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In view of its connection with a host of important questions, the classical 
moment problem deserves a central place in analysis. It is usually treated by 
methods striking in their virtuosity, but difficult to motivate. Here WC: describe 
an elementary approach which establishes the structural results and exposes 
the Hilbert space origins of the arguments. 

INTRODUCTION 

In view of its connection with a host of important topics--spectral rcpresenta- 
tion for operators, positive definiteness, study of harmonic functions in a half- 
plane, partial fractions, T-spaces, prediction theory, inverse problems--the 
classical moment problem deserves a central place in analysis. It is usually 
treated by methods striking in their virtuosity, but difficult to motivate. Our 
object here is to elucidate them by exposing their roots in the basic notions of 
Hilbert space. As a by-product, we obtain a new and simple proof of the funda- 
mental structural result. 

THE MOMENT PROBLEM AND ITS SOLUTION 

The classical moment problem consists of asking whether a prescribed real 
sequence 1 = o0 , f+ , g2 ,..., can be represented as the sequence of successive 
moments of some positive measure, i.e., in the form 

with dp 3 0 and, if so, whether the measure in question, called a representing 
measure, is uniquely determined. If (I) holds, then, for any choice of complex 
(a,}, CTlc=, u,z~u~~~ = s:m i C,“=, ajxj 12 &(r), and if p(x) has more than a 
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finite number of points of increase, which is generally assumed, this quadratic 
form is positive definite. Thus the condition 

with equality only if aj = 0,j = O,..., N, is evidently necessary for the existence 
of the representation (1); it is proved also to be sufficient: 

THEOREM A. If condition (2) is satisjied, the moment problem has a so&ion. 

THEOREM B. Either the representing measure is unique OY, given any real point 
cy, there exists a representing measure fey which 01 is a point of positive mass. 

We view the dichotomy expressed in Theorem B-that the representing 
measures form either a very small or a very large collection-as the basic struc- 
tural result. 

We outline the usual proof; details can be found in the excellent exposition [ 11. 
Several approaches to Theorem A are available. One can begin with the truncated 
sequence 0a ,..., uan and show the existence of representing measures dp,(x) 
for it. Two distinct lines of reasoning can be followed here. One, described in 
the beautiful memoir of M.G.Krein [2], is based on convexity, and leads to the 
far-reaching generalizations embodied in the idea of Tchebycheff spaces [3]. The 
other strongly suggests Hilbert space. It uses 4” . . . . . oga to define a linear func- 
tional L in the space of polynomials of degree 2n by the rule L(x’) ~ o,< In 
view of (2), one can introduce the sequence 1 ~~: P,, , Pr ,..., P, of polynomials 
orthonormal with respect to L (in the sense that L(P,P,) =x Sij); here P,C has 
degree R and a positive leading coefficient. The existence of representing measures 
follows from Lagrange interpolation at the zeros of certain particular (“quasi- 
orthogonal”) polynomials constructed from the PJx). Finally, Helly’s theorem 
is invoked to conclude that a subsequence of the (dp,f converges to a represent- 
ing measure for the full sequence (uil ‘. Alternatively to both of these arguments, 
one can apply to L a general extension principle of M. Kiesz, which asserts that 
a linear functional originally given on a submanifold, and positive on the inter- 
section of that submanifold with a convex cone, can be extended to the entire 
space with positivity on the cone preserved. Each of these methods establishes 
Theorem A. The proof of Theorem B is more intricate. 

(a) One shows that if P,(a) 4~ 0 th - eie exists a representing measure 
dpJx) for the truncated problem which concentrates a mass of [zz=a 1 Pi,.(~)~2]- l 
at the point x = 01. 

(b) The polynomials {Pk(x)} satisfy a 3-term recursion (analogous to a 
Sturm-Liouville differential equation) of the form xP,(x) = b,-,P,_,(x) -/- 
a,P,(x) + l~~P,~+~(x), in which {aJ are real and (6,) are positive. In addi- 
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tion to {Pk(x)}, this equation has a second polynomial solution, [Qk(.y)}. One 
proves that if Cr=“=, 1 Pk(X)]* < CC and z:F,“_, / Q,(h)12 < co for one point h 
in the complex plane, the same is true for every h. 

(c) One next takes the problem into the complex domain by introducing 
the Stieltjes transform zu,, == szC &,(.X)/(.X - h), with Im h > 0. Using 
conformal mapping properties of linear fractional transformations, one shows 
that as dpLL, varies over the set of representing measures for the truncated problem, 
the point We sweepts out a closed disk A, h in the upper half-plane. As n increases 
the corresponding disks are nested, and hence converge either to a disk or to a 
point. One then connects this phenomenon with the behavior of the 3-term 
recursion by showing that, when Im h > 0, both solutions are square-summable 
at X and only if the limit of AnA is a disk. 

