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Abstract

Let {Pu(x)};2, be an orthogonal polynomial system and

k

L[-1=) a()D (D: %)

i=0

a linear differential operator of order k& (=0) with polynomial coefficients. We find necessary and sufficient conditions for
a polynomial sequence {Q,(x)}o2, defined by On(x) ::L[P,ngr(x)],nZO, to be also an orthogonal polynomial system. We
also give a few applications of this result together with the complete analysis of the cases: (i) kK =0,1,2 and » =0, and
(ii) k=r=1. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1935, Hahn [4] proved: if {P,(x)}>°, and {P/(x)}:2, are positive-definite orthogonal polynomial
systems (OPS”), then {P,(x)}:°, must be one of classical OPS’ (Jacobi, Laguerre, or Hermite). Krall
[8] and Webster [23] extended Hahn’s theorem to quasi-definite OPS’ (including Bessel polynomials
[12]). Later, Hahn [5] and Krall [9] also showed: If for any fixed integer r>1, {P,(x)}°, and
{P") (x)}22, are OPS’, then {P,(x)}>°, must be a classical OPS. Recently, it is extended further
as: If {P,(x)}°, is an OPS and {P"(x)}22, is a WOPS, then {P,(x)}>°, must be a classical OPS
(cf. [16,19]).

Generalizing Hahn’s theorem, we now ask: Given an OPS {P,(x)}>°, and a linear differential
operator L[-]:Zf;o a;(x)D" with polynomial coefficients, when is the polynomial sequence {Q,(x)}>2,
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defined by

k
0,(x):=LIR()] =) a(x)P)
i=0
also an OPS? Here, r is any nonnegative integer.

Krall and Sheffer [14] raised and solved the above problem for » = 0,1 using the moments and
the characterization of OPS’ via formal generating series G(x,7) =Y.~ P,(x)t" of a PS {P,(x)}>°,
(cf. [13]). Their method is quite complicated so that it seems to be impossible to be extended to the
case r=>2. We solve the problem completely for any » >0 by using the formal calculus of moment
functionals (see Theorems 3.1 and 3.2), by which we can refine the characterizations of classical
orthogonal polynomials in [19] (see Theorem 3.4). Finally, we analyse completely the cases for
k=0,1,2 and r=0 or k=r=1 and as by products, we obtain some new relations between classical
orthogonal polynomials and classical-type orthogonal polynomials.

2. Preliminaries

All polynomials in this work are assumed to be real polynomials in one variable and we let 2 be
the space of all real polynomials. We denote the degree of a polynomial w(x) by deg(w) with the
convention that deg(0) = —1. By a polynomial system (PS), we mean a sequence of polynomials
{pa(x)}22, with deg(¢,) =n, n=0. Note that a PS forms a basis of Z.

We call any linear functional ¢ on 2 a moment functional and denote its action on a polynomial
n(x) by (o,7). For a moment functional ¢, we call

o,:=(0,x"), n=0,1,...

the moments of ¢. We say that a moment functional ¢ is quasi-definite (respectively, positive-definite)
[2] if its moments {g,}>°, satisfy the Hamburger condition

A, (0):=det[o;;]};_o # 0 (respectively, 4,(c)>0), n=0.

Any PS {¢,(x)}22, determines a moment functional ¢ (uniquely up to a nonzero constant multiple),
called a canonical moment functional of {¢,(x)}:2,, by the conditions

(0,¢0) #0 and (0,¢,) =0, n=>1.

Definition 2.1. A PS {P,(x)}2°, is a weak orthogonal polynomial system (WOPS) if there is a
nontrivial moment functional ¢ such that

(0,P,P,) =0 if 0<m <n. 2.1)
If we further have
(6,P2)=K,, n=0,

where K, are nonzero real constants, then we call {P,(x)}>°, an orthogonal polynomial system
(OPS). In either case, we say that {P,(x)}:>°, is a WOPS or an OPS relative to ¢ and call ¢ an
orthogonalizing moment functional of {P,(x)}>,.
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It is immediate from (2.1) that for any WOPS {P,(x)}:°,, its orthogonalizing moment functional
o must be a canonical moment functional of {P,(x)}52,. It is well known (see [Chapters 1 and 2])
that a moment functional ¢ is quasi-definite if and only if there is an OPS {P,(x)}3, relative to o
and then each P,(x) is uniquely determined up to a nonzero multiplicative constant. For a moment
functional ¢ and a polynomial 7(x), we let ¢’ (the derivative of ¢) and no (the left multiplication
of ¢ by 7m(x)) be the moment functionals defined by

(0. ¢) = —(0.9")
and
(na, p) = (o, 1), ¢ € P.
Then it is easy to obtain the following (see [16,18]).

Lemma 2.1. For a moment functional ¢ and a polynomial n(x), we have
(i) Leibniz’ rule: (no) =7n'c + no’;
(i1) o' =0 if and only if ¢ =0.
Assume that o is quasi-definite and {P,(x)}°, is an OPS relative to o. Then
(iii) wo =0 if and only if n(x)=0;
(iv) for any other moment functional t, (t,P,) =0, n=k + 1 for some integer k=0 if and only
if T= ¢a for some polynomial ¢(x) of degree <k.

