Generalized Hahn's theorem

K.H. Kwon *, G.J. Yoon
Department of Mathematics, KAIST, Taejon 305-701, South Korea

Received 2 March 1999

Abstract

Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be an orthogonal polynomial system and $$
L[\cdot]=\sum_{i=0}^{k} a_{i}(x) \mathrm{D}^{i} \quad\left(\mathrm{D}=\frac{\mathrm{d}}{\mathrm{~d} x}\right)
$$ a linear differential operator of order $k(\geqslant 0)$ with polynomial coefficients. We find necessary and sufficient conditions for a polynomial sequence $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ defined by $Q_{n}(x):=L\left[P_{n+r}^{(r)}(x)\right], n \geqslant 0$, to be also an orthogonal polynomial system. We also give a few applications of this result together with the complete analysis of the cases: (i) $k=0,1,2$ and $r=0$, and (ii) $k=r=1$. (C) 2000 Elsevier Science B.V. All rights reserved.

MSC: 33C45; 34L05
Keywords: Differential equations; Orthogonal polynomials; Hahn’s theorem

1. Introduction

In 1935, Hahn [4] proved: if $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{P_{n}^{\prime}(x)\right\}_{n=0}^{\infty}$ are positive-definite orthogonal polynomial systems (OPS'), then $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ must be one of classical OPS' (Jacobi, Laguerre, or Hermite). Krall [8] and Webster [23] extended Hahn's theorem to quasi-definite OPS' (including Bessel polynomials [12]). Later, Hahn [5] and Krall [9] also showed: If for any fixed integer $r \geqslant 1,\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{P_{n+r}^{(r)}(x)\right\}_{n=0}^{\infty}$ are OPS', then $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ must be a classical OPS. Recently, it is extended further as: If $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS and $\left\{P_{n}^{(r)}(x)\right\}_{n=0}^{\infty}$ is a WOPS, then $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ must be a classical OPS (cf. $[16,19]$).

Generalizing Hahn's theorem, we now ask: Given an OPS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and a linear differential operator $L[\cdot]=\sum_{i=0}^{k} a_{i}(x) \mathrm{D}^{i}$ with polynomial coefficients, when is the polynomial sequence $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$

[^0]0377-0427/00/\$-see front matter (C) 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(99)00319-2
defined by

$$
Q_{n}(x):=L\left[P_{n+r}^{(r)}(x)\right]=\sum_{i=0}^{k} a_{i}(x) P_{n+r}^{(i+r)}
$$

also an OPS? Here, r is any nonnegative integer.
Krall and Sheffer [14] raised and solved the above problem for $r=0,1$ using the moments and the characterization of OPS' via formal generating series $G(x, t)=\sum_{n=0}^{\infty} P_{n}(x) t^{n}$ of a PS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ (cf. [13]). Their method is quite complicated so that it seems to be impossible to be extended to the case $r \geqslant 2$. We solve the problem completely for any $r \geqslant 0$ by using the formal calculus of moment functionals (see Theorems 3.1 and 3.2), by which we can refine the characterizations of classical orthogonal polynomials in [19] (see Theorem 3.4). Finally, we analyse completely the cases for $k=0,1,2$ and $r=0$ or $k=r=1$ and as by products, we obtain some new relations between classical orthogonal polynomials and classical-type orthogonal polynomials.

2. Preliminaries

All polynomials in this work are assumed to be real polynomials in one variable and we let \mathscr{P} be the space of all real polynomials. We denote the degree of a polynomial $\pi(x)$ by $\operatorname{deg}(\pi)$ with the convention that $\operatorname{deg}(0)=-1$. By a polynomial system (PS), we mean a sequence of polynomials $\left\{\phi_{n}(x)\right\}_{n=0}^{\infty}$ with $\operatorname{deg}\left(\phi_{n}\right)=n, n \geqslant 0$. Note that a PS forms a basis of \mathscr{P}.

We call any linear functional σ on \mathscr{P} a moment functional and denote its action on a polynomial $\pi(x)$ by $\langle\sigma, \pi\rangle$. For a moment functional σ, we call

$$
\sigma_{n}:=\left\langle\sigma, x^{n}\right\rangle, \quad n=0,1, \ldots
$$

the moments of σ. We say that a moment functional σ is quasi-definite (respectively, positive-definite) [2] if its moments $\left\{\sigma_{n}\right\}_{n=0}^{\infty}$ satisfy the Hamburger condition

$$
\Delta_{n}(\sigma):=\operatorname{det}\left[\sigma_{i+j}\right]_{i, j=0}^{n} \neq 0 \quad\left(\text { respectively, } \Delta_{n}(\sigma)>0\right), \quad n \geqslant 0 .
$$

Any PS $\left\{\phi_{n}(x)\right\}_{n=0}^{\infty}$ determines a moment functional σ (uniquely up to a nonzero constant multiple), called a canonical moment functional of $\left\{\phi_{n}(x)\right\}_{n=0}^{\infty}$, by the conditions

$$
\left\langle\sigma, \phi_{0}\right\rangle \neq 0 \quad \text { and } \quad\left\langle\sigma, \phi_{n}\right\rangle=0, \quad n \geqslant 1 .
$$

Definition 2.1. A PS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a weak orthogonal polynomial system (WOPS) if there is a nontrivial moment functional σ such that

$$
\begin{equation*}
\left\langle\sigma, P_{m} P_{n}\right\rangle=0 \quad \text { if } 0 \leqslant m<n . \tag{2.1}
\end{equation*}
$$

If we further have

$$
\left\langle\sigma, P_{n}^{2}\right\rangle=K_{n}, \quad n \geqslant 0,
$$

where K_{n} are nonzero real constants, then we call $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ an orthogonal polynomial system (OPS). In either case, we say that $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a WOPS or an OPS relative to σ and call σ an orthogonalizing moment functional of $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$.

It is immediate from (2.1) that for any WOPS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$, its orthogonalizing moment functional σ must be a canonical moment functional of $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$. It is well known (see [Chapters 1 and 2]) that a moment functional σ is quasi-definite if and only if there is an $\operatorname{OPS}\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ relative to σ and then each $P_{n}(x)$ is uniquely determined up to a nonzero multiplicative constant. For a moment functional σ and a polynomial $\pi(x)$, we let σ^{\prime} (the derivative of σ) and $\pi \sigma$ (the left multiplication of σ by $\pi(x)$) be the moment functionals defined by

$$
\left\langle\sigma^{\prime}, \phi\right\rangle=-\left\langle\sigma, \phi^{\prime}\right\rangle
$$

and

$$
\langle\pi \sigma, \phi\rangle=\langle\sigma, \pi \phi\rangle, \quad \phi \in \mathscr{P} .
$$

Then it is easy to obtain the following (see $[16,18]$).