(d) It follows from (c) and (b) that if A,* converges to a point at a single 
value of X in Im X > 0, it does so at each such X. Thereupon, the Stieltjes trans- 
form J-dp(x)/(x - h) 1s uniquely prescribed in Im /\ > 0, whatever the choice 
of the representing measure, and since that transform can be inverted, the repre- 
senting measure must likewise be unique. In the opposite case, if AnA approaches 
a disk for a single value of h, the representing measure is manifestly not unique. 
Moreover, by (c) and (b), C / Ph-(~)12 < a3 for each N, and so, from (a), corre- 
sponding to each real point 01 a representing measure can be found which con- 
centrates a non-zero mass there. 

Ars ELEMENTARY HILBERT SPACE DEMONSTRATION 

The arguments just described rely considerably on methods from the theory 
of complex variables and differential equations. We will now recast them in a 
Hilbert space setting and show that they represent answers to very simple and 
natural questions. In this form, their analytic intricacy can be substantially 
reduced. 

We begin by observing that the given truncated moment sequence 1 = c+, ,..., 
upn can, in view of (2) be used to define a scalar product in the space fl,, of 
polynomials of depee n by the rule 

Indeed, this is merely a reinterpretation of the functional L described earlier. 
This scalar product has the property that, for each T,_r and CT,_, E 17,-r , 

[XT,-, , rrn-,l = [TM Y x0’,-,I. (3) 

Conversely, any such scalar product on 117, generates a sequence gjj;~k: -1 
[xj, .@I, 0 <j, K < z, which satisfies (2). Let us note that, while knowledge of 
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oj for 0 <j < 2n does not define a scalar product in II,,, , it is nevertheless 
sufficient to determine the orthogonal projection of I7,+, onto IT,_r , since to 
calculate this, only the quantities [sj, ~“1, i < n + I, k < n - I, are required. 
This observation will prove important in the subsequent argument. 

Our goal is to represent the scalar product as L2 with respect to a positive 
measure, i.e., in the form 

THE EVALUATION POLYNOMIALS 

Let us approach the problem by considering the linear functional which 
assigns to each polynomial S, E II, its value at X. Since this functional is bounded, 
it can be represented as the scalar product of S, with a polynomial which we 
term the eaaluation polynomial or, as it is sometimes called, the reproducing 
kernel. 

DEFINITION I. The evaluation polynomial Erln E II, is that which satisfies 

[S,, ) E,“] :: S,(h) (5) 

for each S, E 17, . 

Our interest in such polynomials stems from the fact that any set of n -- 1 
mutually orthogonal evaluation polynomials generates a measure satisfying (4). 

DEFINITION 2. A measure satisfying (4) which consists of n + 1 point masses 
is termed an elementary atomic representing measure. 

PROPOSITION 1. There is a l-l correspondence between elementary atomic 
representing measures and sets of n -+ 1 mutually orthogonal evaluation polynomials. 

Proof. Suppose dpn(x) is an elementary atomic representing measure, with 

mass mi > 0 at x = 01, , i = 0 ,..., n. Then by (4), [S, , T,] == 2 S,(q) T,(aJ m,, 
so that the polynomials 1’3:’ PI II,,,(.x - olj)/‘mJ7j,j(oli - a-) with values 3 1 
E~‘(cuj) = rn;$ , evidently form n $ 1 mutually orthogonal evaluation poly- 
nomials. Conversely, suppose (EI’}, i -= O,..., n, arc n + 1 mutually orthogonal 
evaluation polynomials, so that {Ez’/Il Ez’ II} form an orthonormal basis in II, 
Then, expanding S, in this basis yields, by (5), 
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whence 

The right-hand side can now be written as s S,(X) T,(X) C&(X), with dp the 
elementary atomic measure having mass I[ EC’ 11--2 at x :-- u, 0 

In consequence of Proposition I, let us seek representing measures by looking 
for mutually orthogonal sets of evaluation polynomials. Evidently, from its 
definition, we can construct E,” explicitly as 

with (+,f- any orthonormal basis in L7, . A convenient such basis consists of the 
polynomials (PjC(x)}~=a , Pa(X) =:~ 1, f ound by orthogonalizing the successive 
powers of x by the Gram-Schmidt procedure. Let us begin by collecting a few 
facts concerning these. Throughout, the only property of polynomials we will 
use is that, for n > 0, S, has at least one zero, and if S,(h) - 0 then S,(X) = 
(N - A) As,&). 

PROPOSITION 2. Pk(x) has real coe&cients, and k real and distinct zeros; 
P,. and PtI1 have no zeros in common. 

