

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Universality of the Riemann zeta-function

Antanas Laurinčikas^{a,b,*}

^a Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
^b Faculty of Mathematics and Informatics, Šiauliai University, P. Višinskio 19, LT-77156 Šiauliai, Lithuania

ARTICLE INFO

Article history: Received 2 March 2010 Revised 28 April 2010 Communicated by David Goss

MSC: 11M06

Keywords: Limit theorem Riemann zeta-function Space of analytic functions Universality

ABSTRACT

In 1975, S.M. Voronin proved the universality of the Riemann zeta-function $\zeta(s)$. This means that every non-vanishing analytic function can be approximated uniformly on compact subsets of the critical strip by shifts $\zeta(s + i\tau)$. In the paper, we consider the functions $F(\zeta(s))$ which are universal in the Voronin sense.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let, as usual, $\zeta(s)$, $s = \sigma + it$, denote the Riemann zeta-function defined, for $\sigma > 1$, by

$$\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s},$$

and by analytic continuation elsewhere, except for a simple pole at s = 1 with residue 1.

In [9], see also [3,10], Voronin discovered a remarkable universality property of the function $\zeta(s)$. Roughly speaking, the universality of $\zeta(s)$ means that every analytic function can be approximated uniformly on some sets by translations $\zeta(s + i\tau)$. The original version of the Voronin theorem is the following.

0022-314X/\$ - see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2010.04.007

^{*} Address for correspondence: Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.

E-mail address: antanas.laurincikas@maf.vu.lt.

Theorem 1. Let $0 < r < \frac{1}{4}$. Suppose that the function f(s) is continuous on the disc $|s| \leq r$ and analytic in interior of this disc. If f(s) has no zeros in the interior of the disc $|s| \leq r$, then, for every $\varepsilon > 0$, there exists a real number $\tau = \tau(\varepsilon)$ such that

$$\max_{|s|\leqslant r} \left| f(s) - \zeta \left(s + \frac{3}{4} + i\tau \right) \right| < \varepsilon.$$

In [9], Voronin gives a direct proof of Theorem 1, while in [3] the theorem is deduced from the universality of $\log \zeta(s)$. We remind that $\log \zeta(\sigma + it)$, $\frac{1}{2} < \sigma < 1$, is defined from $\log \zeta(2) \in \mathbb{R}$ by continuous variation along the line segments [2, 2 + it] and $[2 + it, \sigma + it]$, provided that the path does not pass a zero or pole of $\zeta(s)$. If it does, then we take $\log \zeta(s + it) = \lim_{\epsilon \to +0} \log \zeta(\sigma + i(t + \epsilon))$.

Theorem 2. (See [3].) Let $0 < r < \frac{1}{4}$. Suppose that the function g(s) is continuous on the disc $|s| \leq r$ and analytic in interior of this disc. Then, for every $\varepsilon > 0$, there exists a real number $\tau = \tau(\varepsilon)$ such that

$$\max_{|s|\leqslant r} \left| g(s) - \log \zeta \left(s + \frac{3}{4} + i\tau \right) \right| < \varepsilon.$$

The modern version of the Voronin theorem has a more general form. Denote by meas{*A*} the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and let, for T > 0,

$$\nu_T(\ldots) = \frac{1}{T} \operatorname{meas} \{ \tau \in [0, T] : \ldots \},\$$

where in place of dots a condition satisfied by τ is to be written. Moreover, let $D = \{s \in \mathbb{C}: \frac{1}{2} < \sigma < 1\}$.

Theorem 3. Suppose that *K* is a compact subset of the strip *D* with connected complement, and let f(s) be a non-vanishing continuous function on *K* which is analytic in the interior of *K*. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty}\nu_T\Big(\sup_{s\in K}\big|\zeta(s+i\tau)-f(s)\big|<\varepsilon\Big)>0.$$

Proof of Theorem 3 is given, for example, in [5], see also [1,6–8]. It is known [1,4] that the derivative of $\zeta(s)$ is also universal.

Theorem 4. Let *K* be the same as in Theorem 3, and let g(s) be a continuous function on *K* which is analytic in the interior of *K*. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty}\nu_T\Big(\sup_{s\in K}\big|\zeta'(s+i\tau)-g(s)\big|<\varepsilon\Big)>0.$$

Note that in Theorems 2 and 4 the approximated function g(s) is not necessarily non-vanishing. Theorems 2 and 4 show that certain functions of $\zeta(s)$ are also universal. Therefore, a problem arises to describe a set of functions *F* such that $F(\zeta(s))$ should be universal in the above sense.