Lemma 2.1. For a moment functional σ and a polynomial $\pi(x)$, we have
(i) Leibniz' rule: $(\pi \sigma)^{\prime}=\pi^{\prime} \sigma+\pi \sigma^{\prime}$;
(ii) $\sigma^{\prime}=0$ if and only if $\sigma=0$.

Assume that σ is quasi-definite and $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS relative to σ. Then (iii) $\pi \sigma=0$ if and only if $\pi(x)=0$;
(iv) for any other moment functional $\tau,\left\langle\tau, P_{n}\right\rangle=0, n \geqslant k+1$ for some integer $k \geqslant 0$ if and only if $\tau=\phi \sigma$ for some polynomial $\phi(x)$ of degree $\leqslant k$.

It is well known [1,17] that there are essentially four distinct classical OPS' satisfying second-order differential equations with polynomial coefficients

$$
\begin{equation*}
\mathscr{L}[y](x)=\ell_{2}(x) y^{\prime \prime}(x)+\ell_{1}(x) y^{\prime}(x)=\lambda_{n} y(x) . \tag{2.2}
\end{equation*}
$$

They are:
(i) Hermite polynomials $\left\{H_{n}(x)\right\}_{n=0}^{\infty}$ (orthogonal relative to $\mathrm{e}^{-x^{2}} \mathrm{~d} x$) satisfying

$$
y^{\prime \prime}(x)-2 x y^{\prime}(x)=-2 n y(x)
$$

(ii) Laguerre polynomials $\left\{L_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ (orthogonal relative to $x_{+}^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x$) satisfying

$$
x y^{\prime \prime}(x)+(\alpha+1-x) y^{\prime}(x)=-n y(x) \quad(\alpha \notin\{-1,-2, \ldots\})
$$

(iii) Jacobi polynomials $\left\{P_{n}^{(\alpha, \beta)}(x)\right\}_{n=0}^{\infty}$ (orthogonal relative to $(1-x)_{+}^{\alpha}(1+x)_{+}^{\beta} \mathrm{d} x$) satisfying

$$
\begin{aligned}
& \left(1-x^{2}\right) y^{\prime \prime}(x)+(\beta-\alpha-(\alpha+\beta+2) x) y^{\prime}(x)=-n(n+\alpha+\beta+1) y(x) \\
& \quad(\alpha, \beta, \alpha+\beta+1 \notin\{-1,-2, \cdots\}) .
\end{aligned}
$$

(iv) Bessel polynomials $\left\{B_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ (see $[12,15]$) satisfying

$$
x^{2} y^{\prime \prime}(x)+(\alpha x+2) y^{\prime}(x)=n(n+\alpha-1) y(x) \quad(\alpha \notin\{0,-1,-2, \ldots\}) .
$$

Here, x_{+}^{α} is the distribution with support in $[0, \infty)$, which is obtained by the regularization of the function

$$
f_{\alpha}(x)=\left\{\begin{array}{l}
x^{\alpha} \text { if } x>0 \\
0 \\
\text { if } x \leqslant 0
\end{array}\right.
$$

(see in [6, Chapter 3.3.2]).

More generally, Krall [10] (see also [18,21]) found necessary and sufficient conditions for an OPS to be eigenfunctions of differential equations with polynomial coefficients:

Proposition 2.2. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be an OPS relative to σ and $L_{N}[\cdot]=\sum_{i=1}^{N} \ell_{i}(x) \mathrm{D}^{i}(\mathrm{D}=\mathrm{d} / \mathrm{d} x)$ be a linear differential operator of order $N(\geqslant 1)$ with polynomial coefficients $\ell_{i}(x)$ of order $\leqslant i$. Then

$$
L_{N}\left[P_{n}\right](x)=\sum_{i=1}^{N} \ell_{i}(x) P_{n}^{(i)}(x)=\lambda_{n} P_{n}(x), \quad n \geqslant 0,
$$

where

$$
\lambda_{n}=\sum_{i=1}^{N} \frac{1}{i!} \ell_{i}^{(i)}(x) n(n-1) \cdots(n-i+1)
$$

if and only if σ satisfies $r:=[(N+1) / 2]$ moment equations

$$
R_{k}(\sigma):=\sum_{i=2 k+1}^{N}(-1)^{i}\binom{i-k-1}{k}\left(\ell_{i} \sigma\right)^{(i-2 k-1)}=0, \quad k=0,1, \ldots, r-1 .
$$

Moreover, in this case, $N=2 r$ must be even.
Using this characterization, Krall [11] classified all OPS' that are eigenfunctions of fourth-order differential equations. They are the four classical OPS' above and the three new OPS', now known as classical-type OPS' [7]:
(v) Legendre-type polynomials $\left\{P_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ (orthogonal relative to $\left(H\left(1-x^{2}\right)+(1 / \alpha)(\delta(x-1)+\right.$ $\delta(x+1))) \mathrm{d} x$) satisfying

$$
\left(x^{2}-1\right)^{2} y^{(4)}+8 x\left(x^{2}-1\right) y^{(3)}+4(\alpha+3)\left(x^{2}-1\right) y^{\prime \prime}+8 \alpha x y^{\prime}=\lambda_{n} y \quad\left(\alpha \neq \frac{-n(n-1)}{2}, n \geqslant 0\right) .
$$

(vi) Laguerre-type polynomials $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ (orthogonal relative to $\left.\left(\mathrm{e}^{-x} H(x)+(1 / R) \delta(x)\right) \mathrm{d} x\right)$ satisfying

$$
\begin{align*}
& x^{2} y^{(4)}-\left(2 x^{2}-4 x\right) y^{(3)}+\left[x^{2}-(2 R+6) x\right] y^{\prime \prime}+[(2 R+2) x-2 R] y^{\prime} \\
& \quad=\lambda_{n} y \quad(R \neq 0,-1,-2, \ldots) . \tag{2.3}
\end{align*}
$$

(vii) Jacobi-type polynomials $\left\{S_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ (orthogonal relative to $\left.\left((1-x)_{+}^{\alpha} H(x)+(1 / M) \delta(x)\right) \mathrm{d} x\right)$ satisfying

$$
\begin{aligned}
& \left(x^{2}-x\right)^{2} y^{(4)}+2 x(x-1)[(\alpha+4) x-2] y^{(3)}+x\left[\left(\alpha^{2}+9 \alpha+14+2 M\right) x-(6 \alpha+12+2 M)\right] y^{\prime \prime} \\
& \quad+[(\alpha+2)(2 \alpha+2+2 M) x-2 M] y^{\prime}=\lambda_{n} y \quad\left(\alpha \neq-1,-2, \ldots, \text { and } n^{2}+\alpha n+M \neq 0, n \geqslant 0\right) .
\end{aligned}
$$

Here, $H(x)$ is the Heaviside step function.
In [20], we showed that if a fourth- (or higher) order differential equation has a classical OPS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ as solutions, then the differential equation must be a linear combination of iterations of a second-order differential equation (2.2) having $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ as solutions.