Proof. P&(x) has real coefficients by construction, and degree no smaller than/z, 
or else x7; lies in the linear span of I,..., xL-l, contradicting the definiteness of the 
scalar product; let the leading coefficient be positive. If PIG has a non-real zero h, 
then since its coefficients are real, x is also a zero, hence Pl,(x)/(x - h)(x - A) is 
a polynomial of degree k - 2, so that, by definition of Pk , [Pk(x)/(x - A)(% - A), 
Pk] :=: 0. But writing the right-hand P, as (X - X) P&x - A), and using (3), 
the scalar product becomes /( P&x - X)1\” > 0, a contradiction. By the same 
argument, there cannot be any multiple zeros. If P, and Pk+l have a (necessarily 
real) common zero cy, Pk(x)/(x - CX) is a polynomial of degree k - 1, so 
[P&x - a), P,,,] = 0 by definition of P,+, . But by (3), [PJ(x - OI), P,,,] 7 
[Pk , P,+,/(x - LX)] so Pk+J(x - a), of degree k, being orthogonal to P, , must 
be of degree k - I, a contradiction. 1 

Inserting the orthonormal set (Pk} into (6) we obtain 

E,” = =f P,(x) P,(h). 
7:=0 

(7) 

By definition, E,” is orthogonal to all the polynomials of II, which vanish at h, 
i.e., to all those of the form (X - X) S,-, . This immediately provides the follow- 
ing useful characterization of EnA. 
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PROPOSITION 3. Let .d,-, denote the orthogonal projection onto the subspace 
II+,: explicitly, Y,,_ ,T = x;Ii [T, P,J P, , so that Cqll-l is, by OUY earlier 
remark, de$ned unambiguously fey T E II,,, . ‘Then EnA is the solution to the 
equations 

.Y,+,(x - A) T, = 0, (8) 

[1, T,] = 1. (9) 

If T, + 0 satis$es only (8), then [I, Tn] # 0 and T,J[ I, T,] = E,“. 

Proof. Condition (8) states that (x - A) T, is orthogonal to all polynomials 
of 17,-r. Now if S,!+, E n,-, , we see by the definition of EnA and by (3) 

0 -- [(x - A) S,.., , EnA] ::= [S,p, , (x - A) EnA], 

so that Y+r(x - A) E,” = 0, while (9) holds by definition. Conversely, if T, 
satisfies (8) and (9) then for each S, E 17, 

[S, , Tn] : [X(h) I- (Gx - 4 S,-, , Tnl 

S,,(h)[l, T,] t [S,,+, , (.x - A) T,] = S,(A), 

so that T, coincides with E,“. Finally, if T,, f 0 satisfies (8), then 

0 < ;I T, /I2 = [T,, T,,] m= [T,(h) + (x ~ A) T,,mml, T,], with Tnpl E II,, 1, 

= T&W, T,] -t [Tn-l , (x ~ A) Tel = T&W, Tnl. 

Thus [I, T,] + 0 and T,/[l, T,] satisfies both (8) and (9). b 

Now to continue our search for mutually orthogonal evaluation polynomials 
let us note that, by definition, [EnA, ERY] == E,“(v), hence EnY is orthogonal to 
E,” whenever 

E,+) -= 0. (10) 

Information concerning the zeros of E, n is easy to find from first principles. 

PROPOSITION 4. The degree of B, n is at least n - I, and equals n ~ 1 if and 
only if h is one of the zeros of P, . If o( is real and not a zero of P, , E,,I has II 
distinct real zeros 8, ,..., Pn , and E; together with (I$‘) forms a set of II -~ 1 

mutually orthogonal evaluation polynomials. If 01 is one of the zeros of P, , the evalua- 
tion polynomials at the n zeros of P, all have degree n - 1, are mutually orthogonal, 
and aye orthogonal to P,, 

Proof. By definition, ETLn(h) = [EnA, E,,“] > 0, so that h is never a zero of 
EnA. By (7) and Proposition 2, the degree of EnA is at least n - 1, since P,(X) and 
P,-,(h) cannot both vanish; it is n ~ 1 if and only if X is one of the zeros 01~ ,..., 
01, of P,L . In this case, by Proposition 3, I:‘+“,’ is a scalar multiple of PJx)/(x - 01~). 



MOMENT PROBLEM 261 

These are mutually orthogonal by (10) and, h aving degree n -- 1, are each ortho- 
gonal to P, . If 01 is real and not a zero of P, , then Ena, of degree n, is real on the 
reals, hence its complex zeros occur in conjugate pairs. If v is a complex zero, 
then Enn(x)(x - CX)~/(X - v)(x - C) h as e d g ree n and vanishes at CL Thereupon, 
by definition of .E,u, [Ena(x - a)“/(~ - v)(x - J), Erfz] =_ 0, but by (3) the 
scalar product is 11 Elza(x)(x - a)/(~ - v)I,’ =/‘- 0, a contradiction; the same 
argument eliminates the possibility of multiple real zeros. We conclude that 
E,,* has 12 distinct real zeros /3r ,..., ,Bn , different from a. Now by Proposition 3, 
En~~(x)(x --- CU)/(X - pi) coincides with a scalar multiple of ET:‘, and these 
polynomials, together with E,“, are mutually orthogonal by (10). a 

In the light of Proposition 4 we see that, corresponding to each 01 which is not 
a zero of P, , we can find a set of n 1 I mutually orthogonal evaluation poly- 
nomials, which in turn, by Proposition 1, generate an elementary atomic repre- 
senting measure for the truncated moment problem. This measure has mass 
11 Ena 1) -2 at s :m= 01. We now give a simple expression in closed form for aA, 
which shows how these measures behave as LY varies. 

