
Journal of Number Theory 130 (2010) 2323–2331
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Universality of the Riemann zeta-function

Antanas Laurinčikas a,b,∗
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In 1975, S.M. Voronin proved the universality of the Riemann
zeta-function ζ(s). This means that every non-vanishing analytic
function can be approximated uniformly on compact subsets of
the critical strip by shifts ζ(s + iτ ). In the paper, we consider the
functions F (ζ(s)) which are universal in the Voronin sense.
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1. Introduction

Let, as usual, ζ(s), s = σ + it , denote the Riemann zeta-function defined, for σ > 1, by

ζ(s) =
∞∑

m=1

1

ms
,

and by analytic continuation elsewhere, except for a simple pole at s = 1 with residue 1.
In [9], see also [3,10], Voronin discovered a remarkable universality property of the function ζ(s).

Roughly speaking, the universality of ζ(s) means that every analytic function can be approximated
uniformly on some sets by translations ζ(s + iτ ). The original version of the Voronin theorem is the
following.
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Theorem 1. Let 0 < r < 1
4 . Suppose that the function f (s) is continuous on the disc |s| � r and analytic in

interior of this disc. If f (s) has no zeros in the interior of the disc |s| � r, then, for every ε > 0, there exists a
real number τ = τ (ε) such that

max
|s|�r

∣∣∣∣ f (s) − ζ

(
s + 3

4
+ iτ

)∣∣∣∣ < ε.

In [9], Voronin gives a direct proof of Theorem 1, while in [3] the theorem is deduced from the
universality of log ζ(s). We remind that log ζ(σ + it), 1

2 < σ < 1, is defined from log ζ(2) ∈ R by
continuous variation along the line segments [2,2 + it] and [2 + it, σ + it], provided that the path
does not pass a zero or pole of ζ(s). If it does, then we take log ζ(s + it) = limε→+0 log ζ(σ + i(t +ε)).

Theorem 2. (See [3].) Let 0 < r < 1
4 . Suppose that the function g(s) is continuous on the disc |s| � r and

analytic in interior of this disc. Then, for every ε > 0, there exists a real number τ = τ (ε) such that

max
|s|�r

∣∣∣∣g(s) − log ζ

(
s + 3

4
+ iτ

)∣∣∣∣ < ε.

The modern version of the Voronin theorem has a more general form. Denote by meas{A} the
Lebesgue measure of a measurable set A ⊂ R, and let, for T > 0,

νT (. . .) = 1

T
meas

{
τ ∈ [0, T ]: . . .

}
,

where in place of dots a condition satisfied by τ is to be written. Moreover, let D = {s ∈ C:
1
2 < σ < 1}.

Theorem 3. Suppose that K is a compact subset of the strip D with connected complement, and let f (s) be a
non-vanishing continuous function on K which is analytic in the interior of K . Then, for every ε > 0,

lim inf
T →∞ νT

(
sup
s∈K

∣∣ζ(s + iτ ) − f (s)
∣∣ < ε

)
> 0.

Proof of Theorem 3 is given, for example, in [5], see also [1,6–8].
It is known [1,4] that the derivative of ζ(s) is also universal.

Theorem 4. Let K be the same as in Theorem 3, and let g(s) be a continuous function on K which is analytic
in the interior of K . Then, for every ε > 0,

lim inf
T →∞ νT

(
sup
s∈K

∣∣ζ ′(s + iτ ) − g(s)
∣∣ < ε

)
> 0.

