur(x), U2s(x)) = Ut−1 where t = gcd(r + 1, 2s + 1).

Note that gcd(As(x), A(t−1)/2(−x)) = 1 and A(t−1)/2(x) divides As(x) (see Theorem
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2.4 and Theorem 2.3). Recall that Ut−1(x) = (−1)(t−1)/2A(t−1)/2(x)A(t−1)/2(−x)
(see (1.4)). Therefore gcd(Ur(x), As(x)) = A(t−1)/2.

(c) By (1.3), U2r−1(x) = 2Tr(x)Ur−1(x). By part (b), gcd(U2r−1(x), As(x)) =
A(t−1)/2(x), where t = gcd(2r, 2s + 1), and gcd(Ur−1(x), As(x)) = A(t′−1)/2(x),
where t′ = gcd(r, 2s+1). Note that t′ = t. Let gcd(Tr(x), As(x)) = d(x). Then d(x)
divides U2r−1(x) and thus A(t−1)/2(x). In fact d(x) divides U2r−1(x)/A(t−1)/2(x).
Since all the roots of U2r−1(x) are distinct, we conclude that gcd(Tr(x), As(x)) =
1.

3. Certain combinatorial identities

Now if P (x) =
∑n
i=0 cix

i is a polynomial of degree n with roots ri(not necessarily
distinct), i = 1, 2, . . . , n, then P (x) = cn

∏n
i=1(x − ri). By expanding

∏n
i=1(x − ri)

and comparing the coefficient of xn−m, we have the following Vieta’s formula.

Proposition 3.1. [Vieta’s formula]∑
1≤α1<α2<...<αm≤n

rα1rα2 . . . rαm
= (−1)m

cn−m
cn

.

By Theorem 2.2 and Proposition 3.1, we have Corollary 3.1.

Corollary 3.1. ∑
1≤r1<r2<...<rm≤n

cos r1θ cos r2θ . . . cos rmθ = (−1)m
(
n−m
m

)
2m

,

where m = dm/2e and m = bm/2c.
Recall that

(3.1) Tn(x) =
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

2
, x ∈ R.

By Lemma 2.1, we have Proposition 3.2.

Proposition 3.2.

An(x) =
(x+

√
x2 − 1)n(x− 1 +

√
x2 − 1) + (x−

√
x2 − 1)n(x− 1−

√
x2 − 1)

2(x− 1)
.

Corollary 3.2 follows from Theorem 2.2 and Proposition 3.2 (take limit x→ ±1).

Corollary 3.2.

An(1) =
n∑

m=0

(−1)b
n−m

2 c2m
(⌊n+m

2

⌋⌊
n−m

2

⌋) = 2n+ 1 and

An(−1) =
n∑

m=0

(−1)m+bn−m
2 c2m

(⌊n+m
2

⌋⌊
n−m

2

⌋) = (−1)n.

Now
An(−1) = (−2)n

∏n
i=1(1 + cos iθ)

= (−2)n
(

1 +
∑n
m=1

∑
1≤r1<r2<...<rm≤n cos r1θ cos r2θ . . . cos rmθ

)
.

Then using Corollary 3.2, we deduce Corollary 3.3.
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Corollary 3.3.
n∑

m=1

∑
1≤r1<r2<...<rm≤n

cos r1θ cos r2θ . . . cos rmθ =
1− 2n

2n
.

For bn/2c + 1 ≤ i ≤ n, we have n + 1 ≤ 2i ≤ 2n and 1 ≤ 2n + 1 − 2i ≤ n. This
implies that

{2i : 1 ≤ i ≤ bn/2c} ∪ {2n+ 1− 2i : bn/2c+ 1 ≤ i ≤ n} = {1, 2, . . . , n}.

Now cos((2n+ 1− 2i)θ) = cos(2iθ). Therefore

(3.2) An(x) = 2n
n∏
i=1

(x− cos iθ) = 2n
n∏
i=1

(x− cos 2iθ).

Let Bn(x) = An(2x− 1). Then Lemma 3.1 follows from (3.2).

Lemma 3.1. The roots of Bn(x) are cos2 iθ, i = 1, 2, . . . , n.

Note that B0(x) = 1, B1(x) = 4x − 1 and by Lemma 2.2, we have the following
recurrence relation for Bn(x).

Lemma 3.2. Bn(x) = 2(2x− 1)Bn−1(x)−Bn−2(x) for n = 2, 3, . . ..

Let Bn(x) =
∑n
m=0 bn,mx

m. By mathematical induction and Lemma 3.2 (similar
to the proof of Theorem 2.2), one can determine bn,m.

Theorem 3.1.

bn,m = (−1)n−m4m
(
m+ n

2m

)
for 0 ≤ m ≤ n.

Note that bn,0 = (−1)n and bn,n = 4n. So Bn(x) is primitive.

Corollary 3.4. Bn(x) is primitive for all integer n ≥ 0.

Now Corollary 3.5 follows from Theorem 3.1 and Proposition 3.1, and Corollary
3.6 follows from Proposition 3.2.

Corollary 3.5.∑
1≤r1<r2<...<rm≤n

cos2 r1θ cos2 r2θ . . . cos2 rmθ = (−1)n−m4−m
(

2n−m
m

)
.

Corollary 3.6.

Bn(x) =
(h(x))n(h(x)− 1) + (g(x))n(g(x)− 1)

4(x− 1)
,

where h(x) = 2x− 1 +
√

(2x− 1)2 − 1 and g(x) = 2x− 1−
√

(2x− 1)2 − 1.

As in Corollary 3.2, Corollary 3.7 follows from Theorem 3.1 and Corollary 3.6 by
taking limit x→ ±1.
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Corollary 3.7.

Bn(1) =
n∑

m=0

(−1)n−m4m
(
m+ n

2m

)
= 2n+ 1 and

Bn(−1) = (−1)n
n∑

m=0

4m
(
m+ n

2m

)
= − (h(−1))n(h(−1)− 1) + (g(−1))n(g(−1)− 1)

8
,

where h(x) and g(x) are as in Corollary 3.6.

As in Corollary 3.3, we can deduce Corollary 3.8.

Corollary 3.8.
n∑

m=1

∑
1≤r1<r2<...<rm≤n

cos2 r1θ cos2 r2θ . . . cos2 rmθ = (−1)n
Bn(−1)

4n
− 1.

Recall that U2n(x) = (−1)nAn(x)An(−x), (see (1.4)). So

U2n(x) = 4n
n∏
i=1

(x2 − cos2 iθ) = Bn(x2) and

Bn(x) = (−1)nAn(x1/2)An(−x1/2), n = 0, 1, . . . .(3.3)

By Theorem 2.2, Theorem 3.1 and (3.3), we have the following corollary.

Corollary 3.9.
2m∑
i=0

(
bn+i

2 c
i

)(
m+ bn−i2 c

2m− i

)
=
(
m+ n

2m

)
, for all 0 ≤ m ≤ n.
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