It is well known [1,17] that there are essentially four distinct classical OPS’ satisfying second-order
differential equations with polynomial coefficients

LyIx) = () y"(x) + £1(x) Y (x) = 2,1 (x). (2.2)
They are:
(1) Hermite polynomials {H,(x)}>°, (orthogonal relative to e dx) satisfying

V'(x) = 2xy'(x) = =2ny(x).
(ii) Laguerre polynomials {L{”(x)}:°, (orthogonal relative to x*e *dx) satisfying
() + (a4 1 =)y () = —ny(x) (2 & {=1,-2,..}).
(iii) Jacobi polynomials {P*#(x)}22, (orthogonal relative to (1 —x)*(1 —i—x)ﬁ dx) satisfying
(1 =x*)y"(0) + (B — o= (a4 B +2)x)y'(x) = —n(n + o+ B+ 1)y(x)
(. pyo+p+1&{—-1,-2,---}).
(iv) Bessel polynomials {B*)(x)}2, (see [12,15]) satisfying
x*y"(x) + (ox +2)y'(x) =n(n+ o — Dyx) («&{0,—1,-2,...}).
Here, x7% is the distribution with support in [0,00), which is obtained by the regularization of the
function
ro={5 220

(see in [6, Chapter 3.3.2]).
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More generally, Krall [10] (see also [18,21]) found necessary and sufficient conditions for an OPS
to be eigenfunctions of differential equations with polynomial coefficients:

Proposition 2.2. Let {P,(x)}>°, be an OPS relative to ¢ and Ly[-1=Y", /i(x)D’ (D=d/dx) be a
linear differential operator of order N (=1) with polynomial coefficients {(x) of order <i. Then

N
LN[Pn](x) = Z /i(x)Pfli)(x) = inPn(x)s I’lZO,

i=1
where
Ny

Jon :;E/l('l)(x)”(” -D-(n—i+1)

if and only if o satisfies r:=[(N + 1)/2] moment equations
. i—k—1
Ri(o):= > (=1) ( ) (o) 2D =0, k=0,1,....r—1.
i=2k+1 k

Moreover, in this case, N = 2r must be even.

Using this characterization, Krall [11] classified all OPS’ that are eigenfunctions of fourth-order
differential equations. They are the four classical OPS’ above and the three new OPS’, now known
as classical-type OPS’ [7]:

(v) Legendre-type polynomials {P*(x)}>°, (orthogonal relative to (H(1 —x?)+ (1/a)(d(x — 1) +
o(x 4+ 1)))dx) satisfying

—n(n — 1
(= 17y @ 4+ 8x(x? — 1)y + 4o+ 3)(x* — 1)y + 8uxy’ = 4,y (“ a n(+)’" 20) '

(vi) Laguerre-type polynomials {R,(x)}32, (orthogonal relative to (e *H(x) + (1/R)d(x))dx)
satisfying
X2y — (2% — 4x)yP 4 [x* — (2R + 6)x]y" + [(2R + 2)x — 2R])Y’
=4y (R#0,—1,-2,..). (2.3)

(vii) Jacobi-type polynomials {S*(x)}2°, (orthogonal relative to ((1 — x)*H(x) + (1/M)d(x))dx)
satisfying

(* = x)* Yy 4+ 2x(x — Do + 4)x — 2]y + x[(o® 4+ ot + 14 4+ 2M ))x — (600 + 12 + 2M)]y"
F (e +2)u+2+2M))x —2M1y' =2,y (0 # —1,-2,..., and n* +an+ M # 0,n=>0).
Here, H(x) is the Heaviside step function.
In [20], we showed that if a fourth- (or higher) order differential equation has a classical OPS

{P,(x)}2, as solutions, then the differential equation must be a linear combination of iterations of
a second-order differential equation (2.2) having {P,(x)}>°, as solutions.



K H. Kwon, G.J. Yoon/Journal of Computational and Applied Mathematics 116 (2000) 243-262 247
3. Main results

In the following, we always let {P,(x)}2°, be a monic OPS relative to ¢ and L[-]= ZLQ a;(x)D’
(D =d/dx) a linear differential operator of order & with polynomial coefficients a;(x) =3~ , a;x/,
0<i<k(ai(x) #0). For an integer » >0, we also let

0,(x) = L[PV).(x)] = o,x" + lower degree terms, n>=0 (3.1)

and assume that
k
S Zaii(n + )it #0, n=0 (3.2)
so that {Q,(x)}2, is also a PS, where

1 if i=
"OTVnn—1)--(n—i+1) ifix=l.

We now ask: When is the PS {Q,(x)}°, also an OPS?
Then our main result is:

Theorem 3.1. The PS {Q,(x)}>°, defined by (3.1) is a WOPS if and only if there is a moment
functional T # 0 and k+r + 1 polynomzals {b:(x) Y2 with deg(b;)<i satisfying

k+r

Z( 1y ( >(a, ()  =b (X))o, 0<j<k+r (3.3)
or equivalently

k+r .

Z (—1) (;) (bi/(x)a) ™ =a;_(x)r, 0<j<k+r, (3.4)

i=j
where a;(x)=0 for i <O0. In this case, deg(b,) =r and
(t,a;) = (=1)"(0,bi1), 0<i<k (3.5)

so that {a,by,) # 0 and by (x) # 0. Furthermore, {Q,(x)}32, is an OPS if and only if the polyno-
mials {b(x)}*2" satisfy, in addition to (3.3),

k+r

Z bi+r,i+rn(i) 7é 0, n 205 (36)

i=0

where bi(x) = Z;:O byx'. In this case, deg(b,) =r and by, (x) # 0.

Proof. Assume that {Q,(x)}:°, is a WOPS and let = be a canonical moment functional of {Q,(x)}>°,
Then (1, 0,,0,)=0, 0<m < n. We shall prove that there are polynomials {b;(x)}**?" with deg(b; )<1
satisfying (3.3) by induction on i =0,1,...,k +r. For n>1,

k+r
0= (z,0,x)) = < Zal<x>P,$’r:>(x)> = <i(—1)"(a,-_,lr>“>,Pn+r>.

i=0
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By Lemma 2.1(iv), there is a polynomial b,(x) of degree <r such that

k+r

bx)a =Y (~1Y (a0
0

so that (3.3) holds for j = 0. Assume that for some / with 0<</ < k + r, there exist polynomials
{bi(x)}/2" of deg(b;)<i such that (3.3) holds for j=0,1,...,7. Then for n>¢ + 2,

k k
0: <T, Q/+1Qn> - <T, Q/—H Zal+rPr(1!++Vr)> N <Z (_1)i+r(Q/+laiT)(i+r),Pn+V>
=0 i=0

ket i,
= —1Y l () o (i—j) Pn+r>
<;( o () @t
k+r ktr .
= (/) _1y 1 ‘ =i
<§Q/+l zzzj:( ) (]) (@-r7) ’Pﬂ+r>
/+1 k+r
- <Z Q%F)I Z( 1) < ) (al rT)(l 7 Pn+r>
Jj=0

k+r 4
= }ﬁl) < Z ( (/ + 1) (ai—rf)(l/1)>Pn+r> + <Z Q;lej+ro->Pn+r>

i=(+1 Jj=0
k+r .
—O(/+1(/ + 1)' < Z ( 1)1 (/ + 1) (az r‘c)(l b Pn+r> < ZQ/+lb/+rPn+r> .
i=/+1