3. Main results

In the following, we always let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be a monic OPS relative to σ and $L[\cdot]=\sum_{i=0}^{k} a_{i}(x) \mathrm{D}^{i}$ $(\mathrm{D}=\mathrm{d} / \mathrm{d} x)$ a linear differential operator of order k with polynomial coefficients $a_{i}(x)=\sum_{j=0}^{i} a_{i j} x^{j}$, $0 \leqslant i \leqslant k\left(a_{k}(x) \not \equiv 0\right)$. For an integer $r \geqslant 0$, we also let

$$
\begin{equation*}
Q_{n}(x)=L\left[P_{n+r}^{(r)}(x)\right]=\alpha_{n} x^{n}+\text { lower degree terms }, \quad n \geqslant 0 \tag{3.1}
\end{equation*}
$$

and assume that

$$
\begin{equation*}
\alpha_{n}:=\sum_{i=0}^{k} a_{i i}(n+r)_{(i+r)} \neq 0, \quad n \geqslant 0 \tag{3.2}
\end{equation*}
$$

so that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is also a PS, where

$$
n_{(i)}= \begin{cases}1 & \text { if } i=0 \\ n(n-1) \cdots(n-i+1) & \text { if } i \geqslant 1\end{cases}
$$

We now ask: When is the PS $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ also an OPS?
Then our main result is:

Theorem 3.1. The PS $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ defined by (3.1) is a WOPS if and only if there is a moment functional $\tau \neq 0$ and $k+r+1$ polynomials $\left\{b_{i}(x)\right\}_{i=r}^{k+2 r}$ with $\operatorname{deg}\left(b_{i}\right) \leqslant i$ satisfying

$$
\begin{equation*}
\sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(a_{i-r}(x) \tau\right)^{(i-j)}=b_{j+r}(x) \sigma, \quad 0 \leqslant j \leqslant k+r \tag{3.3}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(b_{i+r}(x) \sigma\right)^{(i-j)}=a_{j-r}(x) \tau, \quad 0 \leqslant j \leqslant k+r \tag{3.4}
\end{equation*}
$$

where $a_{i}(x)=0$ for $i<0$. In this case, $\operatorname{deg}\left(b_{r}\right)=r$ and

$$
\begin{equation*}
\left\langle\tau, a_{i}\right\rangle=(-1)^{i+r}\left\langle\sigma, b_{i+2 r}\right\rangle, \quad 0 \leqslant i \leqslant k \tag{3.5}
\end{equation*}
$$

so that $\left\langle\sigma, b_{2 r}\right\rangle \neq 0$ and $b_{2 r}(x) \not \equiv 0$. Furthermore, $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS if and only if the polynomials $\left\{b_{i}(x)\right\}_{i=r}^{k+2 r}$ satisfy, in addition to (3.3),

$$
\begin{equation*}
\sum_{i=0}^{k+r} b_{i+r, i+r} n_{(i)} \neq 0, \quad n \geqslant 0 \tag{3.6}
\end{equation*}
$$

where $b_{i}(x)=\sum_{j=0}^{i} b_{i j} x^{j}$. In this case, $\operatorname{deg}\left(b_{r}\right)=r$ and $b_{k+2 r}(x) \neq 0$.
Proof. Assume that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a WOPS and let τ be a canonical moment functional of $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$. Then $\left\langle\tau, Q_{m} Q_{n}\right\rangle=0,0 \leqslant m<n$. We shall prove that there are polynomials $\left\{b_{i}(x)\right\}_{i=r}^{k+2 r}$ with $\operatorname{deg}\left(b_{i}\right) \leqslant i$ satisfying (3.3) by induction on $i=0,1, \ldots, k+r$. For $n \geqslant 1$,

$$
0=\left\langle\tau, Q_{n}(x)\right\rangle=\left\langle\tau, \sum_{i=0}^{k} a_{i}(x) P_{n+r}^{(i+r)}(x)\right\rangle=\left\langle\sum_{i=0}^{k+r}(-1)^{i}\left(a_{i-r} \tau\right)^{(i)}, P_{n+r}\right\rangle
$$

By Lemma 2.1(iv), there is a polynomial $b_{r}(x)$ of degree $\leqslant r$ such that

$$
b_{r}(x) \sigma=\sum_{0}^{k+r}(-1)^{i}\left(a_{i-r} \tau\right)^{(i)}
$$

so that (3.3) holds for $j=0$. Assume that for some ℓ with $0 \leqslant \ell<k+r$, there exist polynomials $\left\{b_{i}(x)\right\}_{i=r}^{\ell+r}$ of $\operatorname{deg}\left(b_{i}\right) \leqslant i$ such that (3.3) holds for $j=0,1, \ldots, \ell$. Then for $n \geqslant \ell+2$,

$$
\begin{aligned}
0 & =\left\langle\tau, Q_{\ell+1} Q_{n}\right\rangle=\left\langle\tau, Q_{\ell+1} \sum_{i=0}^{k} a_{i+r} P_{n+r}^{(i+r)}\right\rangle=\left\langle\sum_{i=0}^{k}(-1)^{i+r}\left(Q_{\ell+1} a_{i} \tau\right)^{(i+r)}, P_{n+r}\right\rangle \\
& =\left\langle\sum_{i=0}^{k+r}(-1)^{i} \sum_{j=0}^{i}\binom{i}{j} Q_{\ell+1}^{(j)}\left(a_{i-r} \tau\right)^{(i-j)}, P_{n+r}\right\rangle \\
& =\left\langle\sum_{j=0}^{k+r} Q_{\ell+1}^{(j)} \sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(a_{i-r} \tau\right)^{(i-j)}, P_{n+r}\right\rangle \\
& =\left\langle\sum_{j=0}^{\ell+1} Q_{\ell+1}^{(j)} \sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(a_{i-r} \tau\right)^{(i-j)}, P_{n+r}\right\rangle \\
& =Q_{\ell+1}^{(\ell+1)}\left\langle\sum_{i=\ell+1}^{k+r}(-1)^{i}\binom{i}{\ell+1}\left(a_{i-r} \tau\right)^{(i-\ell-1)}, P_{n+r}\right\rangle+\left\langle\sum_{j=0}^{\ell} Q_{\ell+1}^{(j)} b_{j+r} \sigma, P_{n+r}\right\rangle \\
& =\alpha_{\ell+1}(\ell+1)!\left\langle\sum_{i=\ell+1}^{k+r}(-1)^{i}\binom{i}{\ell+1}\left(a_{i-r} \tau\right)^{(i \ell \ell-1)}, P_{n+r}\right\rangle+\left\langle\sigma, \sum_{j=0}^{\ell} Q_{\ell+1}^{(j)} b_{j+r} P_{n+r}\right\rangle .
\end{aligned}
$$

