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1. Introduction

Let, as usual, £(s), s = o +it, denote the Riemann zeta-function defined, for o > 1, by

oo

’(s) = o
m=1

and by analytic continuation elsewhere, except for a simple pole at s =1 with residue 1.

In [9], see also [3,10], Voronin discovered a remarkable universality property of the function ¢(s).
Roughly speaking, the universality of ¢(s) means that every analytic function can be approximated
uniformly on some sets by translations ¢(s +it). The original version of the Voronin theorem is the
following.
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Theorem 1. Let 0 <1 < }l. Suppose that the function f(s) is continuous on the disc |s| < r and analytic in

interior of this disc. If f(s) has no zeros in the interior of the disc |s| < r, then, for every € > 0, there exists a
real number T = t (&) such that

max
Islsr

<Eé&.

f(s)—;(s—i—%—i—ir)

In [9], Voronin gives a direct proof of Theorem 1, while in [3] the theorem is deduced from the
universality of log¢(s). We remind that log¢(o + it), % < o0 <1, is defined from log¢(2) € R by
continuous variation along the line segments [2,2 + it] and [2 + it, o + it], provided that the path
does not pass a zero or pole of ¢(s). If it does, then we take log ¢ (s +it) =limg— 19log¢ (o +i(t +¢€)).

Theorem 2. (See [3].) Let 0 <1 < %. Suppose that the function g(s) is continuous on the disc |s| < r and
analytic in interior of this disc. Then, for every & > 0, there exists a real number T = t (&) such that

max
Is|<r

<é&.

3
g(s) — log;(s—i— 1 +il’)

The modern version of the Voronin theorem has a more general form. Denote by meas{A} the
Lebesgue measure of a measurable set A C R, and let, for T > 0,

1
vr(...) = ?meas{t €[0,T]: ...},

where in place of dots a condition satisfied by 7 is to be written. Moreover, let D = {s € C:
% <o <1}

Theorem 3. Suppose that K is a compact subset of the strip D with connected complement, and let f (s) be a
non-vanishing continuous function on K which is analytic in the interior of K. Then, for every &€ > 0,

liminfvT(suplg(s +it) — f(s)| < 8) > 0.
T—o0 sek

Proof of Theorem 3 is given, for example, in [5], see also [1,6-8].

It is known [1,4] that the derivative of ¢(s) is also universal.

Theorem 4. Let K be the same as in Theorem 3, and let g(s) be a continuous function on K which is analytic
in the interior of K. Then, for every € > 0,

liminfvr<sup‘§/(s +i1) — g(9)| < 8) > 0.
T—oo sek

Note that in Theorems 2 and 4 the approximated function g(s) is not necessarily non-vanishing.

Theorems 2 and 4 show that certain functions of ¢(s) are also universal. Therefore, a problem
arises to describe a set of functions F such that F(¢(s)) should be universal in the above sense.

Let G be a region on the complex plane. Denote by H(G) the space of analytic on G functions
equipped with the topology of uniform convergence on compacta. A sufficiently wide class of func-
tions F : H(D) — H(D) with the universality property of F(¢) is described as follows. Suppose that
F~'g e H(D) for each g € H(D), and that F is of the Lipschitz type, i.e., for all g, g2 € H(D), there
exist positive constants ¢ and o < 1, and a compact subset K1 C D with connected complement such
that, for every compact subset K C D with connected complement,

sup|F(g1(s)) — F(g2(9))| < csu5|g1 (s) — g209|"
se

sek
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for some A C Kj. Clearly, the universality of F(¢) for the function F of the above type is a simple
consequence of the universality of ¢(s) itself. For example, an application of the Cauchy integral for-
mula shows that function F(g(s)) = g'(s), g € H(D), is of the Lipschitz type with « = 1. Thus, this
gives an alternative proof of the universality for ¢/(s).

Our aim is to present more general results. Let

S¢ ={g € H(D): g(s) #0Vs e D, or g(s) =0}.

Denote by U the class of continuous functions F : H(D) — H(D) such that, for any open set
G C H(D),

(FT'G) NS, #0.

Theorem 5. Suppose that F € U. Let K and g(s) be the same as in Theorem 4. Then, for every ¢ > 0,

1iTnliogfuT(§g}?|F(;(s +i1)) —g(5)] <¢) > 0.

