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Abstract. We characterize the class of ultraspherical polynomials in between
all symmetric orthogonal polynomials on [−1, 1] via the special form of the

representation of the derivatives p′n+1(x) by pk(x), k = 0, ..., n.

Let (pn(x))n∈N0 be a symmetric orthonormal polynomial sequence with respect
to a symmetric probability measure π with supp π ⊆ [−1, 1], that is, pn is an
algebraic polynomial with deg pn = n,

∫
pnpk dπ = δn,k and pn has a positive

leading coefficient. It is well-known [2] that the pn(x) satisfy a recursion formula

(1) x pn(x) = An+1 pn+1(x) + An pn−1(x) for n ∈ N0,

where p−1 ≡ 0, p0(x) = 1, and An > 0, n ≥ 1 are bounded. Since supp π ⊆ [−1, 1]
the n simple zeroes of pn(x) are contained in ] − 1, 1[ . Hence pn(1) �= 0 for each
n ∈ N0.

Conversely, by Favard’s theorem [2] we know that a sequence of polynomials
which fulfills (1) is an orthogonal polynomial sequence with respect to a symmetric
measure on R. Hence Favard’s theorem is a characterization theorem for orthog-
onal polynomials. It is of great interest to characterize more special classes of
orthogonal polynomials. A survey of such characterization theorems is given in [1].
One problem mentioned in [1] is to find all orthogonal polynomial sequences whose
derivatives are special linear combinations of polynomials of the same system.
The purpose of this note keeps going in the same direction, namely to charac-
terize the ultraspherical polynomials in between the class of symmetric orthonor-
mal polynomials on [−1, 1] by means of the linear representation of p′n+1(x) by
pk(x), k = 0, ..., n.

We prefer to use another normalization of the polynomials pn(x). Let

Rn(x) = pn(x)/pn(1).

Then the recursion formula for Rn(x) is

(2) x Rn(x) = an Rn+1(x) + cn Rn−1(x) for n ∈ N0,

where R−1 ≡ 0, R0(x) = 1 and a0 = 1.
Since Rn+1(1) = 1 yields limx→∞ Rn+1(x) = ∞ the leading coefficient of Rn+1

has to be positive, that is, an > 0 for all n ≥ 1. Additionally Rn(1) = 1 implies
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an +cn = 1 for all n ≥ 1. From the theory of orthogonal polynomials [2] it is known
that cnan−1 > 0, which implies cn > 0 for n ≥ 1. Hence it holds that 0 < an, cn < 1
for n ≥ 1.

The coefficients of (1) and (2) are related by

An =
√

cnan−1 for n ∈ N.

Furthermore, pn(1) =
√

h(n), where h(0) = 1 and

(3) h(n + 1)cn+1 = anh(n) for n ∈ N0.

The ultraspherical polynomials R
(α)
n (x), α > −1 (normalized such that R

(α)
n (1)

= 1) satisfy ∫ 1

−1

R(α)
n (x) R

(α)
k (x) dπ(x) = δn,k

1
h(n)

,

where dπ(x) = cα(1 − x2)αdx, cα = Γ(2α+2)
22α+1(Γ(α+1))2 . The recurrence coefficients

are

(4) an =
n + 2α + 1
2n + 2α + 1

, cn =
n

2n + 2α + 1
, n ∈ N.

The derivatives R′
n+1(x) (and p′n+1(x)) are polynomials of degree n. Hence

R′
n+1(x) =

n∑
k=0

dn,k Rk(x),

with linearization coefficients dn,k. From [5, (7.32.5)] we obtain for ultraspherical
polynomials (R(α)

n )′(x) = n(n+2α+1)
2+2α R

(α+1)
n−1 (x). In that case we can calculate dn,k

from the so-called connection coefficients which connect R
(α+1)
n (x) and R

(α)
k (x); see

[3, (9.1.2)]. We shall show that for m ∈ N0

(R(α)
2m+1)

′(x) = γ2m+1

m∑
k=0

R
(α)
2k (x) h(2k) and(5)

(R(α)
2m+2)

′(x) = γ2m+2

m∑
k=0

R
(α)
2k+1(x) h(2k + 1),(6)

where γn = (n+2α+1) n!
(2+2α)(2α+3)n−1

, n ∈ N. More important, we shall prove that this
special form of the linearization coefficients dn,k in (5) and (6) characterizes the
ultraspherical polynomials in between the symmetric orthogonal polynomials on
[−1, 1]. For the orthonormal versions the formula (5) and (6) write as

(p(α)
2m+1)