Since $\operatorname{deg}\left(\sum_{j=0}^{\ell} Q_{\ell+1}^{j} b_{j+r}\right) \leqslant r+\ell+1<n+r,\left\langle\sigma, \sum_{j=0}^{\ell} Q_{\ell+1}^{(j)} b_{j+r} P_{n+r}\right\rangle=0$, so that

$$
\left\langle\sum_{i=\ell+1}^{k+r}(-1)^{i}\binom{i}{\ell+1}\left(a_{i-r} \tau\right)^{(i-\ell-1)}, P_{n+r}\right\rangle=0, \quad n \geqslant \ell+2 .
$$

Therefore, by Lemma 2.1(iv), there is a polynomial $b_{r+\ell+1}(x)$ with $\operatorname{deg}\left(b_{r+\ell+1}\right) \leqslant r+\ell+1$ such that $\sum_{i=\ell+1}^{k+r}(-1)^{i}\binom{i}{\ell+1}\left(a_{i-r} \tau\right)^{(i-\ell-1)}=b_{r+\ell+1} \sigma$, that is, (3.3) also holds for $j=\ell+1$.

Conversely, assume that there are moment functionals $\tau \neq 0$ and polynomials $\left\{b_{i}(x)\right\}_{i=r}^{k+2 r}$ with $\operatorname{deg}\left(b_{i}\right) \leqslant i$ satisfying (3.3). Then

$$
\begin{aligned}
\left\langle\tau, Q_{m} Q_{n}\right\rangle & =\left\langle\tau, Q_{m} \sum_{0}^{k} a_{i} P_{n+r}^{(i+r)}\right\rangle=\left\langle\sum_{i=0}^{k}(-1)^{i+r}\left(Q_{m} a_{i} \tau\right)^{(i+r)}, P_{n+r}\right\rangle \\
& =\left\langle\sum_{i=0}^{k}(-1)^{i+r} \sum_{j=0}^{i+r}\binom{i+r}{j} Q_{m}^{(j)}\left(a_{i} \tau\right)^{(i+r-j)}, P_{n+r}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\sum_{j=0}^{k+r} Q_{m}^{(j)} \sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(a_{i-r} \tau\right)^{(i-j)}, P_{n+r}\right\rangle \\
& =\left\langle\sum_{j=0}^{k+r} Q_{m}^{(j)} b_{j+r} \sigma, P_{n+r}\right\rangle=\left\langle\sigma,\left(\sum_{j=0}^{k+r} Q_{m}^{(j)} b_{j+r}\right) P_{n+r}\right\rangle .
\end{aligned}
$$

Hence,

$$
\left\langle\tau, Q_{m} Q_{n}\right\rangle=0, \quad 0 \leqslant m<n
$$

since $\operatorname{deg}\left(\sum_{0}^{k+r} b_{j+r} Q_{m}^{(j)}\right) \leqslant r+m<n+r$. Thus $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a WOPS relative to τ.
(3.3) \Rightarrow (3.4): For $j=0,1, \ldots, k+r$

$$
\begin{aligned}
\sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(b_{i+r}(x) \sigma\right)^{(i-j)} & =\sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left[\sum_{\ell=j}^{k+r}(-1)^{\ell}\binom{\ell}{j}\left(a_{\ell-r} \tau\right)^{(\ell-i)}\right]^{(i-j)} \\
& =\sum_{\ell=j}^{k+r}(-1)^{\ell+j}\binom{\ell}{j} \sum_{i=0}^{\ell-j}(-1)^{i}\binom{\ell-j}{i}\left(a_{\ell-r} \tau\right)^{(\ell-j)} \\
& =\sum_{\ell=j}^{k+r}(-1)^{\ell+j}\binom{\ell}{j} \delta_{\ell j}\left(a_{\ell-r}(x) \tau\right)^{(\ell-j)} \\
& =a_{j-r} \tau \quad\left(a_{j}(x) \equiv 0 \text { if } j<0\right)
\end{aligned}
$$

since $\sum_{i=0}^{\ell-j}(-1)^{i}\binom{\ell-j}{i}=\delta_{\ell j}$.
$(3.4) \Rightarrow(3.3)$: The proof is similar as above.
Now we shall show (3.5). Since $\operatorname{deg}\left(b_{j+r}\right) \leqslant j+r$, there are constants $\left\{c_{k}^{j}\right\}_{k=0}^{j+r}$ such that $b_{j+r}(x)=$ $\sum_{k=0}^{j+r} c_{k}^{j} P_{k}(x)$ so that $b_{j+r, j+r}=c_{j+r}^{j}$. Then by applying (3.3) to $P_{j+r}(x)$, we have

$$
b_{j+r, j+r}=\frac{\left\langle\sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(a_{i-r} \tau\right)^{(i-j)}, P_{j+r}\right\rangle}{\left\langle\sigma, P_{j+r}^{2}\right\rangle}, \quad 0 \leqslant j \leqslant k+r .
$$

In particular,

$$
b_{r r}=\frac{\left\langle\tau, a_{0} P_{r}^{(r)}\right\rangle}{\left\langle\sigma, P_{r}^{2}\right\rangle}=\frac{r!a_{0}\langle\tau, 1\rangle}{\left\langle\sigma, P_{r}^{2}\right\rangle} \neq 0
$$

so that $\operatorname{deg}\left(b_{r}\right)=r$. Applying (3.4) to $P_{0}(x)=1$, we can obtain (3.5).
Now assume that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a WOPS relative to τ. Then by (3.7), $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS relative to τ if and only if $\left\langle\tau, Q_{n}^{2}\right\rangle=\left\langle\sigma,\left(\sum_{j=0}^{k+r} Q_{n}^{(j)} b_{j+r}\right) P_{n+r}\right\rangle \neq 0, n \geqslant 0$, which is equivalent to the condition (3.6).
In this case, (3.3) for $j=k+r$ implies that $b_{k+2 r}(x) \sigma=(-1)^{k+r} a_{k}(x) \tau \neq 0$. Thus $b_{k+2 r}(x) \neq 0$ since $a_{k}(x) \neq 0$ and τ is quasi-definite.