It is difficult to check the hypotheses of Theorem 5. The next theorem gives more convenient
conditions for the universality of F(¢(s)).

For arbitrary V > 0, let Dy = {s € C: % <o <1, |t|] <V}, and Sy v ={g e H(Dy): g(s) #0
Vs € D, or g(s) =0}. Denote by Uy the class of continuous functions F : H(Dy) — H(Dy) such that,
for each polynomial p = p(s),

(FY{p}) NSev # 9.

Theorem 6. Suppose that F € Uy. Let K and g(s) be the same as in Theorem 4. Then the assertion of Theorem 5
is true.

For example, for f € H(Dy), let
F(fy=c1f'(s) +c2f"(s), c1,c2€C, cic2 #0.

Then the function F is continuous. Moreover, for each polynomial p(s), there exists a polynomial q(s)
such that g € F~'{p} and q(s) # 0 for s € Dy in view of the definition of Dy . Therefore, by Theorem 6,
the function F(Z(s)) is universal.

Approximation by shifts F({(s +i7)) can be realized on a subset of H(D), for example, on S;. Let
a and b be two complex numbers, and denote by U, the class of continuous functions F : H(D) —
H(D) such that F(S;) = Hq p(D), where

Hqp(D) ={g € H(D): g(s) #a, g(s) #bVseD, or g(s)=F(0)}.

Theorem 7. Suppose that F € U, p, and K is the same as in Theorem 3. Let g(s) be a continuous on K function,
g(s) #a, g(s) #b, on K, which is analytic in the interior of K. Then the assertion of Theorem 5 is true.

Remark. The set H, (D) can be replaced by

Ha,...q(D)={g € H(D): g(s) #aj, j=1,...,k, Vse€ D, or g(s) = F(0)},

where ai, ..., a, are complex numbers, k € N.
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Suppose that a = b = 0. Then Theorem 7 implies the universality of F(z(s)) = (¢(s))N, N e N. In
this case,

F(S;)={geH(D): g(s)#0Vse D, or g(s) =0}.

If a=0 and b =1, then, by Theorem 7, the function F(Z(s)) = et® is also universal because
F(S¢) = {g e H(D): g(s)#0, g(s)#1, Vse D, or g(s) = 1}.
2. Limit theorems

The principal ingredient for the proof of universality for F(¢(s)) is a limit theorem in the sense
of weak convergence of probability measures in the space of analytic functions. Denote by B(S) the
class of Borel sets of the space S, and define the probability measure

Prp(A)=vr(F(¢(s+it)) €A), AeB(H(D)).

We will derive a limit theorem with explicitly given limit measure for the measure Pr r as T — oo
from a limit theorem for the measure

Pr(A)=vr(¢(s+it) € A), AeB(H(D)).

For this, we will apply the following property of the weak convergence of probability measures. Let
S and S; be two metric spaces, and let h: S — S; be a Borelian function. Then every probability
measure P on (S, B(S)) induces on (S1,B(S1)) the unique probability measure Ph~! defined by
the equality Ph—1(A) = P(h~'A), A € B(S1). Denote by Dy the set of discontinuity points of the
function h. If the space S is separable, then Dy € B(S) [2].

Lemma 8. Suppose that P and Py, n € N, are probability measures on (S, B(S)), and P(Dy) = 0. If P,, con-
verges weakly to P as n — oo, then also Pph~! converges weakly to Ph~! as n — oo.

Proof of the lemma is given, for example, in [2, Theorem 5.1].
Let y ={s € C: |s| =1} be the unit circle on the complex plane. Define

2=[]».
p

where y, =y for each prime p. With the product topology and pointwise multiplication, the infinite-
dimensional torus §2 is a compact topological Abelian group. Therefore, on (£2, B(£2)), the probability
Haar measure my can be defined, and this gives a probability space (£2, 3(§2), my). Denote by w(p)
the projection of w € £2 to the coordinate space yp, and on the probability space (§2, B(£2), my)
define an H(D)-valued random element ¢ (s, w) by the formula

—1
;(s,w):ﬂ(l - wm)) .

s
b p

Note that the latter infinite product, for almost all w € £2, converges uniformly on compact subsets of
the strip D. Denote by P, the distribution of the random element (s, w), i.e.,

P;(A)=my(we 2: {(s,w) €A), AeB(H(D)).