Since deg(Z_;:O QbeH,) <r+/4+1<n+r/ o, Z_f:o Q;leH,P,H,) =0, so that

k+r .
<Z( by (Z,H)(al«rr)“—”—‘>,Pn+,>=o, N>l +2,

i=/+1

Therefore, by Lemma 2.1(iv), there is a polynomial b,,,.;(x) with deg(b,,,+1)<r+7+ 1 such that
ST (=1 (M) (a;_, 1)~V = b,/ 10, that is, (3.3) also holds for j =/ + 1.

Conversely, assume that there are moment functionals t # 0 and polynomials {b;(x)}**>" with
deg(b;) <i satisfying (3.3). Then

(1, 0n0n) = <T QmZaPﬁff)> <Z( D (Qnat) ™", Pn+r>

i=0

= <Z( I)H_rlz}i <l —;r> Q(J)(a T)(H_r 7 Pn+l>
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=<kZ <»'§5< () o >

Jj=0
k+r ) k+r 4
= <Z Ql(aaj)bj+l‘0apn+r'> = <O-a Z Qinj)bﬁr Pn+r> .
Jj=0 j=0
Hence,

(1,000,) =0, 0<m<n

since deg(4" b1, 0)<r +m < n+r. Thus {Q,(x)}22, is a WOPS relative to t
(3.3) = (3.4): For j=0,1,... k +r

tif(—l)i< )(b,+r(x)a)(’ ) _kif( 1y (z) {"ii( 1)/( >(a/ )(/_i)] (i—))

J

k+r

= ) > 1y (")) @

/\

k+r
=3 17 (%) dtar oo

=a;,_,7 (aj(x)=0if j <0)

since Z ( 1y ('_ ) =0y
(3.4) = (3.3): The proof is similar as above.
Now we shall show (3.5). Since deg( 1) <j +r, there are constants {c{}," such that b; .(x)=
" clPy(x) so that by, ., = = ¢/,,. Then by applying (3.3) to P;,,.(x), we have

T
Jrrj+r — <G P2 > 5

st j+r

0<j<k+r

In particular,

(t,a0P"”)  rlayg(z,1)

b, = =
T {epy) (0, P})

£0

so that deg(b,) =r. Applying (3.4) to Py(x) =1, we can obtain (3.5).

Now assume that {Q,(x)}:2, is a WOPS relative to 7. Then by (3.7), {Q,,(x)}OOO is an OPS
relative to t if and only if (z,0?) = (o, (Zk“ 0Vb; )P,y # 0, n=0, which is equivalent to the
condition (3.6).

In this case, (3.3) for j =k + r implies that by 5.(x)o = (—1)*"a;(x)t # 0. Thus byp(x) # 0
since a;(x) # 0 and 7 is quasi-definite. [
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Set j=r in (3.4). Then
k+r

AT = Z (=1) <Il”) (i) ", (3.8)

Hence, we may restate Theorem 3.1 as:

Theorem 3.2. The PS {Q,(x)}22, defined by (3.1) is a WOPS if and only if there are k +r + 1
polynomials {b,(x)}**2" with deg(b;)<i, which are not all zero, satisfying

k+r /i »
ao(x) Z (-1) (j) (biora)=)

0 if 0<j<r— 1,
- b | (3.9)
a0 (1) G it 1<k

In this case, deg(b,) =r, by (x) Z 0, and {Q,(x)}2, is a WOPS relative to

k+r

Z< Ly (’) (bir0) .

Moreover, {Q,(x)}2, is an OPS if and only if {b)(x)}2?" also satisfy the condition (3.6). In this
case, we also have by ,.(x) Z 0.

Proof. Assume that there are k + 7 + 1 polynomials {b;(x)}**?" with deg(b;)<i, which are not all

=r

zero, and (3.9) holds. Define 7 by (3.8). Then (3.4) holds so that we only need to show 7 # 0. If
t=0, then XX7(~1) () (bi1y0) ™D =0, 0<j <k +r. Then for j=k +r, (—1Y*(bpi20)=0 50
that b;.,,.(x)=0. By induction on j=k+r,k+r—1,...,0, we can see b;(x) =0, for r <i<k 4 2r,
which is a contradiction. The converse is trivial by Theorem 3.1, O

Theorem 3.3. If the PS {Q,(x)}:2, defined by (3.1) is also an OPS, then there are nonzero con-
stants A,, n=r, such that

M[Q,—(x)] = 7,Pu(x), n=r, (3.10)

where M[-1=""""b.,.(x)D'" and both {P,(x)}2°, and {Q,(x)}>°, must be eigenfunctions of linear
differential operators of order 2(k + r):

MLD'[P,(x)] = A,Pu(x), n=0, (3.11)
where A,=0, 0<n<r—1 and

LD"M[Q,(x)] = Zu+rOu(x),  n=0. (3.12)
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Proof. Define a sequence of polynomials {P,(x)}>°, b
P,,(X), Ogl’lél"*l,

13,,(x) - k+r l
M[Q,— ()] =Y b, ()0 (x),  n=r.
i=0
Then deg(P,) =n, n>0, by (3.6) so that {P,(x)}:2, is a PS. o
Now we shall show that {P,(x)}:°, is an OPS relative to ¢. For 0<m<n<r — 1, (0,P,P,) =
(6,P,P,) = (a,P?)0,,. For 0<m<n and n>r,

k+r k+r
<0-=f)m1—3 = < P sz+r ;(1i)r> = <Z(_1)i(ﬁmbi+ra)@’ Qnr>
i=0
k+r i
= < (- 1)1 > P(j)(lerr )(iij)’ Qn—r>
i=0 j=0 J
k+r k+r ;