Set $j=r$ in (3.4). Then

$$
\begin{equation*}
a_{0} \tau=\sum_{i=r}^{k+r}(-1)^{i}\binom{i}{r}\left(b_{i+r} \sigma\right)^{(i-r)} . \tag{3.8}
\end{equation*}
$$

Hence, we may restate Theorem 3.1 as:

Theorem 3.2. The PS $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ defined by (3.1) is a WOPS if and only if there are $k+r+1$ polynomials $\left\{b_{i}(x)\right\}_{i=r}^{k+2 r}$ with $\operatorname{deg}\left(b_{i}\right) \leqslant i$, which are not all zero, satisfying

$$
\begin{align*}
& a_{0}(x) \sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(b_{i+r} \sigma\right)^{(i-j)} \\
& \quad= \begin{cases}0 & \text { if } 0 \leqslant j \leqslant r-1, \\
a_{j-r}(x) \sum_{i=r}^{k+r}(-1)^{i}\binom{i}{r}\left(b_{i+r} \sigma\right)^{(i-r)} & \text { if } r+1 \leqslant j \leqslant k+r .\end{cases} \tag{3.9}
\end{align*}
$$

In this case, $\operatorname{deg}\left(b_{r}\right)=r, b_{2 r}(x) \not \equiv 0$, and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a WOPS relative to

$$
\tau:=\frac{1}{a_{0}} \sum_{i=r}^{k+r}(-1)^{i}\binom{i}{r}\left(b_{i+r} \sigma\right)^{(i-r)} .
$$

Moreover, $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS if and only if $\left\{b_{i}(x)\right\}_{i=r}^{k+2 r}$ also satisfy the condition (3.6). In this case, we also have $b_{k+2 r}(x) \not \equiv 0$.

Proof. Assume that there are $k+r+1$ polynomials $\left\{b_{i}(x)\right\}_{i=r}^{k+2 r}$ with $\operatorname{deg}\left(b_{i}\right) \leqslant i$, which are not all zero, and (3.9) holds. Define τ by (3.8). Then (3.4) holds so that we only need to show $\tau \neq 0$. If $\tau=0$, then $\sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(b_{i+r} \sigma\right)^{(i-j)}=0,0 \leqslant j \leqslant k+r$. Then for $j=k+r,(-1)^{k+r}\left(b_{k+2 r} \sigma\right)=0$ so that $b_{k+2 r}(x)=0$. By induction on $j=k+r, k+r-1, \ldots, 0$, we can see $b_{i}(x)=0$, for $r \leqslant i \leqslant k+2 r$, which is a contradiction. The converse is trivial by Theorem 3.1.

Theorem 3.3. If the PS $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ defined by (3.1) is also an $O P S$, then there are nonzero constants $\lambda_{n}, n \geqslant r$, such that

$$
\begin{equation*}
M\left[Q_{n-r}(x)\right]=\lambda_{n} P_{n}(x), \quad n \geqslant r, \tag{3.10}
\end{equation*}
$$

where $M[\cdot]=\sum_{i=0}^{k+r} b_{i+r}(x) D^{i}$ and both $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ must be eigenfunctions of linear differential operators of order $2(k+r)$:

$$
\begin{equation*}
\operatorname{MLD}^{r}\left[P_{n}(x)\right]=\lambda_{n} P_{n}(x), \quad n \geqslant 0, \tag{3.11}
\end{equation*}
$$

where $\lambda_{n}=0,0 \leqslant n \leqslant r-1$ and

$$
\begin{equation*}
L D^{r} M\left[Q_{n}(x)\right]=\lambda_{n+r} Q_{n}(x), \quad n \geqslant 0 . \tag{3.12}
\end{equation*}
$$

Proof. Define a sequence of polynomials $\left\{\tilde{P}_{n}(x)\right\}_{n=0}^{\infty}$ by

$$
\tilde{P}_{n}(x)= \begin{cases}P_{n}(x), & 0 \leqslant n \leqslant r-1 \\ M\left[Q_{n-r}(x)\right]=\sum_{i=0}^{k+r} b_{i+r}(x) Q_{n-r}^{(i)}(x), & n \geqslant r\end{cases}
$$

Then $\operatorname{deg}\left(\tilde{P}_{n}\right)=n, n \geqslant 0$, by (3.6) so that $\left\{\tilde{P}_{n}(x)\right\}_{n=0}^{\infty}$ is a PS.
Now we shall show that $\left\{\tilde{P}_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS relative to σ. For $0 \leqslant m \leqslant n \leqslant r-1,\left\langle\sigma, \tilde{P}_{m} \tilde{P}_{n}\right\rangle=$ $\left\langle\sigma, P_{m} P_{n}\right\rangle=\left\langle\sigma, P_{n}^{2}\right\rangle \delta_{m n}$. For $0 \leqslant m \leqslant n$ and $n \geqslant r$,

$$
\begin{aligned}
\left\langle\sigma, \tilde{P}_{m} \tilde{P}_{n}\right\rangle & =\left\langle\sigma, \tilde{P}_{m} \sum_{i=0}^{k+r} b_{i+r} Q_{n-r}^{(i)}\right\rangle=\left\langle\sum_{i=0}^{k+r}(-1)^{i}\left(\tilde{P}_{m} b_{i+r} \sigma\right)^{(i)}, Q_{n-r}\right\rangle \\
& =\left\langle\sum_{i=0}^{k+r}(-1)^{i} \sum_{j=0}^{i}\binom{i}{j} \tilde{P}_{m}^{(j)}\left(b_{i+r} \sigma\right)^{(i-j)}, Q_{n-r}\right\rangle \\
& =\left\langle\sum_{j=0}^{k+r} \tilde{P}_{m}^{(j)} \sum_{i=j}^{k+r}(-1)^{i}\binom{i}{j}\left(b_{i+r} \sigma\right)^{(i-j)}, Q_{n-r}\right\rangle \\
& =\left\langle\tau,\left(\sum_{j=0}^{k+r} \tilde{P}_{m}^{(j)} a_{j-r}\right) Q_{n-r}\right\rangle \\
& =\left\langle\tau,\left(\sum_{j=r}^{k+r} \tilde{P}_{m}^{(j)} a_{j-r}\right) Q_{n-r}\right\rangle=\left\langle\tau,\left(\sum_{j=0}^{k} \tilde{P}_{m}^{(j+r)} a_{j}\right) Q_{n-r}\right\rangle= \begin{cases}0 & \text { if } m<n, \\
\text { nonzero } & \text { if } m=n\end{cases}
\end{aligned}
$$

since $\operatorname{deg}\left(\sum_{j=0}^{k} \tilde{P}_{m}^{(j+r)} a_{j}\right)=m-r$ by (3.2) and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS relative to τ.
Hence $\left\{\tilde{P}_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS relative to σ so that $\tilde{P}_{n}(x)=M\left[Q_{n-r}(x)\right]=\lambda_{n} P_{n}(x)$, for some $\lambda_{n} \neq 0$ for $n \geqslant r$. Now

$$
\operatorname{MLD}^{r}\left[P_{n}\right]=M L\left[P_{n}^{(r)}\right]=M\left[Q_{n-r}\right]=\tilde{P}_{n}=\lambda_{n} P_{n}, \quad n \geqslant r .
$$

For $0 \leqslant n \leqslant r-1, D^{r}\left[P_{n}\right]=0$ so that $\operatorname{MLD}^{r}\left[P_{n}\right]=0$. We also have

$$
\left.L D^{r} M\left[Q_{n}\right]=L D^{r}\left[\tilde{P}_{n+r}\right]=L D^{r}\left(\lambda_{n+r} P_{n+r}\right)=\lambda_{n+r} L\left[P_{n+r}^{(r}\right)\right]=\lambda_{n+r} Q_{n}, \quad n \geqslant 0 .
$$

Finally since $b_{k+2 r}(x) \not \equiv 0, M[\cdot]$ is of order $k+r$ and so $\operatorname{MLD}^{r}[\cdot]$ and $L D^{r} M[\cdot]$ are of order $2(k+r)$.