Let *G* be a region on the complex plane. Denote by H(G) the space of analytic on *G* functions equipped with the topology of uniform convergence on compacta. A sufficiently wide class of functions $F : H(D) \to H(D)$ with the universality property of $F(\zeta)$ is described as follows. Suppose that $F^{-1}g \in H(D)$ for each $g \in H(D)$, and that *F* is of the Lipschitz type, i.e., for all $g_1, g_2 \in H(D)$, there exist positive constants *c* and $\alpha \leq 1$, and a compact subset $K_1 \subset D$ with connected complement such that, for every compact subset $K \subset D$ with connected complement,

$$\sup_{s\in K} \left| F\left(g_1(s)\right) - F\left(g_2(s)\right) \right| \leq c \sup_{s\in A} \left|g_1(s) - g_2(s)\right|^{\alpha}$$

for some $A \subset K_1$. Clearly, the universality of $F(\zeta)$ for the function F of the above type is a simple consequence of the universality of $\zeta(s)$ itself. For example, an application of the Cauchy integral formula shows that function F(g(s)) = g'(s), $g \in H(D)$, is of the Lipschitz type with $\alpha = 1$. Thus, this gives an alternative proof of the universality for $\zeta'(s)$.

Our aim is to present more general results. Let

$$S_{\zeta} = \{g \in H(D) \colon g(s) \neq 0 \forall s \in D, \text{ or } g(s) \equiv 0\}.$$

Denote by *U* the class of continuous functions $F : H(D) \to H(D)$ such that, for any open set $G \subset H(D)$,

$$(F^{-1}G) \cap S_{\zeta} \neq \emptyset.$$

Theorem 5. Suppose that $F \in U$. Let K and g(s) be the same as in Theorem 4. Then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty}\nu_T\Big(\sup_{s\in K}\big|F\big(\zeta(s+i\tau)\big)-g(s)\big|<\varepsilon\Big)>0.$$

It is difficult to check the hypotheses of Theorem 5. The next theorem gives more convenient conditions for the universality of $F(\zeta(s))$.

For arbitrary V > 0, let $D_V = \{s \in \mathbb{C}: \frac{1}{2} < \sigma < 1, |t| < V\}$, and $S_{\zeta,V} = \{g \in H(D_V): g(s) \neq 0 \\ \forall s \in D, \text{ or } g(s) \equiv 0\}$. Denote by U_V the class of continuous functions $F: H(D_V) \to H(D_V)$ such that, for each polynomial p = p(s),

$$(F^{-1}{p}) \cap S_{\zeta,V} \neq \emptyset.$$

Theorem 6. Suppose that $F \in U_V$. Let K and g(s) be the same as in Theorem 4. Then the assertion of Theorem 5 is true.

For example, for $f \in H(D_V)$, let

$$F(f) = c_1 f'(s) + c_2 f''(s), \quad c_1, c_2 \in \mathbb{C}, \ c_1 c_2 \neq 0.$$

Then the function *F* is continuous. Moreover, for each polynomial p(s), there exists a polynomial q(s) such that $q \in F^{-1}{p}$ and $q(s) \neq 0$ for $s \in D_V$ in view of the definition of D_V . Therefore, by Theorem 6, the function $F(\zeta(s))$ is universal.

Approximation by shifts $F(\zeta(s+i\tau))$ can be realized on a subset of H(D), for example, on S_{ζ} . Let a and b be two complex numbers, and denote by $U_{a,b}$ the class of continuous functions $F : H(D) \to H(D)$ such that $F(S_{\zeta}) = H_{a,b}(D)$, where

$$H_{a,b}(D) = \{ g \in H(D) \colon g(s) \neq a, \ g(s) \neq b \ \forall s \in D, \ \text{or} \ g(s) \equiv F(0) \}.$$

Theorem 7. Suppose that $F \in U_{a,b}$, and K is the same as in Theorem 3. Let g(s) be a continuous on K function, $g(s) \neq a$, $g(s) \neq b$, on K, which is analytic in the interior of K. Then the assertion of Theorem 5 is true.