_ pYv 1 by )0, 0,
<10 PNE ' (1) beor .0,
< <k+l S0 ) >

Qn r

&) L0 0 if m<n,
=\ ZP’” ajfr anr =\{7 ZP’” aj anr =
j=r j=0 nonzero if m=n

since deg(Zj OP(/+ )aj) =m —r by (3.2) and {Q.(x)}:°, is an OPS relative to 7.
Hence {P,(x)}2, is an OPS relative to ¢ so that P,(x)=M[Q,_.(x)] = 2,P,(x), for some 1, # 0
for n=r. Now
MLD'[P,] = MLIP"] = M[Q,_,] = P, = /,P,, n=r.
For 0<n<r—1, D'[P,] =0 so that MLD'[P,] = 0. We also have
LD'M [Qn] =LD" [Pn+r] - LDr(}“rHr n+r) - }nJrIL[PEer)] - )“n+rQna n >0

Finally since by o.(x) Z 0, M[ -] is of order £ + » and so MLD'[ -] and LD"M[ - ] are of order
2k +r). O

Krall and Sheffer proved Theorem 3.1 only for » =0 (see [14, Theorem 2.1]) and » =1 (see [14
Theorem 3.1]) and Theorem 3.4 only for » =0 (see [14, Theorem 2.3]), using the moments {a,}>°,
and {7,}°°, of ¢ and 7, respectively. They used the characterization of OPS’ via their formal (cf.
[13]) generating series

Glx, )= P,)t" =Y u(1)x",
n=0 n=0
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where ¢,(¢) is a power series in ¢ starting from #”. Their method seems to be too much complicated
to be extended to the case r>=2.

It is well-known (cf. [4,5,9,23]) that an OPS {P,(x)}2°, is a classical OPS if and only if
{PY).(x)}2, is also an OPS for some integer 7> 1.

As a special case of Theorems 3.1, 3.2 and 3.4, we obtain:

Theorem 3.4. Let {P,(x)}>°, be an OPS relative to ¢ and r=1 an integer. Then, the following
are all equivalent.
(1) {P.(x)}:2, is a classical OPS.
(i) {PL).(x)}2, is a WOPS.
(iii) There are nonzero moment functional © and r + 1 polynomials {by(x)}i~, with deg(b;)<k
such that

(1) (;) ) =b,0, 0<j<r (3.13)

(iv) There are r+ 1 polynomials {by(x)}i", with deg(by)<k such that {b,(x)};", are not all zero
and

2 (;) (bip,0) =0, 0<j<r—1.
i=j

Moreover, in this case, deg(b,) =r, by (x) # 0, and

2r
> bB@)PO(x) = 1Py(x). n=0 (3.14)
k=r

for some constants 1, with Jy=74,=---=24,_1 =0 and

i (_1)i+r (:) <69 b2er(:—:i)>

j =0. 1
<U,Pl.2+r> l’l(l) # 0, n 0 (3 5)

i=0

Proof. (i) = (ii): It is well known that for a classical OPS {P,(x)}20, {P, (X))}, is also a
classical OPS.

(it) = (i): See Theorems 3.2 and 3.3 in [19].

(i) < (iil) < (iv): It is a special case of Theorems 3.1 and 3.2 when k£ =0 so that L[ -] =
aold (Id = the identity operator) and Q,(x) = aOP,(Q,.(x), n=0. In (iii), deg(b,) =r and by.(x) # 0
by Theorem 3.1. Eq. (3.14) comes from Theorem 3.4 and (3.15) comes from (3.6), (3.7), and
(3.13). O

Equivalences of (i)—(iii) in Theorem 3.4 are first proved in [19]. Moreover, the condition (3.14)
also implies that {P,(x)}:2, is a classical OPS (see [19]).
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4. Examples

As in Section 3, we always let {P,(x)}>°, be the monic OPS relative to ¢ and write ag(x)=agp=do.
If k=r=0, then {Q,(x)}°,, where Q,(x)=aoP,(x), n=0, and a, # 0, is also an OPS if and only
if {P,(x)}22, is an OPS.

41 k=1 and r=0
Let L[ - ]=a1(x)D + aq, where a;(x) =anx+ a0 #0, ay # 0, and a;n+ ay # 0, n=0. Define a
monic PS {0,(x)}2, by

(ann + ag)0u(x) = L[P,(x)] = ai(x)P,(x) + ay(x)P,(x), n=0.

Then, {Q,(x)}°, is also a monic OPS (relative to 7:=a, '((b;(x)a) — by(x)a)) if and only if there
are polynomials b(x) = by1x + b1y and by(x) = by satisfying

aohyo = a;{(by6) — by} and byn+by #0, n=0.

Hence, if {Q,(x)}°, is also a monic OPS, then (3.11) and (3.14) become
MLIP,] = (ab))P" + (d,by + aohy + arbo)P, + aghoPy = /P,
LM[Q,] = (a1b1)Q)) + (a1b| + a1by + aoh)Q,, + aobo Oy = 7, Ons

where A, = (a;n + ao)(byin + by),n=0. Hence both {P,(x)}>2, and {Q,(x)}2, are classical OPS’
of the same type. Note

a1 (x)bi(x) = ay by x* + (anbio + aiobi )x + aiobio. (4.2)

Case 1: deg(albl)zo. Then allbll :a11b10+a10b11 =0 so that an :bll =0. Hence ML[]:LM[]
and so P,(x) = Q,(x), n=0, and

aj(x)P.(x) = a;nP,(x)=0, n=0.

Therefore, a;(x) = 0, which is a contradiction.
Case 2: deg(ab;) = 1. Then we may assume a;(x) =1 and b;(x) =x or a;(x)=x and b;(x)=1.
Case 2.1: a;(x) =1 and b;(x) =x. Then for n=0

ML[P,(x)] = xP,/(x) + (aox + bo)P,(x) + aoboPu(x) = 2,Pr(x),
LM[Q,(x)] =x0,/(x) + (aox + bo + 1)0,(x) + aobo0(x) = 4,0u(x).