Lemma 9. The probability measure Pt converges weakly to the measure P as T — oo.

Proof of the lemma can be found in [5].
Let Pr.v and Py be the restrictions to (H(Dy), B(H(Dy))) of the measures Py and P, respec-
tively.
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Corollary 10. The probability measure Pty converges weakly to P; y as T — oo.
Proof. The corollary is a consequence of Lemmas 9 and 8. O

Theorem 11. Suppose that F : H(D) — H(D) is a continuous function. Then the probability measure Pt
converges weakly to the distribution of the random element F (¢ (s, w)) as T — oo.

Proof. We have that Pt r = PrF~1. Therefore, the continuity of F, and Lemmas 9 and 8 show that
the measure Pr p converges weakly to P;F‘1 as T — oo. Thus the definition of P;F‘1 gives the
assertion of the theorem. O

Denote by Pr ry and ¢y (s,w) the restrictions to H(Dy) of probability measure Pt r and the
random element ¢(s, w), respectively.

Theorem 12. Suppose that F : H(Dy) — H(Dy) be a continuous function. Then the probability measure
Pr,F v converges weakly to the distribution of the random element F (¢y (s, )) as T — oo.

Proof. We use the same arguments as in the proof of Theorem 11, and Corollary 10. O
3. Supports

Let S be a separable metric space, and P be a probability measure on (S, B(S)). We remind that
a minimal closed set Sp C S such that P(Sp) =1 is called a support of P. The set Sp consists of all
x € S such that, for every open neighbourhood G of x, the inequality P(G) > 0 is satisfied. Moreover,
the support of the distribution of a random element is called a support of this element.

In this section, we consider the support of the random element F(¢ (s, w)). For this, we will apply
the following statement.
Lemma 13. The support of the random element ¢ (s, w) is the set S;.

Proof of the lemma is given in [5, Lemma 6.5.5].
Theorem 14. Suppose that F € U. Then the support of the random element F (¢ (s, w)) is the whole of H(D).
Proof. Since the function F is continuous, for any open set G C H(D), we have that F~'G is an open
set, too. Moreover, by the definition of the class U, there exists an element x of S, such that x € F~1G,

i.e., F~1G is an open neighbourhood of x. Hence, by Lemma 13,

my(w e 2: F(¢(s,w)) €G) =my(w e 2: ¢(s,w) € F7'G) > 0,

and this proves the theorem. O

For the support of F(¢y (s, w)), F € Uy, we need the Mergelyan theorem on the approximation of
analytic functions by polynomials.

Lemma 15. Let K C C be a compact subset with connected complement, and let g(s) be a function continuous
on K which is analytic in the interior of K. Then, for every € > 0, there exists a polynomial p(s) such that

sup|g(s) — p(s)| <e.
sek

Proof of the lemma is given, for example, in [11].
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Also, for every open G, we remind a metric in H(G) that induces its topology of uniform conver-
gence on compacta. It is well known that there exists a sequence {K;} of compact subsets of G such
that

o0
G= U K,
n=1

Kn C Knt1, neN, and if K C G is a compact subset, then K C K, for some n. For f, g € H(G), define

o0

p(f.e)=) 27"

n=1

pn(fv g)
1+ pn(f, 8’

where

pn(f,8) = sup|f(s) — g(s)|.

seKp

Then p(f, g) is desired metric.
Lemma 16. The support of the random element ¢y (s, w) is the whole of H(Dv).
Proof of the lemma completely coincides with that of Lemma 13, see Lemma 6.5.5 of [5].

Theorem 17. Suppose that F € Uy. Then the support of the random element F(¢y (s, w)) is the whole
of H(Dy).

Proof. Let G be an open set of H(Dy). Then F~!G also is an open set. We will prove that
Sev NFTIG#0.

Suppose that {K,} is a sequence of compact subsets of Dy whose occur in the definition of the
metric on H(Dy). Obviously, we can choose K, to be with connected complement, n € N. Hence,
we have that g approximates f with given accuracy in H(Dy) if g approximates f with a suitable
accuracy uniformly on K, for sufficiently large n. Therefore, in H(Dy), it suffices to consider an ap-
proximation on a compact subsets of Dy .