Remark. The set $H_{a,b}(D)$ can be replaced by

$$H_{a_1,\ldots,a_k}(D) = \{g \in H(D): g(s) \neq a_j, j = 1, \ldots, k, \forall s \in D, \text{ or } g(s) \equiv F(0)\},\$$

where a_1, \ldots, a_k are complex numbers, $k \in \mathbb{N}$.

Suppose that a = b = 0. Then Theorem 7 implies the universality of $F(\zeta(s)) = (\zeta(s))^N$, $N \in \mathbb{N}$. In this case,

$$F(S_{\zeta}) = \left\{ g \in H(D) \colon g(s) \neq 0 \forall s \in D, \text{ or } g(s) \equiv 0 \right\}.$$

If a = 0 and b = 1, then, by Theorem 7, the function $F(\zeta(s)) = e^{\zeta(s)}$ is also universal because

$$F(S_{\zeta}) = \{ g \in H(D) \colon g(s) \neq 0, \ g(s) \neq 1, \ \forall s \in D, \ \text{or} \ g(s) \equiv 1 \}.$$

2. Limit theorems

The principal ingredient for the proof of universality for $F(\zeta(s))$ is a limit theorem in the sense of weak convergence of probability measures in the space of analytic functions. Denote by $\mathcal{B}(S)$ the class of Borel sets of the space *S*, and define the probability measure

$$P_{T,F}(A) = v_T (F(\zeta(s+i\tau)) \in A), \quad A \in \mathcal{B}(H(D)).$$

We will derive a limit theorem with explicitly given limit measure for the measure $P_{T,F}$ as $T \to \infty$ from a limit theorem for the measure

$$P_T(A) = \nu_T \big(\zeta(s + i\tau) \in A \big), \quad A \in \mathcal{B} \big(H(D) \big).$$

For this, we will apply the following property of the weak convergence of probability measures. Let S and S_1 be two metric spaces, and let $h: S \to S_1$ be a Borelian function. Then every probability measure P on $(S, \mathcal{B}(S))$ induces on $(S_1, \mathcal{B}(S_1))$ the unique probability measure Ph^{-1} defined by the equality $Ph^{-1}(A) = P(h^{-1}A)$, $A \in \mathcal{B}(S_1)$. Denote by D_h the set of discontinuity points of the function h. If the space S is separable, then $D_h \in \mathcal{B}(S)$ [2].

Lemma 8. Suppose that P and P_n , $n \in \mathbb{N}$, are probability measures on $(S, \mathcal{B}(S))$, and $P(D_h) = 0$. If P_n converges weakly to P as $n \to \infty$, then also $P_n h^{-1}$ converges weakly to Ph^{-1} as $n \to \infty$.

Proof of the lemma is given, for example, in [2, Theorem 5.1].

Let $\gamma = \{s \in \mathbb{C}: |s| = 1\}$ be the unit circle on the complex plane. Define

$$\Omega = \prod_p \gamma_p,$$

where $\gamma_p = \gamma$ for each prime p. With the product topology and pointwise multiplication, the infinitedimensional torus Ω is a compact topological Abelian group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$, the probability Haar measure m_H can be defined, and this gives a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Denote by $\omega(p)$ the projection of $\omega \in \Omega$ to the coordinate space γ_p , and on the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$ define an H(D)-valued random element $\zeta(s, \omega)$ by the formula

$$\zeta(s,\omega) = \prod_{p} \left(1 - \frac{\omega(p)}{p^s}\right)^{-1}$$

Note that the latter infinite product, for almost all $\omega \in \Omega$, converges uniformly on compact subsets of the strip *D*. Denote by P_{ζ} the distribution of the random element $\zeta(s, \omega)$, i.e.,

$$P_{\zeta}(A) = m_H \big(\omega \in \Omega \colon \zeta(s, \omega) \in A \big), \quad A \in \mathcal{B} \big(H(D) \big).$$

Lemma 9. The probability measure P_T converges weakly to the measure P_{ζ} as $T \to \infty$.

Proof of the lemma can be found in [5].

Let $P_{T,V}$ and $P_{\zeta,V}$ be the restrictions to $(H(D_V), \mathcal{B}(H(D_V)))$ of the measures P_T and P_{ζ} , respectively.

Corollary 10. The probability measure $P_{T,V}$ converges weakly to $P_{\zeta,V}$ as $T \to \infty$.