We may also assume ap = —1 and by =a + 1 (¢« # —1,—2,...) by a real linear change of variable.
Then (4.3) becomes

MLIP,(x)] = xP,/(x) + (e + 1 = x)P(x) — (00 + 1)Pu(x) = 2, Po(x),
LM[Q4(x)] = x0;/(x) + (2 + 2 = x)0,(x) — (& + 1)Ou(x) = 2, Q().

Thus, {P,(1)}:2, = {LP(0)}2, and {Q,(0)}2 = {LID(x)}i2y. where {L{P(x)};, is the monic
Laguerre polynomials. Hence, we have (see [22, (5.1.13)]):

LD (x) = LW (x) — nLPP(x), n=0 (4.4)

since (L™(x)) =nL™ P(x), n>0.

4.1)

(4.3)
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Case 2.2: a;(x) =x and bi(x) =1. Then we may assume ay=o (¢ # 0,—1,—2,...) and by = —1
so that (4.1) becomes
MLIP,(x)] = xP,/(x) + (et + 1 = x)P,(x) — 0P, (x) = Z,Pu(x),
LM[Q,(x)] =x0,/(x) + (a0 = )0, (x) — 2Qy(x) = 2, Dy (x).
Thus, {P,(x)}2,={LP(x)}2, and {0, (x)}2,={L* D (x)}>°, so that we have (see [22, (5.1.14)]):
(n + o)L~V (x) = x(LY(x)) + oL (x),  n=0. (4.5)

Case 3: deg(a1b1) =2 and (a;by)(x) has a double root. Then from (4.2), a;1b10 = aiob1; so that
ML[ : ] :LM[ : ] Thus {Pn(x)}sio = {Qn(x)}ffio and

(anx + ay)P,(x) = ainP,(x), n=0,

which is impossible (cf. Proposition 2.2).

Case 4: deg(a;b,)=2 and (a;b,)(x) has 2 distinct real roots. Then we may assume that (a;b;)(x)=
l—x*and a;(x)=1—x or 1 +x.

Case 4.1: a1(x)=1—x and b;(x) =1+ x. Then (4.1) becomes

MLIP,(x)] = (1 = x*)P;/(x) + ((ao + by — 1) = (by — ap + 1)x)P;(x) + aoboPy(x) = 4,P,(x),

LMTQ,(x)] = (1 —x*)Q; (x) + ((ao + by + 1) = (bo — ag + 1)x)Q,(x) + aobpQu(x) = 2,0 (x).

We may also assume ag+by— 1= —oand by—ay+1=a+f+2 (e, f,a+p+1#—1,-2,...,
and o # 0). Then

MLIP,(x)] = (1 = *)P/(x) + (B — o = (e + B+ 2)x)P,(x) — o f + D)Py(x) = L, Pu(x),

LM[Q,(x)] = (1 = x)0)(x) + (B — o042 — (a4 4 2)0)00(x) — a(f + 1)0,(x) = 2,D,(x).
Therefore, we have
(P} = {PY P}, and  {0,(x)}2, = {PY D)2,

where {P*P(x)}>°, is the monic Jacobi polynomials. Hence, we have a;(x) =1 — x, ag(x) =
—ao, bi(x)=1+x, by(x)=p+ 1 so that

(n + PEF () = (x — D(PHI(x)Y + aPE(x)
=n(x — DPP D) 4+ aP*P(x) (4.6)

since (P*P(x)Y = nP" " (x), n>0.
Case 42: a;(x)=1+x, bi(x)=1—x. Then (4.1) becomes

ML[P,) = (1 = x*)P;/(x) + [(ao + bo + 1) — (ag — bo + 1)x]P;(x) + apboP,(x) = L,Pu(x),

LM[Q,] = (1 —x*)Q;/(x) + [(ao + by — 1) = (ao — by + 1)x]0,(x) + aoboQu(x) = 2,0,(x).



K H. Kwon, G.J. Yoon/Journal of Computational and Applied Mathematics 116 (2000) 243-262 255

We may also assume ap+by+1=f—aand ap—bp+1=a+p+2 (e, f,a+p+1#—1,-2,...,
and B # 0). Then ao=f and by = —a — 1 so that

MLIP,] = (1 = x*)P/(x) + [(B — ) — (2 + B+ 2)x]P,(x) — B(or + 1)Pu(x) = 2uPu(x),

LM[Q,] = (1 =x*)0,(x) + [(B — o = 2) — (2 + f + 2)x]0;(x) — B + 1)Ou(x) = 2,00 (x).
Therefore, {P,(x)}>°, = {P*P(x)}2, and {O,(x)}2, = {P*F=D}° "so that we have

(n+ BPYHP D) = (1 + 0)[PFP )] + pPP(x)

=n(1 4+ )P0 ) + BPEP(x). (4.7)

We have shown that if {P,(x)}>°, is either Hermite and Bessel polynomials, then {a;(x)P,(x) +
aoP,(x)}°°, cannot be an OPS for any polynomials a;(x) and ao(x). This fact is closely related to
the absence of Hermite or Bessel polynomials in Darboux transformations [3].