PROPOSITION 5. 

EnA(x) == c, Pd4 CL@) - p&4 Pn+1@) 
X-X 

with c, = [XP, ) P,+.J > 0. 

i’roof. By Proposition 3, (X - A) EnA( a polynomial of degree n + 1, is 
orthogonal to &, , so its general form is a linear combination of Pn(x) and 
P, ,r(~). More specifically, the determination of P,L+l(x) requires knowledge of 

~271+1 and g2n-+2 which we do not necessarily yet have. Nevertheless, whatever 
these quantities may be, so long as they satisfy (2), the subspace of linear combina- 
tions of P, and Pn,l remains unchanged. This follows, of course, from the fact 
that 9’ 7, r is well defined on 17,+1, but we can also see it explicitly, since P,,,, is 
a scalar multiple of %VL 1 l - .Yn~‘Z ri = x”+i - CyZO [.F I, P,. Plc(x). In this 
formula, a change in the value of (32n rl will affect only the coefficient of P,, , 
while a change in oantZ simply rescales Pncl , so that the set of all linear 
combinations of P, k1 and P, is not affected. Thus 

(x - A) E7LycY) u(X) P,,+&) ~/m b(h) P,!(S) 

and evaluation at X gives 

whence 

(x - 8 En”(x) c(W’n+d4 P,,(x) - Pn(4 Put-d@. 
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Replacing E,” on the left by (7), and forming the scalar product with P,, 1 , we 
conclude that c(h) = c, =: [xP, , Pntl] is independent of h. Since xP, has 
leading term Y&- i, yn ;b 0, while that of P, i-1 is y71+V~n+1, we see that xP,, 

differs from (rn/rn,J P, k1 by a polynomial of degree n, to which P, +i is ortho- 

gonal. Thus [xf’, , P,l,ll = bnhn~+d I’ f’,,, L2 ‘j 0. I 

The formula of Proposition 5 yields a simple description of the zeros of 
E,“, on which our interest has centered. ‘l’o see what these are, let us observe 
that, from it, 

This shows that P,(x)/P~+~(x) d ecreases between each two zeros of l’,L ,+r , at 
which points it approaches d-m, so that the zeros of P, must interlace those of 
P ll., r . The zeros {p,) of E,,’ together with a, are the solutions to PJx)iP, , 1(x) 
P,L(~)jP,il(,). As a sketch of the function P,L(x),‘P,,L1(.~) shows, they evidently lie 
one in each interval between successive zeros of P,! .1 and increase as ;Y increases 
in its interval; all II 1 I of the points (a, & ,..., PI11 are determined by fising a 
single one. As described in Proposition 4, there arc II {- I of them except when 
LY is a zero of P, , whereupon there arc IL. We have thus shown that each trun- 
cated moment problem has a one-parameter familv of elementary atomic repre- 
senting measures; the parameter can convcnientlp be taken to be the prcscribcd 

value of P,(x)lP,, .1(s). 
We conclude our discussion of E,” by showing that it can also be characterized 

as the solution of a natural extremal problem. 

PROPOSITION 6. E,*(x)/E~,~(~) IS th e 0 p ly nomial in II, of least norm having 
value I at h; equivalently, ~ E,LA i!m* infS,,-IE,l,,m :~ 1 ~ (x - X) S’,-, 1,. The 
largest mass that can be colrcenfruted at n J?y a uepresentkzg measure-for the truncated 
problem is 11 E,z‘ 1 z. 

Proof. If S’,,(h) - I, then [S, , EVLn] 1; hence bv Schwarz’s inequality 
. ,/ S, ‘j 3 11 E,rh 1~ -I, with equality if and only if S, =- EnA(x)/Enn(A). If d,u(s) is a 

representing measure with mass m, at s CL, then 

PROOF OF THEOREM A 

To return to the full moment problem, given an infinite positive definite se- 
quence I = 0”) (rr ,..., we can, by Propositions 4 and 1, construct elcmentarl 
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atomic representing measures ,+L for each truncated sequence go ,..., “an and 
by Helly’s theorem find a limiting measure which then has the prescribed 
moments. Moreover, if we fix a real point 01 and for each n select that measure 
pn which has mass (1 Enw 11-2 at e, the limiting measure will assign to 01 the mass 
lim n-K /I Ena jl-2 == {EC, / &.(a)!zj- 1. In view of Proposition 6, this is the 
maximum mass that a representative measure can concentrate at N. 