Proof. The corollary is a consequence of Lemmas 9 and 8. \Box

Theorem 11. Suppose that $F : H(D) \to H(D)$ is a continuous function. Then the probability measure $P_{T,F}$ converges weakly to the distribution of the random element $F(\zeta(s, \omega))$ as $T \to \infty$.

Proof. We have that $P_{T,F} = P_T F^{-1}$. Therefore, the continuity of *F*, and Lemmas 9 and 8 show that the measure $P_{T,F}$ converges weakly to $P_{\zeta}F^{-1}$ as $T \to \infty$. Thus the definition of $P_{\zeta}F^{-1}$ gives the assertion of the theorem. \Box

Denote by $P_{T,F,V}$ and $\zeta_V(s,\omega)$ the restrictions to $H(D_V)$ of probability measure $P_{T,F}$ and the random element $\zeta(s,\omega)$, respectively.

Theorem 12. Suppose that $F : H(D_V) \to H(D_V)$ be a continuous function. Then the probability measure $P_{T,F,V}$ converges weakly to the distribution of the random element $F(\zeta_V(s, \omega))$ as $T \to \infty$.

Proof. We use the same arguments as in the proof of Theorem 11, and Corollary 10. \Box

3. Supports

Let *S* be a separable metric space, and *P* be a probability measure on $(S, \mathcal{B}(S))$. We remind that a minimal closed set $S_P \subseteq S$ such that $P(S_P) = 1$ is called a support of *P*. The set S_P consists of all $x \in S$ such that, for every open neighbourhood *G* of *x*, the inequality P(G) > 0 is satisfied. Moreover, the support of the distribution of a random element is called a support of this element.

In this section, we consider the support of the random element $F(\zeta(s, \omega))$. For this, we will apply the following statement.

Lemma 13. The support of the random element $\zeta(s, \omega)$ is the set S_{ζ} .

Proof of the lemma is given in [5, Lemma 6.5.5].

Theorem 14. Suppose that $F \in U$. Then the support of the random element $F(\zeta(s, \omega))$ is the whole of H(D).

Proof. Since the function *F* is continuous, for any open set $G \subset H(D)$, we have that $F^{-1}G$ is an open set, too. Moreover, by the definition of the class *U*, there exists an element *x* of S_{ζ} such that $x \in F^{-1}G$, i.e., $F^{-1}G$ is an open neighbourhood of *x*. Hence, by Lemma 13,

$$m_H(\omega \in \Omega: F(\zeta(s, \omega)) \in G) = m_H(\omega \in \Omega: \zeta(s, \omega) \in F^{-1}G) > 0,$$

and this proves the theorem. \Box

For the support of $F(\zeta_V(s, \omega))$, $F \in U_V$, we need the Mergelyan theorem on the approximation of analytic functions by polynomials.

Lemma 15. Let $K \subset \mathbb{C}$ be a compact subset with connected complement, and let g(s) be a function continuous on K which is analytic in the interior of K. Then, for every $\varepsilon > 0$, there exists a polynomial p(s) such that

$$\sup_{s\in K} \left| g(s) - p(s) \right| < \varepsilon$$

Proof of the lemma is given, for example, in [11].

Also, for every open *G*, we remind a metric in H(G) that induces its topology of uniform convergence on compacta. It is well known that there exists a sequence $\{K_n\}$ of compact subsets of *G* such that

$$G=\bigcup_{n=1}^{\infty}K_n,$$

 $K_n \subset K_{n+1}$, $n \in \mathbb{N}$, and if $K \subset G$ is a compact subset, then $K \subset K_n$ for some n. For $f, g \in H(G)$, define

$$\rho(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_n(f,g)}{1 + \rho_n(f,g)}$$

where

$$\rho_n(f,g) = \sup_{s \in K_n} \left| f(s) - g(s) \right|.$$

Then $\rho(f, g)$ is desired metric.

Lemma 16. The support of the random element $\zeta_V(s, \omega)$ is the whole of $H(D_V)$.

Proof of the lemma completely coincides with that of Lemma 13, see Lemma 6.5.5 of [5].

Theorem 17. Suppose that $F \in U_V$. Then the support of the random element $F(\zeta_V(s, \omega))$ is the whole of $H(D_V)$.

Proof. Let *G* be an open set of $H(D_V)$. Then $F^{-1}G$ also is an open set. We will prove that $S_{\zeta,V} \cap F^{-1}G \neq \emptyset$.