42. k=1 and r=1

Let L[ -]=a1(x)D + ao, where a;(x) # 0 and a;1n + ao # 0, n=>0. Define a monic PS {Q,(x)}>°,
by
(n+ )(ann + ap)Qu(x) = L[P, ] = a\ P, (x) + aoP,,,(x), n=0. (4.8)

We assume that {Q,(x)}2°, is a monic OPS. Then there are b;(x)=byx+ byo, by(x)=byx*+byx+
byo, b3(x) = b33x> + b3x* + by 1x + by, not all zero, satisfying

(b3(x)a)" = (ba(x)0) + bi(x)s =0,

(4.9)
aohs(x)o = ay(x){2(bs(x)a) — ba(x)o}
and bsyzn(n — 1) + bypn + by # 0,n=0. Now (3.11) and (3.12) become
MLD[P,] = (bsD* + byD + by )(a D + ao)[P;]
= a1bsP) + (2aibs + aghy + a\by)PY’ + (d\by + aoby + a1by)P; + agh, P, (4.10)

- )"VIPH)
LDM[Q,] = (a\D + ay)D(bsD* + b,D + b))[0,] = 2110,

Therefore, {P,(x)}>°, and {Q,(x)}32, must be either classical or classical-type OPS. Krall and
Sheffer [14] considered this case only for {P,(x)}>°, = {P**(x)}°, the Gegenbauer polynomials.
In case {P,(x)};°, is a classical OPS, {P,, (x)}>, is also a classical OPS so that Case 4.2 is
reduced to Case 4.1. Hence, {P,(x)}°, and {Q,(x)}32, must be either Laguerre polynomials or
Jacobi polynomials. We now claim that {P,(x)}>°, cannot be a classical-type OPS. For example,
assume that {P,(x)}2, = {R.(x)}22, is the Laguerre-type OPS which is orthogonal relative to o =
(e ™ H(x)+(1/R)d(x))dx. Then, we may assume that a;(x)b3(x)=x> and a;(x)=1 or x. If a;(x)=1
and bs(x) = x?, then we obtain from (2.3) and (4.10)

24 (x)bs(x) 4 aohs(x) + a1 (x)by(x) = 4x — 2x7,
@ (x)by(x) + aohy(x) + a;(x)b;(x) =x* — (2R + 6)x,
aobl(X) = (ZR + 2))6 — 2R
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from which we have
by(x) =x%, by(x)=—x*+4x, bi(x)=—2x

Then, by (3.10), P,(0)=0, n=>1, which is a contradiction. If a;(x)=x and b3;(x)=x, then we have
similarly as above either (i) ap=2, R=0, by(x)=—2x, bi(x)=x or (ii) aqp=—1, R= —%, by(x)=
—2x+3, bi(x)=x—3. In case (i), P,(0)=0, n=1 by (3.10), which is a contradiction. In case (ii),
we can see that (b;0)” —(by0) + b0 =20'(x) # 0, which contradicts to (4.9). By similar arguments,
we can see that {P,(x)}2°, can be neither a Legendre-type OPS nor a Jacobi-type OPS.

43. k=2 and r=0

Let L[ - 1= ay(x)D? + a,(x)D + ay, where a,(x) # 0 and
o, =apn(n—1)+ayn+ay#0, n=0. (4.11)
Then, the monic PS {Q,(x)}:2, defined by
%, 0,(x) = L[P,](x) = ay(x)P)(x) + a1 (x)P,(x) + ayP,(x), n=0

is an OPS relative to ©(=ay '{(b,0)" — (bic) + bea} ) if and only if there exist by, b(x), by(x)
(not all zero) satisfying

a(x)t = by(x)0,
2(ay(x)t) — ai(x)t = by (x)a, (4.12)
(a2(x)1)" — (a1(x)7) + apt = byo.
and byn(n — 1)+ byyn+ by # 0, n=0. In this case, by # 0 and b,(x) # 0 and
ML[P,] = (b;D* + b\D + by)(a:D* + a;D + a,)[P,]
= a,h,PY) + (2d,b, + a\b, + a;b; )P
+(ayby + 2a1by + aghy + ayby + aiby + axby )P, (4.13)
+(a\by + aoby + a1by)P, + apboP, = 7,P,,
LM[Q,] = (a:D* + a1D + ag)(b,D* + byD + by)[0,] = 2,0,

Hence, {P,(x)}2, and {Q,(x)}>°, must be either classical or classical-type OPS. We first consider
the case when {P,(x)}°, is a classical-type OPS.
Case 1: {P,(x)}22, = {R.(x)}32, the Laguerre-type OPS. Then, ay(x)by(x) =x* so that ay(x) =
1,x,x2.
Case 1.1: ay(x) =1 or ax(x) = x> If ay(x) =1, then by(x) = x> and from (2.3) and (4.13), we
obtain
a,(x)x* + by (x) = 4x — 2x7,
24 (x)x* + apx® + a;(x)bi(x) + by =x* — (2R + 6)x,
ay(x)by(x) + aoh(x) + a1(x)by = (2R + 2)x — 2R,
from which we have
(l](X):—2, [10:1, b](X):4x, bOZO
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It is a contradiction since by, # 0. If ay(x) = x*, then by(x) =1 and R = —1, which is also a
contradiction.
Case 1.2: ay(x) =x. Then b,(x) =x and (4.12) becomes
XT = X0,
2(xt) — ay(x)t = bi(x)o, (4.14)

(x1)" — (a1 (x)7) — ag(x)t = by(x)a.
Since 0 = (e *H(x) + (1/R)d(x))dx,

(xt) =(xo6) =(1 —x)o and ¢ =—0d+ d(x). (4.15)
Applying (4.15) to (4.14), we obtain 7 =e*H(x)dx and

a(x)=—x4+2, ag(x)=—R—1 and b(x)=—x, bo(x)=—R.
Hence, {0,(x)};%, = {LV()};%, and

(—n— R — DLP(x) = xR)/(x) + (2 = x)R,(x) — (R + DR, (%), (4.16)
(—n — RR,(x) = xL'V(x)" — xL'O(x) — RR,(x). (4.17)

Case 2: {P,(x)}>2, = {P"(x)}22, the Legendre-type OPS. Then a,(x)by(x) = (x* — 1)* so that
a(x)=x*>—1,(x+1)*,(x — 1)°. If ap(x) = (x+ 1)* or ay(x) = (x — 1)?, then by the same arguments
as in Case 1.1, we can derive a contradiction.

Case 2.1: ay(x) =x* — 1. Then by(x) = x> — 1 and (4.12) becomes

@**—Dr=x* - 1o,
2((x* = D) — ay(x)t = by(x)o, (4.18)
(% = D) = (a1(x)1) — ao(x)T = bo(x)0.