COXNECTION WITH RELATED PROBLEMS 

The representation of Proposition 5 is the Christofl’el-Darboux formula, 
here derived very simply. Similarly, the linear combinations of P, and Pnil 
with real coefficients are the “quasiorthogonal polynomials,” whose significance 
is clear from our point of view, since by Proposition 5 their zeros determine the 
mutually orthogonal evaluation polynomials, and these in turn lead immediately 
to representing measures. 

The operator .Yrr.~,v7’,, corresponds to the 3-term recursion satisfied by the 
orthogonal polynomials (Pk(x):. This is the discrete analogue, with k correspond- 
ing to t, of a second-order Sturm--Liouville differential operator f1 defined on 
0 I t < ~8; more precisely, in this identification the value of a function at t 
corresponds to the component of an element of the Hilbert space along the vector 
P,. The spectral theory for such operators [4-61 asserts that if $(t, A) is the 
solution to the problem IA$(t, A) = h&t, A), viewed as an initial value problem, 
the mapping F(h) m- J-i f(t)+(t, A) dt g enerates a unitary transformation of 
f~L’(0, W) onto L2(dp) for an appropriate r&(h), termed a spectral measure. 
In the context of differential equations, it is natural to prove this by imposing a 
self-adjoint boundary condition at a right-hand endpoint t = T, showing that 
those 4(f, Ai) which satisfy it form a mutually orthogonal system in L*(O, T), 
expandingfEL* (0, T) in this system, and finally letting T - CYJ. Here the role 
of (b(t, A) in 0 G< f <- T is played by E,(“. The self-adjoint boundarv condition 
at t = 7’corresponds to 

nI),+,(A) - DP,(h) == 0, (11) 

so that we see at once from Proposition 5 that the values of hj for which (I 1) 
holds yield mutually orthogonal {Et;). The spectral measure now corresponds 
to a limit of the representing measures d~,~ of Proposition I, generated here as 
II ---f cc, with a/b fixed; it is therefore nothing other than a representing measure 
for the moment problem to which the 3-term recursion corresponds. 

Similarly, the present analogy clarifies some of the issues concerning the so- 
called inverse problem-that of determining the differential equation from its 
eigenvalues-which is of particular interest in speech synthesis. It is known [7-l 1] 
that in general two sets of eigenvalues, corresponding to different self-adjoint 
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boundary conditions, are required. We can see this at once in our current formu- 
lation, for the eigenvalues corresponding to a particular boundary condition of 
the form (11) are the zeros of aP,~,r(X) - M’,(X). If these are given, then 
UP,+,(X) - H’,(x) is determined (up to a constant factor), and if they are given 
for a second, distinct, condition, then cP n,l(~) - dP,(x) is available as well. 
This, however, is sufficient to find Pnbl(x) and P,(x) separately, up to a single 
constant factor, and from there, by means of Proposition 5, the evaluation 
polynomials E-l,! for any N. These in turn uniquely determine the scalar product, 
hence everything about the operator .‘Y n ,xT, . Specifically, starting with 
C(X) : y(aP,+,(x) - bP,(x)) and D(X) 6(cP,,,(x) -- dP,(x)), the expression 
C(X),!@) ~ D(x)C(x) = $(bc - ad)(P,~.,(x) P,(x) - P&c) P,&). Thus by 
Proposition 5, (C(x)D(x) ~~ D(x)C(X))/(X - A) = IzE,~(x), with k a fixed 
constant, whence, for real (Y, C’(,)D(,) -- D’(ol)C(ol) : kEr;(a) kll Ena 1j2. 
The constant k can now be found from the fact that, by Propositions 1 and 5, 
z!l E?q)11-2 = I, where (E,) arc the n +~ 1 known zeros of aP,,,(x) -- bPJx), 
a ?! 0. In turn, by Proposition 1, the quantities II Ez’ /[m2 here determined specify 
an elementary atomic representing measure, hence the entire scalar product. 

LIMITING BEHAVIOR 

To examine the behavior of representing measures as n increases, we focus 
briefly on the equation which generates EnA. 

PROPOSITION 7. Given a Hilbert space element A and scalar a, the equation 

has a unique solution T, E II,, . As n increases, successive solutions T, change b-v 
orthogonal increments, hence converge (f and on& if /I T, 11 remains bounded. 