Suppose that $\{K_n\}$ is a sequence of compact subsets of D_V whose occur in the definition of the metric on $H(D_V)$. Obviously, we can choose K_n to be with connected complement, $n \in \mathbb{N}$. Hence, we have that g approximates f with given accuracy in $H(D_V)$ if g approximates f with a suitable accuracy uniformly on K_n for sufficiently large n. Therefore, in $H(D_V)$, it suffices to consider an approximation on a compact subsets of D_V .

If *K* is a compact subset of D_V with connected complement, then, by Lemma 15, there exists a polynomial p = p(s) which approximate $f(s) \in H(D_V)$ with a given accuracy uniformly on *K*. Therefore, if $f \in G$, then we may assume that $p \in G$, too. Hence, by the definition of the class U_V , we obtain that the set $(F^{-1}G) \cap S_{\zeta,V} \neq \emptyset$. This and Lemma 16 show, as in the proof of Theorem 14, that the support of $F(\zeta_V(s, \omega))$ is the whole of $H(D_V)$. \Box

Theorem 18. Suppose that $F \in U_{a,b}$. Then the support of the random element $F(\zeta(s, \omega))$ is the set $H_{a,b}(D)$.

Proof. By the definition of the class $U_{a,b}$, we have that, for each $f \in H_{a,b}(D)$, there exists $g \in S_{\zeta}$ such that F(g) = f. This shows that every open neighbourhood G of $f \in H_{a,b}(D)$ has a positive measure:

$$m_H(\omega \in \Omega: F(\zeta(s, \omega)) \in G) > 0.$$

Moreover,

$$m_H(\omega \in \Omega: F(\zeta(s, \omega)) \in H_{a,b}(D)) = m_H(\omega \in \Omega: \zeta(s, \omega) \in S_{\zeta}) = 1,$$

by Lemma 13. 🗆

4. Main theorems

We will use the following property of the weak convergence of probability measures.

Lemma 19. Let P and P_n , $n \in \mathbb{N}$, be probability measures on $(S, \mathcal{B}(S))$, and P_n converges weakly to P as $n \to \infty$. Then, for every open set G of \mathbb{E} ,

$$\liminf_{n\to\infty} P_n(G) \ge P(G).$$

The lemma is a part of Theorem 2.1 from [2].

Proof of Theorem 5. By Lemma 15, there exists a polynomial p(s) such that

$$\sup_{s\in K} \left| g(s) - p(s) \right| < \frac{\varepsilon}{2}.$$
 (1)

Define

$$\mathcal{G} = \left\{ h \in H(D) \colon \sup_{s \in K} \left| p(s) - h(s) \right| < \frac{\varepsilon}{2} \right\}.$$

Then \mathcal{G} is an open set. In view of Theorem 14, p(s) is an element of the support of the distribution $P_{\zeta,F}$ of the random element $F(\zeta(s, \omega))$. Since \mathcal{G} is an open neighbourhood of p(s), this shows that

$$P_{\zeta,F}(\mathcal{G}) > 0. \tag{2}$$

Theorem 11 together with Lemma 19 implies

$$\liminf_{T\to\infty} \nu_T \left(F \left(\zeta(s+i\tau) \right) \in \mathcal{G} \right) \ge P_{\zeta,F}(\mathcal{G}).$$

Therefore, the definition of \mathcal{G} and (2) yield the inequality

$$\liminf_{T\to\infty}\nu_T\bigg(\sup_{s\in K}\big|F\big(\zeta(s+i\tau)\big)-p(s)\big|<\frac{\varepsilon}{2}\bigg)>0.$$

Hence and from (1) the theorem follows. \Box

Proof of Theorem 6. There exists V > 0 such that $K \subset D_V$. We fix such a number V. The next part of the proof uses Theorems 12 and 17, and completely coincides with the proof of Theorem 5. \Box

Proof of Theorem 7. By Lemma 15, there exists a polynomial p(s) such that

$$\sup_{s\in K} |g(s) - p(s)| < \frac{\varepsilon}{6}.$$
(3)

Since $g(s) \neq a$ and $g(s) \neq b$ on K, we have that $p(s) \neq a$, $p(s) \neq b$ on K as well if ε is small enough. Therefore, we can define a branch of $\log(p(s) - a)$ which will be analytic function in the interior of K. Again, by Lemma 15, there exists a polynomial $p_1(s)$ such that

$$\sup_{s\in K} \left| p(s) - a - \mathrm{e}^{p_1(s)} \right| < \frac{\varepsilon}{6}.$$