′(x) = p
(α)
2m+1(1) γ2m+1

m∑
k=0

p
(α)
2k (x) p

(α)
2k (1) and(7)

(p(α)
2m+2)

′(x) = p
(α)
2m+2(1) γ2m+2

m∑
k=0

p
(α)
2k+1(x) p

(α)
2k+1(1).(8)

Hence, (7) and (8) characterize the ultraspherical polynomials in between the sym-
metric orthonormal polynomials on [−1, 1].
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In order to formalize the calculation denote by c00 the linear space of finite
sequences and by

f̂(x) =
∞∑

k=0

f(k)Rk(x)h(k) =
∞∑

k=0

f(k)pk(x)pk(1)

the Fourier expansion of f ∈ c00. Further put εn ∈ c00 with

εn(k) =
1

h(k)
δn,k for k ∈ N0,

and define the convolution ε1 ∗ f by

ε1 ∗ f(k) = akf(k + 1) + ckf(k − 1) for k ∈ N0,

where we set c0 = 0. The notion of convolution is motivated by the theory of
polynomial hypergroups; compare [4]. Of course, here we do not suppose that the
orthogonal polynomials Rn(x) induce a polynomial hypergroup.

Define recursively κn ∈ c00 by κ0 ≡ 0, κ1 = ε0 and

(9) κn+1 =
1
an

(εn + ε1 ∗ κn − cnκn−1) for n ∈ N.

It is easy to check that supp κn ⊆ {0, . . . , n}. Furthermore, most importantly it
holds that

(10) ε̂n(x) = Rn(x) and κ̂n(x) = R′
n(x) for n ∈ N0.

To verify the latter identity first notify that by (3) we have

xf̂(x) =
∞∑

k=0

f(k)xRk(x)h(k)

=
∞∑

k=0

f(k)(akRk+1(x) + ckRk−1(x))h(k)

=
∞∑

k=1

ckf(k − 1)Rk(x)hk +
∞∑

k=0

akf(k + 1)Rk(x)hk

= (ε1 ∗ f)∧(x)

for f ∈ c00. Differentiating the recursion formula (2) yields

R′
n+1(x) =

1
an

(Rn(x) + xR′
n(x) − cnR′

n−1(x)).

Therefore the second identity in (10) easily follows by induction.

Lemma 1. Let (Rn(x))n∈N0 be an orthogonal polynomial sequence defined by (2)
with an > 0 and an + cn = 1 for all n ∈ N. If the recursion coefficients cn satisfy

(11) cn+1 =
(n + 1) cn

2cn + n
for n ∈ N,

then (Rn(x))n∈N0 belongs to the class of ultraspherical polynomials. More precisely
Rn(x) = R

(α)
n (x), where α = 1

2 ( 1
c1

− 3). Conversely, the recursion coefficients cn

of R
(α)
n (x) satisfy (11) with c1 = 1

2α+3 .
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Proof. Beginning with c1 = 1
2α+3 a simple induction shows that the cn defined by

(11) yield exactly the cn of (4). Conversely, for the coefficients cn of (4) the identity
(11) holds true. �

The next theorem is the main result and gives a characterization of ultraspherical
polynomials.

Theorem 1. Let (Rn(x))n∈N0 be an orthogonal polynomial sequence defined by ( 2)
with an > 0 and an + cn = 1 for all n ∈ N, and h(n) defined by (3). The following
three conditions are equivalent:

(i) It holds that

R′
2m+1(x) = σ2m+1

m∑
j=0

R2j(x) h(2j) and

R′
2m+2(x) = σ2m+2

m∑
j=0

R2j+1(x) h(2j + 1) for m ∈ N0,

where σ2m+1 and σ2m+2 are constants.
(ii) cn+1 = (n+1)cn

2cn+n for all n ∈ N.

(iii) (Rn(x))n∈N0 belongs to the class of ultraspherical polynomials.
The constants in (i) are given by σn+1 = n+1

anh(n) for all n ∈ N0.

Proof. By (10) we have σn+1 = κn+1(n) for all n ∈ N0. Moreover, we easily derive

κn+1(n) =
1
an

(
1

h(n)
+ cnκn(n − 1)

)
for n ∈ N.

Applying induction this identity implies

(12) σn+1 = κn+1(n) =
n + 1

anh(n)
for n ∈ N0.

In fact, κ1(0) = 1 = 1
a0h(0) , and supposing κn(n − 1) = n

an−1h(n−1) = n
cnh(n) , we

obtain

κn+1(n) =
1
an

(
1

h(n)
+

n

h(n)

)
=

n + 1
anh(n)

.