Proof. A solution is unique since, by Proposition 3, if .‘P,( i(x -- x) T, _m 0 
with [I, T,] =- 0, then necessarily / T, 1~ = 0. It follows that the map :Y,, -~(.x-X)S,~ 
takes the (n ~ I)-dimensional subspace of IIn on which [l , S,] :== 0 onto U,L+, 
Letting V, be the element mapped on Y,-r/I, the solution of (12) is 7’,, = 
V, + zEnA. Next let us note that :?‘,-i(x - X)T depends only on the component 
gp,T. For decomposing T into components in, and orthogonal to, II, , we obtain 
7’ z-z 9 T + 7, with [S, , T] == 0. It follows that 0 :: [(x -- h) S, i ~1 
[S,-, , YX - A),], or equivalently that .Yr,+i(x - x)r = 0. We conclude that 



MOMENT PROBLEM 265 

then applying gPnpl yields :Yn-i(~ - 1) T,,, = .9Jn-rz4, and so by (13) 
cTPn& - ii) LP~T,+~ = :??,-,A; moreover, since [ 1, T,,,] depends only on the 
component of T,,, in the space n,, evidently a = [I, T,,,] = [I, S,T,+,]. 
Thus B T h n+1 and T, each satisfy (12) and by uniqueness they coincide. This 
implies that T,+l differs from T,2 by an increment orthogonal to T, . We can 
conveniently express this in the orthonormal basis of (Pli} by writing T, =. 
Cj”_, ujPj , whence (T,) converges if and only if xj”=” / a, I2 = I/ T, jja remains 
bounded as n --f CG. 1 

For reasons which will become clear in the sequel, let us introduce FnA(x), 
the polynomial of L7, which solves 

.P,& - /i)FnA -~~ 1, [I, F,*] = 0. (14) 

Paralleling our description of EnA, it is natural to ask for the effect of F,LA in the 
scalar product. 

PROPOSITION 8. [S, ) E;,A] y= [(S,(x) - S,(Wl(x - 4, 11 

Proqf. 

the last equality stemming from the fact that (S,(X) - S,(X))/(X - A) E 17,&-i . 
The defining properties (14) of FnA complete the proof. a 

In view of Proposition 8, let us introduce the operator &‘,, defined for poly- 
nomials by 

??I$!! 
S(x) - S(X) 
-__--. 

X-A (15) 

s&A takes each space L!,! into itself, and we see that, for each n, 

since both expressions satisfy .Y,_,(x - A) S, .= -P,(A) with [A’,, I] = 
[FnA, P,], and such a solution is unique by Proposition 7. It follows from (16) 
that if EnA and F,” both converge as n -+ ‘co, the operator C&A is well behaved. 

580/38/2-9 
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In this connection, let us note from the outset that Proposition 7 applies to EnA 
and FnA, since, by Proposition 3 and (14), each is defined by an equation of the 
form (12). 

PROPOSITION 9. If E,” and F,” converge as n -+ OZ, the operator A, is com- 
pletely continuous: joy T orthogonal to l7, , ‘1 JUT iJ ,< Ed 1) T 11, where E>( + 0 as 
n-+03. 

Proof. If EnA and FnA have limits E and F as n ---f CD, (16) shows that &I’, 
approaches a linear combination of the latter with coefficients which, by Proposi- 
tion 7, are the components of E and F in the orthonormal basis (Ph>-, and hence 
are square-summable over II. Indeed, suppose T is orthogonal to L7, , so that 
T==~~+,7kPi:,j~ T /[z := C 1 71C Ia. Then by (16) 

,d’T == ; r,;([F, Pl,] E,” .- [E, Pk] F,“) 
k-7, 1 

and by the Minkowski and Schwarz inequalities, 

the right-hand side evidently approaches 0 as n - cu. Since, from their defini- 

tion, F,“(x) = FnA(x) and E,‘(x) m= E,,“(s), pl IC acemcnt of X by x establishes the 
proposition also for &A . 1 

Ry exploiting complete continuity in the usual way, we are led directly to the 
following conclusion. 

PROPOSITION 10. If E%A and F,;! both converge as n + co for a single point A, 
real or complex, they likewise converge for every point Y. 

PYOOf, As we have seen in Proposition 6, (j E-:,^ il measures the largest value 
which a polynomial of unit norm can attain at x = /\. To connect the behavior 
of a polynomial at v and at X, let us write simply 

or, equivalently, 

whence 
[S, , E,“] = [S, , EnA] -1 (V - h)[sW, , En”], (17) 

[(I - (v - A) dA) s, , E,v] == [S, , ES], (18) 

for each S, E rr, . 
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Let us show next that for each y, the operator I - Y$~ , defined for poly- 
nomials, has a bounded inverse. For in the contrary case, there exists a sequence 
of polynomials {zs,] with // 21, 11 = 1 such that 

11(1 - y,q z’, ‘/ --f 0. (19) 

Since, by Proposition 9, &A is completely continuous, there exists a subsequence 
{zs,} such that (dAuj] converges, so by (19), (uj} l’k i ewise converges, to an element 
z’ (not necessarily a polynomial), with !I 21 II :== I, and 

(I - ydJv ==- 0. (20) 

Now let us dccomposc zl into components S,L E II, and T,, orthogonal to 17,L , 
do the same with &v, and rewrite (20) as 

Since by its definition, &’ takes 17, into itself, the bracketed terms represent 
components in l7, and orthogonal to II, , respectively, hence their sum 
vanishes only if each does separately. Thus 

and 

G-59 

the last inequality stemming from the fact that I - Yjl, is a projection (onto the 
orthogonal complement of II,), and hence diminishes norm. Now in view of 
Proposition 9, let us choose n sufficiently large that / y 1 E, < p < I, whereupon 
1 y / Il &T, Ii < p j/ T, /I. Then by (22) T, = 0, so that from (21), y&$Sn -:-- S,, . 
But since ~4~ reduces the degree of a polynomial, this equation has only the trivial 
solution. Thus o =- S, -I- T, = 0, contradicting the requirement that !/ v I[ :- 1, 
and thereby establishing the boundedness of (I - ~24))‘. 