Note that in Theorems 2 and 4 the approximated function g(s) is not necessarily non-vanishing.
Theorems 2 and 4 show that certain functions of ζ(s) are also universal. Therefore, a problem

arises to describe a set of functions F such that F (ζ(s)) should be universal in the above sense.
Let G be a region on the complex plane. Denote by H(G) the space of analytic on G functions

equipped with the topology of uniform convergence on compacta. A sufficiently wide class of func-
tions F : H(D) → H(D) with the universality property of F (ζ ) is described as follows. Suppose that
F −1 g ∈ H(D) for each g ∈ H(D), and that F is of the Lipschitz type, i.e., for all g1, g2 ∈ H(D), there
exist positive constants c and α � 1, and a compact subset K1 ⊂ D with connected complement such
that, for every compact subset K ⊂ D with connected complement,

sup
∣∣F

(
g1(s)

) − F
(

g2(s)
)∣∣ � c sup

∣∣g1(s) − g2(s)
∣∣α
s∈K s∈A
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for some A ⊂ K1. Clearly, the universality of F (ζ ) for the function F of the above type is a simple
consequence of the universality of ζ(s) itself. For example, an application of the Cauchy integral for-
mula shows that function F (g(s)) = g′(s), g ∈ H(D), is of the Lipschitz type with α = 1. Thus, this
gives an alternative proof of the universality for ζ ′(s).

Our aim is to present more general results. Let

Sζ = {
g ∈ H(D): g(s) �= 0 ∀s ∈ D, or g(s) ≡ 0

}
.

Denote by U the class of continuous functions F : H(D) → H(D) such that, for any open set
G ⊂ H(D),

(
F −1G

) ∩ Sζ �= ∅.

Theorem 5. Suppose that F ∈ U . Let K and g(s) be the same as in Theorem 4. Then, for every ε > 0,

lim inf
T →∞ νT

(
sup
s∈K

∣∣F
(
ζ(s + iτ )

) − g(s)
∣∣ < ε

)
> 0.

It is difficult to check the hypotheses of Theorem 5. The next theorem gives more convenient
conditions for the universality of F (ζ(s)).

For arbitrary V > 0, let D V = {s ∈ C: 1
2 < σ < 1, |t| < V }, and Sζ,V = {g ∈ H(D V ): g(s) �= 0

∀s ∈ D, or g(s) ≡ 0}. Denote by U V the class of continuous functions F : H(D V ) → H(D V ) such that,
for each polynomial p = p(s),

(
F −1{p}) ∩ Sζ,V �= ∅.

Theorem 6. Suppose that F ∈ U V . Let K and g(s) be the same as in Theorem 4. Then the assertion of Theorem 5
is true.

For example, for f ∈ H(D V ), let

F ( f ) = c1 f ′(s) + c2 f ′′(s), c1, c2 ∈ C, c1c2 �= 0.

Then the function F is continuous. Moreover, for each polynomial p(s), there exists a polynomial q(s)
such that q ∈ F −1{p} and q(s) �= 0 for s ∈ D V in view of the definition of D V . Therefore, by Theorem 6,
the function F (ζ(s)) is universal.

Approximation by shifts F (ζ(s + iτ )) can be realized on a subset of H(D), for example, on Sζ . Let
a and b be two complex numbers, and denote by Ua,b the class of continuous functions F : H(D) →
H(D) such that F (Sζ ) = Ha,b(D), where

Ha,b(D) = {
g ∈ H(D): g(s) �= a, g(s) �= b ∀s ∈ D, or g(s) ≡ F (0)

}
.

Theorem 7. Suppose that F ∈ Ua,b , and K is the same as in Theorem 3. Let g(s) be a continuous on K function,
g(s) �= a, g(s) �= b, on K , which is analytic in the interior of K . Then the assertion of Theorem 5 is true.

Remark. The set Ha,b(D) can be replaced by

Ha1,...,ak (D) = {
g ∈ H(D): g(s) �= a j, j = 1, . . . ,k, ∀s ∈ D, or g(s) ≡ F (0)

}
,

where a1, . . . ,ak are complex numbers, k ∈ N.
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Suppose that a = b = 0. Then Theorem 7 implies the universality of F (ζ(s)) = (ζ(s))N , N ∈ N. In
this case,

F (Sζ ) = {
g ∈ H(D): g(s) �= 0 ∀s ∈ D, or g(s) ≡ 0

}
.

If a = 0 and b = 1, then, by Theorem 7, the function F (ζ(s)) = eζ(s) is also universal because

F (Sζ ) = {
g ∈ H(D): g(s) �= 0, g(s) �= 1, ∀s ∈ D, or g(s) ≡ 1

}
.