Since o0=0;+(1/a)(6(x—1)+(x+1)), where 6, =H(1 —x*)dx is the Legendre moment functional,
we have

(x* = 1)ty =((x* —1)o) =2x6;, and o, =(x +1)—d(x — 1).
Applying these to (4.18) gives t = o, and
a;=4x, ay=200+2 and b, =0, by =20
Hence {Q,(x)}72 = {P*”(x)};2, and
(n(n — 1) +4n + 200+ 2)PCO(x) = (x* — )PP (x)" + 4xPP(x) + (20 + 2)P?, (4.19)

(n(n — 1) + 20)PP(x) = (& — HPOO(x)" + 2aPOO(x). (4.20)
Case 3: {P,(x)}>2, = {S¥(x)}22, the Jacobi-type OPS. Then (ayb,)(x) = (x* — x)* and so that
ar(x) =x* — x,x%, (x — 1) Recall that {S¥(x)}2°, is orthogonal relative to
1
og=a,+ M@(x), (4.21)
where 0, = (1 —x)H(x)dx is a classical moment functional satisfying the moment equation
(* —x)o, =oxe,, a#—1,-2,.... (4.22)



258 K H. Kwon, G.J. Yoon/Journal of Computational and Applied Mathematics 116 (2000) 243-262

Since (g,,1) =1/(o + 1), we obtain from (4.22),

((x — D)a,) = (a4 1)o, — 5(x). (4.23)
Case 3.1: a)(x) = x> — x and by(x) = x* — x. Then (4.12) becomes
(x* —x)t=(x* —x)o, (4.24)
2((x* = x)1) — a;(x)t = by(x)0, (4.25)
((x* = x)1)" — (a,(x)T) + ayt = byo. (4.26)
From (4.21) and (4.24), we have
T=0,+ 20(x) + po(x — 1) (4.27)

for some constants /4 and u. By (4.22) and (4.27), (4.25) becomes

(o +4)x —2 — ai(x) — bi(x))o, = (/1611(0) + j\;bl(o)) 0(x) + pai(1)d(x — 1).
Hence pa;(1)=0,a,(x) + bi(x) = (20 + 4)x — 2, and
1
Aai(0) = —]T/Ibl(O). (4.28)
Multiply (4.26) by (x> — x) and apply (4.22). Then we have

(x+2+4ag—di(x) = bo)x — 1) =a((a + 2)x — as(x) — 1)
and Aa;(0)=0. Thus from (4.28), b;(0) =0 and so a;(x) =A4Ax — 2, b;(x)=2a+4 — A)x for some
constant 4 so that 4 =0 since a;(0) = —2. There are two cases: « =0 or 4 = o + 3.
Case 3.11: A=a+ 3. Then a;(x) =(x+3)x —2,b;(x) =(o+ 1)x and u=0. Thus 1 =0, and
(4.26) becomes
1
(1 —=x)a,) = (by — ag)o, + Mboé(x). (4.29)
From (4.23) and (4.29), we obtain ay(x) =a + M + 1 and by(x) = M. Hence, we have
(W +2n+oan+ o+ M+ 1)0,(x)
= = 0)87(0)" + (2 + 3 = 2)S7(x) + (o + M + 1)S;7(x), (4.30)

(7" + oan + M)SP(x) = (x* — x)0u(x)" + (o + 10, (x) + MQO,(x). (4.31)

Note that Q,(x) = (—2)""P®*(1 — 2x), n=0.
Case 3.12: « =0. Then 1 =0, + ud(x — 1),a;(x) = Ax — 2, and b;(x) = (4 — A)x. Since g, =
H(x)H(1 —x)dx,0, = 06(x) — d(x — 1) so that we obtain from (4.26)

1
boo, + Mboé(x) =(ag—A+2)a, + 0(x)+ (agu — 3+ A)o(x — 1).

Thus, bo=M, ay=by+A4—2, and A=—agu+3. If u=0, then 4=3, a;(x)=3x-2, ay=M+1, b(x)=x,
and by = M so that it becomes the Case 3.11 with o = 0. If u # 0, then we have 4 =2 so that
w=1/M, a;(x) =2(x — 1),b1(x) = 2x,ay = by = M, and

T= (H(x)H(l —x)+ %5()6)) dx.
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Hence

(n* +n+ M)Q,(x) = (x> — x)P/(x) + 2(x — 1)P(x) + MP,(x), (4.32)

(n* 4+ n+ M)P,(x) = (x* — x)Q"(x) + 2x0.(x) + MQO,(x). (4.33)

Note that Q,(x) = (—1)"SP(1 — x),n>0, are also Jacobi-type polynomials.

Case 3.2: ay(x) = x* or ay(x) = (x — 1)*>. Then by the same argument as in Case 1.1, we have
if a>(x) =x?, then a,(x) =0, ay(x) = —2 and if a,(x) = (x — 1)?, then ay(x) =0 and M = 0. Hence,
these contradict our assumptions that o, £ 0 in (4.11) and M # 0.

We now consider the case when {P,(x)}>°, is a classical OPS. If {P,(x)}>°, satisfy the differential
equation (2.2), then the differential operator ML[-] in (4.13) must be a linear combination of 7, %, %>
(see [20, Proposition 1]), where / is the identity operator.

Krall and Sheffer [14] considered this case only for {P,(x)}°, = {LO(x)}2, or {P*P(x)},
through the factorization of fourth order differential equations satisfied by {P,(x)}:°, into the product
of two second order differential equations. Instead, we use moment functional relations (4.12), which
is much easier to handle.

Case 4: {P,(x)}20={H,(x)}32, the Hermite polynomials. Then we may assume a,(x)=>b,(x)=1.
Hence 7 =0 by (4.12) so that {Q,(x)}22, = {H.(x)}2-

Case 5: {P,(x)}>2,={LP(x)}52, the Laguerre polynomials. Then we may assume a,(x)b,(x)=x>
so that a,(x) =x%,x, 1.