Moreover, $p_1(s) \neq \log(b - a)$ on K, where the principal value of logarithm is taken, if ε is small enough. Hence,

$$\sup_{s\in K} \left| p(s) - \left(e^{p_1(s)} + a \right) \right| < \frac{\varepsilon}{6}.$$
(4)

Similarly, Lemma 15 shows that there exists a polynomial $p_2(s)$ such that

$$\sup_{s\in\mathcal{K}}\left|e^{p_1(s)-\log(b-a)}-e^{e^{p_2(s)}}\right|<\frac{\varepsilon}{6(b-a)}.$$

Thus,

$$\sup_{s \in K} |e^{p_1(s)} - e^{e^{p_2(s)}}(b-a)| < \frac{\varepsilon}{6}.$$
 (5)

We have that the function

$$h_{a,b}(s) = e^{e^{p_2(s)}}(b-a) + a$$

is analytic on *D*, and $h_{a,b}(s) \neq a$, $h_{a,b}(s) \neq b$. Therefore, in view of Theorem 18, $h_{a,b}(s)$ is an element of the support of the random element $F(\zeta(s, \omega))$. Moreover, combining inequalities (3)–(5), we find that

$$\sup_{s\in\mathcal{K}} \left| g(s) - h_{a,b}(s) \right| < \frac{\varepsilon}{2}.$$
 (6)

Define

$$\mathcal{G} = \left\{ f \in H(D): \sup_{s \in K} \left| h_{a,b}(s) - f(s) \right| < \frac{\varepsilon}{2} \right\}.$$

Then, as in the proof of Theorem 5, we have that

$$P_{\zeta,F}(\mathcal{G}) > \mathbf{0},$$

and, by Theorem 11 and Lemma 19, we obtain that

$$\liminf_{T\to\infty}\nu_T\left(\sup_{s\in K}\left|F\left(\zeta(s+i\tau)\right)-h_{a,b}(s)\right|<\frac{\varepsilon}{2}\right)>0.$$

This together with (6) proves the theorem.

If a = b, then we similarly obtain that there exists a polynomial p(s) such that

$$\sup_{s\in K} \left| g(s) - h_a(s) \right| < \frac{\varepsilon}{2}$$

with

$$h_a(s) = e^{p(s)} + a.$$

Thus, from this we deduce the theorem in the above way. $\hfill\square$

Acknowledgments

The author thanks the anonymous referee for a suggestion to take into account the Lipschitz type functions, and for other valuable comments and remarks.

References

- [1] B. Bagchi, A joint universality theorem for Dirichlet L-functions, Math. Z. 181 (1982) 319-334.
- [2] P. Billingsley, Convergence of Probability Measures, Willey, New York, 1968, second ed., Willey-Interscience, 1999.
- [3] A.A. Karatsuba, S.M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin, 1982.
- [4] A. Laurinčikas, Zeros of the derivative of the Riemann zeta-function, Liet. Mat. Rink. 25 (1985) 111–118 (in Russian); English translation: Lithuanian Math. J. 25 (1985) 255–260.
- [5] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht-Boston-London, 1996.
- [6] A. Laurinčikas, The universality of zeta-functions, Acta Appl. Math. 78 (1-3) (2003) 251-271.
- [7] K. Matsumoto, Probabilistic value-distribution theory of zeta-functions, Sugaku 53 (2001) 279–296 (in Japanese); English translation: Sugaku Expositions 17 (2004) 51–71.
- [8] J. Steuding, Value Distribution of L-Functions, Lecture Notes in Math., vol. 1877, Springer-Verlag, Berlin-Heidelberg, 2007.
- [9] S.M. Voronin, Theorem of the "universality" of the Riemann zeta-function, Izv. Akad. Nauk SSSR. Ser. Mat. 39 (1975) 475– 486 (in Russian); English translation: Math. USSR Izv. 9 (1975) 443–453.
- [10] S.M. Voronin, in: A.A. Karatsuba (Ed.), Collected Works: Mathematics, Publishing House MGTU im. N.E. Baumana, Moscow, 2006 (in Russian).
- [11] J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Collq. Publ., vol. 20, 1960.