2. Limit theorems

The principal ingredient for the proof of universality for F (ζ(s)) is a limit theorem in the sense
of weak convergence of probability measures in the space of analytic functions. Denote by B(S) the
class of Borel sets of the space S , and define the probability measure

P T ,F (A) = νT
(

F
(
ζ(s + iτ )

) ∈ A
)
, A ∈ B

(
H(D)

)
.

We will derive a limit theorem with explicitly given limit measure for the measure P T ,F as T → ∞
from a limit theorem for the measure

P T (A) = νT
(
ζ(s + iτ ) ∈ A

)
, A ∈ B

(
H(D)

)
.

For this, we will apply the following property of the weak convergence of probability measures. Let
S and S1 be two metric spaces, and let h : S → S1 be a Borelian function. Then every probability
measure P on (S, B(S)) induces on (S1, B(S1)) the unique probability measure Ph−1 defined by
the equality Ph−1(A) = P (h−1 A), A ∈ B(S1). Denote by Dh the set of discontinuity points of the
function h. If the space S is separable, then Dh ∈ B(S) [2].

Lemma 8. Suppose that P and Pn, n ∈ N, are probability measures on (S, B(S)), and P (Dh) = 0. If Pn con-
verges weakly to P as n → ∞, then also Pnh−1 converges weakly to Ph−1 as n → ∞.

Proof of the lemma is given, for example, in [2, Theorem 5.1].
Let γ = {s ∈ C: |s| = 1} be the unit circle on the complex plane. Define

Ω =
∏

p

γp,

where γp = γ for each prime p. With the product topology and pointwise multiplication, the infinite-
dimensional torus Ω is a compact topological Abelian group. Therefore, on (Ω, B(Ω)), the probability
Haar measure mH can be defined, and this gives a probability space (Ω, B(Ω),mH ). Denote by ω(p)

the projection of ω ∈ Ω to the coordinate space γp , and on the probability space (Ω, B(Ω),mH )

define an H(D)-valued random element ζ(s,ω) by the formula

ζ(s,ω) =
∏

p

(
1 − ω(p)

ps

)−1

.

Note that the latter infinite product, for almost all ω ∈ Ω , converges uniformly on compact subsets of
the strip D . Denote by Pζ the distribution of the random element ζ(s,ω), i.e.,

Pζ (A) = mH
(
ω ∈ Ω: ζ(s,ω) ∈ A

)
, A ∈ B

(
H(D)

)
.

Lemma 9. The probability measure P T converges weakly to the measure Pζ as T → ∞.

Proof of the lemma can be found in [5].
Let P T ,V and Pζ,V be the restrictions to (H(D V ), B(H(D V ))) of the measures P T and Pζ , respec-

tively.
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Corollary 10. The probability measure P T ,V converges weakly to Pζ,V as T → ∞.

Proof. The corollary is a consequence of Lemmas 9 and 8. �
Theorem 11. Suppose that F : H(D) → H(D) is a continuous function. Then the probability measure P T ,F

converges weakly to the distribution of the random element F (ζ(s,ω)) as T → ∞.

Proof. We have that P T ,F = P T F −1. Therefore, the continuity of F , and Lemmas 9 and 8 show that
the measure P T ,F converges weakly to Pζ F −1 as T → ∞. Thus the definition of Pζ F −1 gives the
assertion of the theorem. �

Denote by P T ,F ,V and ζV (s,ω) the restrictions to H(D V ) of probability measure P T ,F and the
random element ζ(s,ω), respectively.

Theorem 12. Suppose that F : H(D V ) → H(D V ) be a continuous function. Then the probability measure
P T ,F ,V converges weakly to the distribution of the random element F (ζV (s,ω)) as T → ∞.

Proof. We use the same arguments as in the proof of Theorem 11, and Corollary 10. �
3. Supports

Let S be a separable metric space, and P be a probability measure on (S, B(S)). We remind that
a minimal closed set S P ⊆ S such that P (S P ) = 1 is called a support of P . The set S P consists of all
x ∈ S such that, for every open neighbourhood G of x, the inequality P (G) > 0 is satisfied. Moreover,
the support of the distribution of a random element is called a support of this element.