Case 5.1: ay(x) = x*. Then by(x) =1 and (4.12) becomes

x¥’1=o,

2(x*t) — a;(x)T = by(x)0, (4.34)

(x*1)" — (a,(x)t) + ayt = byo.
Multiplying the second equation in (4.34) by x? and using (xa)' = (o + 1 —x)O' we have a;(x)=20ox
and b,(x) = —2. Similarly from the third equation in (4.34), we have ay=0o* — o and by =1 so that
o # 0,1. Since 0 =x%e " dx,

t=a, ' {(hy0)" — (bia) + byo} =x"2e"dx (a#1,0,—1,...)
so that {Q,(x)};2y = {L{"P(x)}, and
(n(n — 1) + 20m + o — )LD (x) =’ LO(x)" + 20xLP (x) + (o2 — 2)LP(x), (4.35)

LP(x) = L7 2 (x)" = 2L¢ P (x) + LY (x). (4.36)
Case 5.2: ay(x) =x. Then b,(x) =x and (4.12) becomes
XT = X0,
2(x1) — ay(x)t = by(x)o,
(xt)" — (a1(x)) + agt = byo
so that T = o + Ad(x) for some constant . If 2=0, then T =0 so that {Q,(x)}2, = {LP(x)}2,. If
A # 0, then we have a,(x) = —x,b;(x)=—x+2,bp=ay— 1, and . =0. Then =0 — (1/ay)o(x) so

that {Q,(x)}2°, is the Laguerre-type OPS {R, (x)} °0 With R=—ag #0,—1,-2,....
Case 5.3: ay(x)=1. Then by(x)=x? and 1=x?¢ =x%"?e " dx so that {Q,,(x)}nzo ={LUD(x)}2,.
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Case 6: {P,(x)}2,={BW(x)}2, the Bessel polynomials. Then we may assume that a,(x)b,(x)=x*
so that a,(x) =x* and b,(x) =x* and (4.12) becomes

x’t =x’0,
2(x*1) — a,(x)T = by (x)a,
(**1)" — (a1(x)t) + agt = byo.

Hence t =0 + 10(x) + ud’(x) for some constants A and w. In this case, by the same arguments as
in Case 5 using (x*¢) = (ox + 2)o, we can obtain

a(x)=bi(x)=ux+2, ay=by and L=u=0

so that {Q,(x)}2y = {B"(x)} 2,

Case T: {P,(x)}22, = {P*P(x)}2, the Jacobi polynomials. Then we may assume ay(x)by(x) =
(1 —x?)* so that ax(x) = (1 —x)*,(1 +x)*,1 —x°.

Case 7.1: ay(x) = (1 — x)*. Then by(x) = (1 +x)* and (4.12) becomes

(1 —x)Y’t=(1+x)0,
2((1 = x)*1) — a(x)t = by (x)a, (4.37)
(1 = x)*1)" = (a1(x)1) + aoT = byo.

Then using ((1 —x*)a) = (B — a — («+ f +2)x)o, we can easily obtain from (4.37) a;(x)=20(x —
1),01(x)=2+4)(x+1), ap=0(a—1), by=(f+2)(f+1) so that « ~ 0, 1. Since a:(l—x)i(l—l—x)ﬁ dx,

t=a; {(b,0)" — (b1 + beo} = (1 —x)*2(1 +x) 2 dx
so that {0,(x)};2, = {Py>*P(x)};2, and
(n(n — 1) + 20m + oo — 1))P* 22 (x)
=(x — 12P*P(x)"1 + 2a(x — PP (x) 4 a(er — 1)PHP(x), (4.38)
(n(n —1) + Q2 +4n+ (B +2)(f + 1)PFP(x)
=(x+ PP+ (2B + M + DR (Y
+ (B +2)(B + 1)P2P2(x), (4.39)

Case 7.2: ay(x) = (1 +x)*. This case is reduced to Case 7.1 by replacing x by —x.
Case 7.3 a>(x) =1 —x%. Then b,(x) =1 — x* and (4.12) becomes

(1 =x>)t=(1—-xoa,
2((1 = x*)1) — ay(x)t = by(x)o, (4.40)
(1 =x)1)" = (a1(x)1) + agt = byo.

Then we have for some constants 4 and u
T=0+ A0(x — 1)+ pd(x + 1),
bi(x)=2(f — o — (o4 f+2)x) — ar(x),
an + ap) = u(an — ayp) =0.

Case 7.3.1: A=p=0. Then t = ¢ so that {Q,(x)}>2, = {P*F(x)},.
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Case 7.3.2: a1 + ajo=an — a9 =0, that is a;(x) =0. Then
{x:ﬁ:O, bl(x):—4x, b():ao—z
so that 0 = H(1 — x)H(1 4+ x)dx and

t=ay ' {(b,0)" — (byo) +byo} =0 — ag(é(x + 1)+ 6(x — 1)).
0

Hence, {Q,(x)}°, = {P{~®/2(x)}>°, is the Legendre-type OPS.
Case 7.3.3: =0 and a;; — a;o=0. Then 1 =6 + ud(x + 1) and (4.40) gives
ax)=—(+Dx+1), bx)=—(e+3)x—a+1, by=a—a—1
and B =0,u=—2""a;" since ¢ = H(x + 1)(1 — x)* dx. Hence =0 — 2*"a;'8(x + 1) (ap #
n(n+ o), n=0) and so {Q,(x)}:2, is the Jacobi-type OPS satisfying
LM[y]= (" = 1)*p 420 = 1)((2 + 4)x + 20)y" + (x + D{(&* + 92 —
—2ap + 14)x + o — 3o+ 2a9 — 10}y" — 2{(ot + 2)(ap — o — 1)x
—o? — 3o+ ape — 2}y + ag(ag — o — 1)y = A, p.
In fact, { 0,00} = {2"SE((x + 1)/2)}20(M = —9) and
(n* 4+ an — ag)0u(x) = (x* — DHPEO(x)” + (o0 + 1)(x + 1PV (x) — aoP*"(x), (4.41)

(n* +on+2n+ o —ag + DHP*O(x) = (x* — DO/ (x) + ((o + 3)x + o — 1)Q)(x)
+ (o —ap + 1)0u(x). (4.42)
Case 73.4: u=0 and a;; + a;o = 0. This case is reduced to Case 7.3.3 by replacing x by —ux.
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