Krall and Sheffer proved Theorem 3.1 only for $r=0$ (see [14, Theorem 2.1]) and $r=1$ (see [14, Theorem 3.1]) and Theorem 3.4 only for $r=0$ (see [14, Theorem 2.3]), using the moments $\left\{\sigma_{n}\right\}_{n=0}^{\infty}$ and $\left\{\tau_{n}\right\}_{n=0}^{\infty}$ of σ and τ, respectively. They used the characterization of OPS' via their formal (cf. [13]) generating series

$$
G(x, t)=\sum_{n=0}^{\infty} P_{n}(x) t^{n}=\sum_{n=0}^{\infty} \phi_{n}(t) x^{n},
$$

where $\phi_{n}(t)$ is a power series in t starting from t^{n}. Their method seems to be too much complicated to be extended to the case $r \geqslant 2$.

It is well-known (cf. [4,5,9,23]) that an OPS $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a classical OPS if and only if $\left\{P_{n+r}^{(r)}(x)\right\}_{n=0}^{\infty}$ is also an OPS for some integer $r \geqslant 1$.
As a special case of Theorems 3.1, 3.2 and 3.4, we obtain:

Theorem 3.4. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be an OPS relative to σ and $r \geqslant 1$ an integer. Then, the following are all equivalent.
(i) $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a classical OPS.
(ii) $\left\{P_{n+r}^{(r)}(x)\right\}_{n=0}^{\infty}$ is a WOPS.
(iii) There are nonzero moment functional τ and $r+1$ polynomials $\left\{b_{k}(x)\right\}_{k=r}^{2 r}$ with $\operatorname{deg}\left(b_{k}\right) \leqslant k$ such that

$$
\begin{equation*}
(-1)^{r}\binom{r}{j} \tau^{(r-j)}=b_{j+r} \sigma, \quad 0 \leqslant j \leqslant r . \tag{3.13}
\end{equation*}
$$

(iv) There are $r+1$ polynomials $\left\{b_{k}(x)\right\}_{k=r}^{2 r}$ with $\operatorname{deg}\left(b_{k}\right) \leqslant k$ such that $\left\{b_{k}(x)\right\}_{k=r}^{2 r}$ are not all zero and

$$
\sum_{i=j}^{r}(-1)^{i}\binom{i}{j}\left(b_{i+r} \sigma\right)^{(i-j)}=0, \quad 0 \leqslant j \leqslant r-1 .
$$

Moreover, in this case, $\operatorname{deg}\left(b_{r}\right)=r, b_{2 r}(x) \neq 0$, and

$$
\begin{equation*}
\sum_{k=r}^{2 r} b_{k}(x) P_{n}^{(k)}(x)=\lambda_{n} P_{n}(x), \quad n \geqslant 0 \tag{3.14}
\end{equation*}
$$

for some constants λ_{n} with $\lambda_{0}=\lambda_{1}=\cdots=\lambda_{r-1}=0$ and

$$
\begin{equation*}
\sum_{i=0}^{r} \frac{(-1)^{i+r}\binom{r}{i}\left\langle\sigma, b_{2} r_{i+r}^{(r-i)}\right\rangle}{\left\langle\sigma, P_{i+r}^{2}\right\rangle} n_{(i)} \neq 0, \quad n \geqslant 0 . \tag{3.15}
\end{equation*}
$$

Proof. (i) \Rightarrow (ii): It is well known that for a classical OPS $\left\{P_{n}(x)\right\}_{n=0}^{\infty},\left\{P_{n+1}^{\prime}(x)\right\}_{n=0}^{\infty}$ is also a classical OPS.
(ii) \Rightarrow (i): See Theorems 3.2 and 3.3 in [19].
(ii) \Leftrightarrow (iii) \Leftrightarrow (iv): It is a special case of Theorems 3.1 and 3.2 when $k=0$ so that $L[\cdot]=$ $a_{0} \mathrm{Id}\left(\mathrm{Id}=\right.$ the identity operator) and $Q_{n}(x)=a_{0} P_{n+r}^{(r)}(x), n \geqslant 0$. In (iii), $\operatorname{deg}\left(b_{r}\right)=r$ and $b_{2 r}(x) \not \equiv 0$ by Theorem 3.1. Eq. (3.14) comes from Theorem 3.4 and (3.15) comes from (3.6), (3.7), and (3.13).

Equivalences of (i)-(iii) in Theorem 3.4 are first proved in [19]. Moreover, the condition (3.14) also implies that $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a classical OPS (see [19]).

4. Examples

As in Section 3, we always let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be the monic OPS relative to σ and write $a_{0}(x)=a_{00}=a_{0}$. If $k=r=0$, then $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$, where $Q_{n}(x)=a_{0} P_{n}(x), n \geqslant 0$, and $a_{0} \neq 0$, is also an OPS if and only if $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is an OPS.