In this section, we consider the support of the random element F (ζ(s,ω)). For this, we will apply
the following statement.

Lemma 13. The support of the random element ζ(s,ω) is the set Sζ .

Proof of the lemma is given in [5, Lemma 6.5.5].

Theorem 14. Suppose that F ∈ U . Then the support of the random element F (ζ(s,ω)) is the whole of H(D).

Proof. Since the function F is continuous, for any open set G ⊂ H(D), we have that F −1G is an open
set, too. Moreover, by the definition of the class U , there exists an element x of Sζ such that x ∈ F −1G ,
i.e., F −1G is an open neighbourhood of x. Hence, by Lemma 13,

mH
(
ω ∈ Ω: F

(
ζ(s,ω)

) ∈ G
) = mH

(
ω ∈ Ω: ζ(s,ω) ∈ F −1G

)
> 0,

and this proves the theorem. �
For the support of F (ζV (s,ω)), F ∈ U V , we need the Mergelyan theorem on the approximation of

analytic functions by polynomials.

Lemma 15. Let K ⊂ C be a compact subset with connected complement, and let g(s) be a function continuous
on K which is analytic in the interior of K . Then, for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K

∣∣g(s) − p(s)
∣∣ < ε.

Proof of the lemma is given, for example, in [11].
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Also, for every open G , we remind a metric in H(G) that induces its topology of uniform conver-
gence on compacta. It is well known that there exists a sequence {Kn} of compact subsets of G such
that

G =
∞⋃

n=1

Kn,

Kn ⊂ Kn+1, n ∈ N, and if K ⊂ G is a compact subset, then K ⊂ Kn for some n. For f , g ∈ H(G), define

ρ( f , g) =
∞∑

n=1

2−n ρn( f , g)

1 + ρn( f , g)
,

where

ρn( f , g) = sup
s∈Kn

∣∣ f (s) − g(s)
∣∣.

Then ρ( f , g) is desired metric.

Lemma 16. The support of the random element ζV (s,ω) is the whole of H(D V ).

Proof of the lemma completely coincides with that of Lemma 13, see Lemma 6.5.5 of [5].

Theorem 17. Suppose that F ∈ U V . Then the support of the random element F (ζV (s,ω)) is the whole
of H(D V ).

Proof. Let G be an open set of H(D V ). Then F −1G also is an open set. We will prove that
Sζ,V ∩ F −1G �= ∅.

Suppose that {Kn} is a sequence of compact subsets of D V whose occur in the definition of the
metric on H(D V ). Obviously, we can choose Kn to be with connected complement, n ∈ N. Hence,
we have that g approximates f with given accuracy in H(D V ) if g approximates f with a suitable
accuracy uniformly on Kn for sufficiently large n. Therefore, in H(D V ), it suffices to consider an ap-
proximation on a compact subsets of D V .

If K is a compact subset of D V with connected complement, then, by Lemma 15, there exists a
polynomial p = p(s) which approximate f (s) ∈ H(D V ) with a given accuracy uniformly on K . There-
fore, if f ∈ G , then we may assume that p ∈ G , too. Hence, by the definition of the class U V , we
obtain that the set (F −1G) ∩ Sζ,V �= ∅. This and Lemma 16 show, as in the proof of Theorem 14, that
the support of F (ζV (s,ω)) is the whole of H(D V ). �
Theorem 18. Suppose that F ∈ Ua,b. Then the support of the random element F (ζ(s,ω)) is the set Ha,b(D).

Proof. By the definition of the class Ua,b , we have that, for each f ∈ Ha,b(D), there exists g ∈ Sζ such
that F (g) = f . This shows that every open neighbourhood G of f ∈ Ha,b(D) has a positive measure:

mH
(
ω ∈ Ω: F

(
ζ(s,ω)

) ∈ G
)
> 0.