If K is a compact subset of Dy with connected complement, then, by Lemma 15, there exists a
polynomial p = p(s) which approximate f(s) € H(Dy) with a given accuracy uniformly on K. There-
fore, if f € G, then we may assume that p € G, too. Hence, by the definition of the class Uy, we
obtain that the set (F~1G)N S¢,v # . This and Lemma 16 show, as in the proof of Theorem 14, that
the support of F(¢y (s, w)) is the whole of H(Dy). O

Theorem 18. Suppose that F € U, p,. Then the support of the random element F (¢ (s, w)) is the set Hq (D).

Proof. By the definition of the class U, , we have that, for each f € Hy (D), there exists g € S; such
that F(g) = f. This shows that every open neighbourhood G of f € Hq (D) has a positive measure:

my(w € 2: F({(s,w)) € G) > 0.
Moreover,
my(w € 2: F(£(s,w)) € Hap(D)) =mpy(w € 2: {(s,w) € S;) =1,

by Lemma 13. O
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4. Main theorems
We will use the following property of the weak convergence of probability measures.

Lemma 19. Let P and Py, n € N, be probability measures on (S, B(S)), and P, converges weakly to P as
n — oc. Then, for every open set G of E,

liminf P,(G) > P(G).
n—oo

The lemma is a part of Theorem 2.1 from [2].

Proof of Theorem 5. By Lemma 15, there exists a polynomial p(s) such that
£
sup|g(s) — p(s)| < 3 (1)
sek
Define
€
G= {h € H(D): sup|p(s) — h(s)| < —}.
sek 2

Then G is an open set. In view of Theorem 14, p(s) is an element of the support of the distribution
P r of the random element F({(s, w)). Since G is an open neighbourhood of p(s), this shows that

P¢.#(G) > 0. )

Theorem 11 together with Lemma 19 implies
liminfvr (F(¢(s +i1)) € G) = Py r(G).
T—o0

Therefore, the definition of G and (2) yield the inequality
£
liminfvr<sup|F(§(s+ it)) — p(s)| < —) > 0.
T—o0 seK 2

Hence and from (1) the theorem follows. O

Proof of Theorem 6. There exists V > 0 such that K C Dy. We fix such a number V. The next part of
the proof uses Theorems 12 and 17, and completely coincides with the proof of Theorem 5. O

Proof of Theorem 7. By Lemma 15, there exists a polynomial p(s) such that
£
sup|g(s) — p(s)| < <. 3)
sek 6

Since g(s) #a and g(s) #b on K, we have that p(s) #a, p(s) #b on K as well if ¢ is small enough.
Therefore, we can define a branch of log(p(s) —a) which will be analytic function in the interior of K.
Again, by Lemma 15, there exists a polynomial p1(s) such that

&

sup|p(s) —a—eP1®] <
sek 6
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Moreover, pi(s) # log(b —a) on K, where the principal value of logarithm is taken, if & is small
enough. Hence,

swh@—@m@+m<g‘ 4)

sek

Similarly, Lemma 15 shows that there exists a polynomial p»(s) such that

sup|eP1®)~logb-a) _ eeP2(5)| _ ;
sek 6(b _ a)
Thus,
p1(s) eP2(s) &
sup|eP'® — e (b —a)| < —. 5)
sek 6

We have that the function
hap(s) = e (b—a)+a

is analytic on D, and hg 5 (s) # a, hq p(s) # b. Therefore, in view of Theorem 18, hy 5 (s) is an element
of the support of the random element F(¢(s, ®)). Moreover, combining inequalities (3)-(5), we find
that

sw@@—%ﬂﬂ<§- (6)

sek

Define
g= {f € H(D): sup|hqp(s) — ()| < i}.
sek 2

Then, as in the proof of Theorem 5, we have that
P: r(9) >0,

and, by Theorem 11 and Lemma 19, we obtain that

.. . &
ggghw<wMF@@+nn—hM@ﬂ<§>>a

sek

This together with (6) proves the theorem.
If a=Db, then we similarly obtain that there exists a polynomial p(s) such that

e
wﬂﬁ@—%@ﬂ<§
sek

with

ha(s) = eP® +a.

Thus, from this we deduce the theorem in the above way. O
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