4.1. $k=1$ and $r=0$

Let $L[\cdot]=a_{1}(x) D+a_{0}$, where $a_{1}(x)=a_{11} x+a_{10} \neq 0, a_{0} \neq 0$, and $a_{11} n+a_{0} \neq 0, n \geqslant 0$. Define a monic PS $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ by

$$
\left(a_{11} n+a_{0}\right) Q_{n}(x)=L\left[P_{n}(x)\right]=a_{1}(x) P_{n}^{\prime}(x)+a_{0}(x) P_{n}(x), \quad n \geqslant 0
$$

Then, $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is also a monic OPS (relative to $\left.\tau:=a_{0}^{-1}\left(\left(b_{1}(x) \sigma\right)^{\prime}-b_{0}(x) \sigma\right)\right)$ if and only if there are polynomials $b_{1}(x)=b_{11} x+b_{10}$ and $b_{0}(x)=b_{0}$ satisfying

$$
a_{0} b_{1} \sigma=a_{1}\left\{\left(b_{1} \sigma\right)^{\prime}-b_{0} \sigma\right\} \quad \text { and } \quad b_{11} n+b_{0} \neq 0, \quad n \geqslant 0 .
$$

Hence, if $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is also a monic OPS, then (3.11) and (3.14) become

$$
\begin{align*}
& M L\left[P_{n}\right]=\left(a_{1} b_{1}\right) P_{n}^{\prime \prime}+\left(a_{1}^{\prime} b_{1}+a_{0} b_{1}+a_{1} b_{0}\right) P_{n}^{\prime}+a_{0} b_{0} P_{n}=\lambda_{n} P_{n}, \tag{4.1}\\
& L M\left[Q_{n}\right]=\left(a_{1} b_{1}\right) Q_{n}^{\prime \prime}+\left(a_{1} b_{1}^{\prime}+a_{1} b_{0}+a_{0} b_{1}\right) Q_{n}^{\prime}+a_{0} b_{0} Q_{n}=\lambda_{n} Q_{n}
\end{align*}
$$

where $\lambda_{n}=\left(a_{11} n+a_{0}\right)\left(b_{11} n+b_{0}\right), n \geqslant 0$. Hence both $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ are classical OPS' of the same type. Note

$$
\begin{equation*}
a_{1}(x) b_{1}(x)=a_{11} b_{11} x^{2}+\left(a_{11} b_{10}+a_{10} b_{11}\right) x+a_{10} b_{10} \tag{4.2}
\end{equation*}
$$

Case 1: $\operatorname{deg}\left(a_{1} b_{1}\right)=0$. Then $a_{11} b_{11}=a_{11} b_{10}+a_{10} b_{11}=0$ so that $a_{11}=b_{11}=0$. Hence $M L[\cdot]=L M[\cdot]$ and so $P_{n}(x)=Q_{n}(x), n \geqslant 0$, and

$$
a_{1}(x) P_{n}^{\prime}(x)=a_{11} n P_{n}(x)=0, \quad n \geqslant 0 .
$$

Therefore, $a_{1}(x) \equiv 0$, which is a contradiction.
Case 2: $\operatorname{deg}\left(a_{1} b_{1}\right)=1$. Then we may assume $a_{1}(x)=1$ and $b_{1}(x)=x$ or $a_{1}(x)=x$ and $b_{1}(x)=1$.
Case 2.1: $a_{1}(x)=1$ and $b_{1}(x)=x$. Then for $n \geqslant 0$

$$
\begin{align*}
& M L\left[P_{n}(x)\right]=x P_{n}^{\prime \prime}(x)+\left(a_{0} x+b_{0}\right) P_{n}^{\prime}(x)+a_{0} b_{0} P_{n}(x)=\lambda_{n} P_{n}(x) \\
& L M\left[Q_{n}(x)\right]=x Q_{n}^{\prime \prime}(x)+\left(a_{0} x+b_{0}+1\right) Q_{n}^{\prime}(x)+a_{0} b_{0} Q_{n}(x)=\lambda_{n} Q_{n}(x) \tag{4.3}
\end{align*}
$$

We may also assume $a_{0}=-1$ and $b_{0}=\alpha+1(\alpha \neq-1,-2, \ldots)$ by a real linear change of variable. Then (4.3) becomes

$$
\begin{aligned}
& M L\left[P_{n}(x)\right]=x P_{n}^{\prime \prime}(x)+(\alpha+1-x) P_{n}^{\prime}(x)-(\alpha+1) P_{n}(x)=\lambda_{n} P_{n}(x) \\
& L M\left[Q_{n}(x)\right]=x Q_{n}^{\prime \prime}(x)+(\alpha+2-x) Q_{n}^{\prime}(x)-(\alpha+1) Q_{n}(x)=\lambda_{n} Q_{n}(x)
\end{aligned}
$$

Thus, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(\alpha+1)}(x)\right\}_{n=0}^{\infty}$, where $\left\{L_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ is the monic Laguerre polynomials. Hence, we have (see [22, (5.1.13)]):

$$
\begin{equation*}
L_{n}^{(\alpha+1)}(x)=L_{n}^{(\alpha)}(x)-n L_{n-1}^{(\alpha+1)}(x), \quad n \geqslant 0 \tag{4.4}
\end{equation*}
$$

since $\left(L_{n}^{(\alpha)}(x)\right)^{\prime}=n L_{n-1}^{(\alpha+1)}(x), n \geqslant 0$.

Case 2.2: $a_{1}(x)=x$ and $b_{1}(x)=1$. Then we may assume $a_{0}=\alpha(\alpha \neq 0,-1,-2, \ldots)$ and $b_{0}=-1$ so that (4.1) becomes

$$
\begin{aligned}
& M L\left[P_{n}(x)\right]=x P_{n}^{\prime \prime}(x)+(\alpha+1-x) P_{n}^{\prime}(x)-\alpha P_{n}(x)=\lambda_{n} P_{n}(x) \\
& L M\left[Q_{n}(x)\right]=x Q_{n}^{\prime \prime}(x)+(\alpha-x) Q_{n}^{\prime}(x)-\alpha Q_{n}(x)=\lambda_{n} Q_{n}(x)
\end{aligned}
$$

Thus, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(\alpha-1)}(x)\right\}_{n=0}^{\infty}$ so that we have (see [22, (5.1.14)]):

$$
\begin{equation*}
(n+\alpha) L_{n}^{(\alpha-1)}(x)=x\left(L_{n}^{(\alpha)}(x)\right)^{\prime}+\alpha L_{n}^{(\alpha)}(x), \quad n \geqslant 0 \tag{4.5}
\end{equation*}
$$

Case 3: $\operatorname{deg}\left(a_{1} b_{1}\right)=2$ and $\left(a_{1} b_{1}\right)(x)$ has a double root. Then from (4.2), $a_{11} b_{10}=a_{10} b_{11}$ so that $M L[\cdot]=L M[\cdot]$. Thus $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ and

$$
\left(a_{11} x+a_{10}\right) P_{n}^{\prime}(x)=a_{11} n P_{n}(x), \quad n \geqslant 0
$$

which is impossible (cf. Proposition 2.2).
Case 4: $\operatorname{deg}\left(a_{1} b_{1}\right)=2$ and $\left(a_{1} b_{1}\right)(x)$ has 2 distinct real roots. Then we may assume that $\left(a_{1} b_{1}\right)(x)=$ $1-x^{2}$ and $a_{1}(x)=1-x$ or $1+x$.