Again, since (I - r,tiA) S, = 0 has only the trivial solution, (I - +‘J maps 
the finite-dimensional space II, onto itself. Accordingly, returning to (18) let 
S, satisfy 

(I - (v - A) J<,) s,, 7: E,,),. 

By the boundedness of (I - y&,)-r, there exists a constant C’, independent of n, 
such that jl S, jj < C 11 En” 11. But now we find from (I 8) 

Consequently, 11 En” Ij < C/I EnA 11, and convergence of En” follows from Proposi- 
tion 7. By Proposition 8, Fny and F,* likewise satisfy (17) and so the identical 
argument applies to Fnv. 1 
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THEOREM B: A SIMPLE PROOF 

The approach we have taken leads to an elementary, direct proof which obviates 
the need for complex methods and for the Stieltjes transform. 

PROPOSITION 1 I. Suppose dT(x) is a representing measure for the moment 
problem, with T normalized so that T( - co) = 0, T(CD) = 1. If, for real N, 11 En” 11 ---+ 
CC as n - co, then T(N) is uniquely determined. 

Proof. Our argument here follows that of [3, p. 851. Suppose that dpn(x) is 
an elementary atomic representing measure for the truncated problem, with 
~~(-a) = 0, ~&GO) = 1. Then 

r = x”d(CLn - T) = 0, k L= O,..., 2n, 
- --% 

and an integration by parts shows that p%(x) ~ ‘T x is orthogonal inL2(dx) to all ( ) 
polynomials of degree 2n - 1. Consequently, ~Jx) - T(X) must have at least 
2n sign changes, or else one could match them by those of a polynomial of degree 
2n - 1, contradicting the orthogonality. Since pn is a monotone step function 
which rises at n -{- 1 points, we see that 7 must intersect it at each of the rises, 
with the possible exception of the first or last, in which case 7 must be 0 or 1 
there, respectively. It follows that, if dp, has a mass point at x = 01, the value of T 
at 01 lies between ~JDI-) and CL,(+). Th us if the mass of dp, at x -= N approaches 
0 as n + co, or equivalently, by Proposition 1, if ]j EVLa jl+ LX, the value of each 
T(X) for which d7 is a representing measure is determined at x 01. 1 

In consequence of Proposition 11, if the measure is not unique, the set of 
points 01 at which II E,& 11 + co cannot be dense; hence there exists an interval I 
and a constant C such that 

/E,ail <c, for BEI. (23) 

We can conclude the argument by means of the next observation. 

PROPOSITION 12. If ETla satisjies (23), then E,,* converges as n -+ cu for each V. 

Proof. Since, by Proposition 1, in constructing the elementary atomic 
measures, the mass at a point cv t 1 is 11 E,” jjm2 > CQ, and since the total mass is 
1, there cannot be more than C2 points of mass contained in 1. We can therefore 
select a subsequence {dpjj, j- co, of these measures so that, for some point 
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/3 ~1, the distance of ,6 from each mass point of dpj exceeds a certain 6 ;> 0, 
independently ofj. Thereupon, for any polynomial S, E Lrj , 

(I 
Sj(X) - S&3) 

x - /3 
= jl Lsi(x) - ‘,(B) 

II X-B Ii dcj 
< f Ii s,(X) - sj(P)ls 

Consequently, using Proposition 8, 

whence, letting S, coincide with Fj6, we see that /I Fja ;/ -5 C, . Thus FrLB and 
ET,” both converge as n ---f co, and by Proposition 10, so does EllY for each V. l 

Evidently, Propositions I1 and 12 constitute a proof of Theorem B, for they 
show that if the representing measure is not unique, jj Ena iI2 + 1, < co for each 
a, so that, by considering limits of sequences of elementary atomic measures 
&,(.z) with masses // Ena ]je2 at x = OL, we see that there exists a representing 
measure carrying the positive mass 1;’ at x = a. Theorem B is thus established. 

This line of argument also shows that the basic dichotomy of Theorem B is 
reflected in the fact that, as n - 03, the zeros of PJx) become either everywhere 
dense or nowhere dense on the real line. 