Moreover,

mH
(
ω ∈ Ω: F

(
ζ(s,ω)

) ∈ Ha,b(D)
) = mH

(
ω ∈ Ω: ζ(s,ω) ∈ Sζ

) = 1,

by Lemma 13. �
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4. Main theorems

We will use the following property of the weak convergence of probability measures.

Lemma 19. Let P and Pn, n ∈ N, be probability measures on (S, B(S)), and Pn converges weakly to P as
n → ∞. Then, for every open set G of E,

lim inf
n→∞ Pn(G) � P (G).

The lemma is a part of Theorem 2.1 from [2].

Proof of Theorem 5. By Lemma 15, there exists a polynomial p(s) such that

sup
s∈K

∣∣g(s) − p(s)
∣∣ <

ε

2
. (1)

Define

G =
{

h ∈ H(D): sup
s∈K

∣∣p(s) − h(s)
∣∣ <

ε

2

}
.

Then G is an open set. In view of Theorem 14, p(s) is an element of the support of the distribution
Pζ,F of the random element F (ζ(s,ω)). Since G is an open neighbourhood of p(s), this shows that

Pζ,F (G) > 0. (2)

Theorem 11 together with Lemma 19 implies

lim inf
T →∞ νT

(
F
(
ζ(s + iτ )

) ∈ G
)
� Pζ,F (G).

Therefore, the definition of G and (2) yield the inequality

lim inf
T →∞ νT

(
sup
s∈K

∣∣F
(
ζ(s + iτ )

) − p(s)
∣∣ <

ε

2

)
> 0.

Hence and from (1) the theorem follows. �
Proof of Theorem 6. There exists V > 0 such that K ⊂ D V . We fix such a number V . The next part of
the proof uses Theorems 12 and 17, and completely coincides with the proof of Theorem 5. �
Proof of Theorem 7. By Lemma 15, there exists a polynomial p(s) such that

sup
s∈K

∣∣g(s) − p(s)
∣∣ <

ε

6
. (3)

Since g(s) �= a and g(s) �= b on K , we have that p(s) �= a, p(s) �= b on K as well if ε is small enough.
Therefore, we can define a branch of log(p(s)−a) which will be analytic function in the interior of K .
Again, by Lemma 15, there exists a polynomial p1(s) such that

sup
∣∣p(s) − a − ep1(s)

∣∣ <
ε

6
.

s∈K
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Moreover, p1(s) �= log(b − a) on K , where the principal value of logarithm is taken, if ε is small
enough. Hence,

sup
s∈K

∣∣p(s) − (
ep1(s) + a

)∣∣ <
ε

6
. (4)

Similarly, Lemma 15 shows that there exists a polynomial p2(s) such that

sup
s∈K

∣∣ep1(s)−log(b−a) − eep2(s) ∣∣ <
ε

6(b − a)
.

Thus,

sup
s∈K

∣∣ep1(s) − eep2(s)
(b − a)

∣∣ <
ε

6
. (5)

We have that the function

ha,b(s) = eep2(s)
(b − a) + a

is analytic on D , and ha,b(s) �= a, ha,b(s) �= b. Therefore, in view of Theorem 18, ha,b(s) is an element
of the support of the random element F (ζ(s,ω)). Moreover, combining inequalities (3)–(5), we find
that

sup
s∈K

∣∣g(s) − ha,b(s)
∣∣ <

ε

2
. (6)

Define

G =
{

f ∈ H(D): sup
s∈K

∣∣ha,b(s) − f (s)
∣∣ <

ε

2

}
.

Then, as in the proof of Theorem 5, we have that

Pζ,F (G) > 0,

and, by Theorem 11 and Lemma 19, we obtain that

lim inf
T →∞ νT

(
sup
s∈K

∣∣F
(
ζ(s + iτ )

) − ha,b(s)
∣∣ <

ε

2

)
> 0.

This together with (6) proves the theorem.
If a = b, then we similarly obtain that there exists a polynomial p(s) such that

sup
s∈K

∣∣g(s) − ha(s)
∣∣ <

ε

2

with

ha(s) = ep(s) + a.

Thus, from this we deduce the theorem in the above way. �
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