We first prove (i)⇒(ii).
Let n ≥ 2. Taking into account (9) and (10) the assumption made in (i) implies

σn+1 = κn+1(n) = κn+1(n − 2)

=
εn(n − 2) + cn−2κn(n − 3) + an−2κn(n − 1) − cnκn−1(n − 2)

an

=
(cn−2 + an−2)κn(n − 1) − cnκn−1(n − 2)

an
=

σn − cnσn−1

an
.

Hence, by (12) and (3) we get

n + 1 = h(n)
(

n

cnh(n)
− cn(n − 1)

cn−1h(n − 1)

)
=

n

cn
− (n − 1)an−1

cn−1
,

which gives
cn =

ncn−1

2cn−1 + (n − 1)
for n ≥ 2.

The implication (ii)⇒(iii) follows by Lemma 1.
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Suppose that Rn(x) = R
(α)
n (x), α > −1. If we show that

κ2m+1(2j) =
2m + 1

a2mh(2m)
, κ2m+1(2j + 1) = 0 and

κ2m+2(2j) = 0, κ2m+2(2j + 1) =
2m + 2

a2m+1h(2m + 1)
for j = 0, ..., m,(13)

then (iii)⇒(ii) holds. Especially σn+1 = n+1
anh(n) = (n+2α+2)(n+1)!

(2+2α)(2α+3)n
.

To prove (13) we use induction on m. The calculations are based on (9).
We start with κ1(0) = 1, κ2(0) = 0, κ2(1) = 2

a1h(1) . Further, using (11) we get

κ3(0) =
1
a2

(κ2(1) − c2) =
2c1 − a1c2

a1a2

=
2c2c1 + c2 − a1c2

a1a2
=

3c1c2

a1a2
=

3
a2h(2)

,

κ3(1) = 0, κ3(2) =
3

a2h(2)
.

Finally, κ3(2) = κ3(0) and (11) yield

κ4(0) = 0, κ4(1) =
1
a3

(κ3(2) − c3κ2(1)) =
4c1c2c3

a1a2a3
=

4
a3h(3)

,

κ4(2) = 0, κ4(3) =
4

a3h(3)
.

Now suppose that (13) holds for m − 1. It follows by (11)

κ2m+1(0) =
κ2m(1) − c2mκ2m−1(0)

a2m

=
2m

a2ma2m−1h(2m − 1)
− c2m(2m − 1)

a2ma2m−2h(2m − 2)

=
2m

a2mc2mh(2m)
− c2ma2m−1(2m − 1)

a2mc2m−1c2mh(2m)

=
1

a2mh(2m)
2mc2m−1 − c2m(1 − c2m−1)(2m − 1)

c2mc2m−1
=

2m + 1
a2mh(2m)

and therefore

κ2m+1(2j) =
a2jκ2m(2j + 1) + c2jκ2m(2j − 1) − c2mκ2m−1(2j)

a2m

=
κ2m(1) − c2mκ2m−1(0)

a2m
=

2m + 1
a2mh(2m)

for j = 1, ..., m − 1.

Finally

κ2m+1(2m) =
1

a2mh(2m)
+

c2mκ2m(2m − 1)
a2m

=
1

a2mh(2m)
+

c2m2m

a2ma2m−1h(2m − 1)
=

2m + 1
a2mh(2m)

.

Furthermore,

κ2m+1(2j + 1) =
a2j+1κ2m(2j + 2) + c2j+1κ2m(2j) − c2mκ2m−1(2j + 1)

a2m

= 0 for j = 0, ..., m − 1.
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Just in the same way one derives from the induction hypothesis

κ2m+2(2j + 1) =
2m + 2

a2m+1h(2m + 1)
κ2m+2(2j) = 0 for j = 0, ..., m. �

Finally, using the relationship between (1) and (2) discussed at the beginning
we get the following corollary.

Corollary 1. Let (pn(x))n∈N0 be a symmetric orthonormal polynomial sequence
with respect to a symmetric probability measure with supp π ⊆ [−1, 1]. Then the
following two conditions are equivalent:

(i)

p′2m+1(x) = σ2m+1 p2m+1(1)
m∑

k=0

p2k(x) p2k(1),

p′2m+2(x) = σ2m+2 p2m+2(1)
m∑

k=0

p2k+1(x) p2k+1(1), m ∈ N0,

where σ2m+1 and σ2m+2 are constants
(ii) (pn(x))n∈N0 belongs to the class of ultraspherical polynomials.

The constants in (i) are given by σn+1 = n+1
anh(n) for all n ∈ N0.
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berg, Germany

E-mail address: josef.obermaier@helmholtz-muenchen.de

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