THEOREM B: THE CLASSICAL ARGUMENT 

From our present vantage point we can also give a simple interpretation of the 
classical approach to uniqueness. As we have outlined, it consists of introducing 
the Stieltjes transform Jdp(x)/(x - A), with h in the upper half-plane and dp a 
representing measure, describing when this is uniquely determined, and passing 
to p by an inversion formula. The above quantity can be thought of as the scalar 
product of I with 1 /(x - /I) in L2(dp) or equivalently, since 1 E l7, , as the scalar 
product of I with the projection of 1 /(x - A) onto I& in L2(dp). (It can also be 
viewed as [R, I, I], with R, the resolvent corresponding to multiplication by .X 
in L2(dp); we choose the former notion as being more elementary.) Accordingly, 
let dp be a representing measure for the truncated problem, and let V,“,,(X) 
denote the projection of I/(X - A) onto I7, in L2(dp) (different representing 
measures will in general produce different polynomials V,“,n). By definition 

1 
-= -7 l&(x) + U(x), 
x--h 
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with U(x) (not necessarily a polynomial) orthogonal in La(dp) to all polynomials 
of I7, To see how V” u.I1 in fact depends on ,u, let 

the last equality coming from the fact that dp represents the scalar product on 
l7,, From (24) 

which show-s that (,A -- x)Cr( ,) . a 1s a polynomial of degree n -I I. Consequently 
[S,,_, , (x ~- x)C!(x)] is defined by the moments o,, ,..., azn alone, and we find 

the first equality stemming from the representing property of dp, and the last 
from the definition of LT. Thus (x - x)U( a) 5 is orthogonal to all polynomials of 
I7 n-.l , i.e., 

0 .Y,i+l(x - X)U = YPnpl(l - (x - X) V;&)) 

By virtue of (25) (26), (8) (9) (14) and Proposition 7 we now see that 

f&(X) -: fa,“(x) -I- F,“(x), 

and since F,,” is independent of I”, Vt,;l,n depends on p only through the quantity 
w. We observe simply that, since Vi,n is a projection of 1 /(x - X) in Lz(+). its 
norm cannot exceed that of I /(x - A), so that 

Xow, with Im X -, 0, let A” represent the set of points w generated by (25), 
as & varies over the set of representing measures for the full moment problem; 
by (27) and Proposition 7, for each 20 E A,+, icl?,,” I FrlA converges as II + Y 
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Now if dA consists of a single point for each h in Im X ;> 0, sdp(~)i(s - A) is 
uniquely determined in the upper half-plane, and the Stieltjes inversion formula 
shows p to be unique. On the other hand, if for a single A, AA contains more than 
one point, the representing measure evidently cannot be unique; moreover, the 
convergence of %rI&~ (- F,” and ~3&‘,~~ F,bA implies that of all linear combina- 
tions, hence also of E,,” and F,“. By Proposition IO, / EllY / Z then approaches a 
finite limit lL, , for each n, and so there exists a representing measure carrying 
the mass 1~~ at x = CL This establishes Theorem B. 

We can complete our account of the classical circle of ideas by determining 
exactly A,,\, the set of points w generated by (23, as &L varies over the measures 
which represent the scalar product on II,, Each such point satisfies (27) which, 
bv (2.5) is equivalent to 

Expanding the left-hand side and completing the square shows that this in- 
equality describes a closed disk in the upper half of the w-plane. The boundary 
of this disk corresponds to equality in (27) w IC in turn is equivalent to the fact -h’ h 
that 1 /(x -- A) is already in L!, inl”(&). This certainly happens if C&L is one of the 
elementary atomic representing measures, for then all of L”(&) coincides with 
l7, ; but also conversely, since if 1 /(x -- A) V:,,(X) in L2(d~), then dc( has its 
support only on the n -t I zeros of l/(.v - A) - V;,,(X). The situation therefore 
is that AnA coincides with this disk, and for w on its rim 1 - (X - ,I) V,^,,L(~) 
vanishes at a set of points { 01,~~ .‘?L 0, where, according to Propositions 1 and 5, 
P,(X) - 7PnrI(x) := 0 with some real 7 f 0. Since both functions belong to 
II7 ,r.~r , coincidence of their zeros implies that 

for some constant c; we determine c by evaluating (28) at s ;\. Now setting 
3” h in (28) we conclude that the rim of LI,,~ is given b! 

as 7 varies over the reals. Since E,LA(h) iI 1’3~~~ I;“, and the right-hand side 
has constant absolute value, WC see explicitly that the center of A,” is at 

ji EnA ilp”((x - h))l - FnA(h)) and its radius is i X -- x m1 ~1 E,” Ii 2. Thus A” is a 
non-degenerate disk if and only if E,” converges. 

Since by (27), for a non-real point h some linear combination of ErLA and F,,” 
always converges, the convergence of EnA alone suffices to ensure the convergence 
of E,L” and F,LA separately, hence by Propositition 10 also the convergence of 
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E,” for each v. This completes the classical argument for the geometric version 
of the dichotomy of Theorem B: AA is either a point or a non-degenerate disk, 
independently of the choice of non-real A. 
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