Case 4.1: $a_{1}(x)=1-x$ and $b_{1}(x)=1+x$. Then (4.1) becomes

$$
\begin{aligned}
& M L\left[P_{n}(x)\right]=\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)+\left(\left(a_{0}+b_{0}-1\right)-\left(b_{0}-a_{0}+1\right) x\right) P_{n}^{\prime}(x)+a_{0} b_{0} P_{n}(x)=\lambda_{n} P_{n}(x), \\
& L M\left[Q_{n}(x)\right]=\left(1-x^{2}\right) Q_{n}^{\prime \prime}(x)+\left(\left(a_{0}+b_{0}+1\right)-\left(b_{0}-a_{0}+1\right) x\right) Q_{n}^{\prime}(x)+a_{0} b_{0} Q_{n}(x)=\lambda_{n} Q_{n}(x) .
\end{aligned}
$$

We may also assume $a_{0}+b_{0}-1=\beta-\alpha$ and $b_{0}-a_{0}+1=\alpha+\beta+2(\alpha, \beta, \alpha+\beta+1 \neq-1,-2, \ldots$, and $\alpha \neq 0$). Then

$$
\begin{aligned}
& M L\left[P_{n}(x)\right]=\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)+(\beta-\alpha-(\alpha+\beta+2) x) P_{n}^{\prime}(x)-\alpha(\beta+1) P_{n}(x)=\lambda_{n} P_{n}(x), \\
& L M\left[Q_{n}(x)\right]=\left(1-x^{2}\right) Q_{n}^{\prime \prime}(x)+(\beta-\alpha+2-(\alpha+\beta+2) x) Q_{n}^{\prime}(x)-\alpha(\beta+1) Q_{n}(x)=\lambda_{n} Q_{n}(x)
\end{aligned}
$$

Therefore, we have

$$
\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(\alpha, \beta)}(x)\right\}_{n=0}^{\infty} \quad \text { and } \quad\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(\alpha-1, \beta+1)}(x)\right\}_{n=0}^{\infty}
$$

where $\left\{P_{n}^{(\alpha, \beta)}(x)\right\}_{n=0}^{\infty}$ is the monic Jacobi polynomials. Hence, we have $a_{1}(x)=1-x, a_{0}(x)=$ $-\alpha, b_{1}(x)=1+x, b_{0}(x)=\beta+1$ so that

$$
\begin{align*}
(n+\alpha) P_{n}^{(\alpha-1, \beta+1)}(x) & =(x-1)\left(P_{n}^{(\alpha, \beta)}(x)\right)^{\prime}+\alpha P_{n}^{(\alpha, \beta)}(x) \\
& =n(x-1) P_{n-1}^{(\alpha+1, \beta+1)}(x)+\alpha P_{n}^{(\alpha, \beta)}(x) \tag{4.6}
\end{align*}
$$

since $\left(P_{n}^{(\alpha, \beta)}(x)\right)^{\prime}=n P_{n-1}^{(\alpha+1, \beta+1)}(x), n \geqslant 0$.
Case 4.2: $a_{1}(x)=1+x, b_{1}(x)=1-x$. Then (4.1) becomes

$$
\begin{aligned}
& M L\left[P_{n}\right]=\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)+\left[\left(a_{0}+b_{0}+1\right)-\left(a_{0}-b_{0}+1\right) x\right] P_{n}^{\prime}(x)+a_{0} b_{0} P_{n}(x)=\lambda_{n} P_{n}(x), \\
& L M\left[Q_{n}\right]=\left(1-x^{2}\right) Q_{n}^{\prime \prime}(x)+\left[\left(a_{0}+b_{0}-1\right)-\left(a_{0}-b_{0}+1\right) x\right] Q_{n}^{\prime}(x)+a_{0} b_{0} Q_{n}(x)=\lambda_{n} Q_{n}(x)
\end{aligned}
$$

We may also assume $a_{0}+b_{0}+1=\beta-\alpha$ and $a_{0}-b_{0}+1=\alpha+\beta+2(\alpha, \beta, \alpha+\beta+1 \neq-1,-2, \ldots$, and $\beta \neq 0$). Then $a_{0}=\beta$ and $b_{0}=-\alpha-1$ so that

$$
\begin{aligned}
& M L\left[P_{n}\right]=\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)+[(\beta-\alpha)-(\alpha+\beta+2) x] P_{n}^{\prime}(x)-\beta(\alpha+1) P_{n}(x)=\lambda_{n} P_{n}(x), \\
& L M\left[Q_{n}\right]=\left(1-x^{2}\right) Q_{n}^{\prime \prime}(x)+[(\beta-\alpha-2)-(\alpha+\beta+2) x] Q_{n}^{\prime}(x)-\beta(\alpha+1) Q_{n}(x)=\lambda_{n} Q_{n}(x) .
\end{aligned}
$$

Therefore, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(\alpha, \beta)}(x)\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(\alpha+1, \beta-1)}\right\}_{n=0}^{\infty}$ so that we have

$$
\begin{align*}
(n+\beta) P_{n}^{(\alpha+1, \beta-1)}(x) & =(1+x)\left[P_{n}^{(\alpha, \beta)}(x)\right]^{\prime}+\beta P_{n}^{(\alpha, \beta)}(x) \\
& =n(1+x) P_{n-1}^{(\alpha+1, \beta+1)}(x)+\beta P_{n}^{(\alpha, \beta)}(x) . \tag{4.7}
\end{align*}
$$

We have shown that if $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is either Hermite and Bessel polynomials, then $\left\{a_{1}(x) P_{n}^{\prime}(x)+\right.$ $\left.a_{0} P_{n}(x)\right\}_{n=0}^{\infty}$ cannot be an OPS for any polynomials $a_{1}(x)$ and $a_{0}(x)$. This fact is closely related to the absence of Hermite or Bessel polynomials in Darboux transformations [3].

4.2. $k=1$ and $r=1$

Let $L[\cdot]=a_{1}(x) D+a_{0}$, where $a_{1}(x) \not \equiv 0$ and $a_{11} n+a_{0} \neq 0, n \geqslant 0$. Define a monic PS $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ by

$$
\begin{equation*}
(n+1)\left(a_{11} n+a_{0}\right) Q_{n}(x)=L\left[P_{n+1}^{\prime}\right]=a_{1} P_{n+1}^{\prime \prime}(x)+a_{0} P_{n+1}^{\prime}(x), \quad n \geqslant 0 . \tag{4.8}
\end{equation*}
$$

We assume that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a monic OPS. Then there are $b_{1}(x)=b_{11} x+b_{10}, b_{2}(x)=b_{22} x^{2}+b_{21} x+$ $b_{20}, b_{3}(x)=b_{33} x^{3}+b_{32} x^{2}+b_{31} x+b_{30}$, not all zero, satisfying

$$
\begin{align*}
& \left(b_{3}(x) \sigma\right)^{\prime \prime}-\left(b_{2}(x) \sigma\right)^{\prime}+b_{1}(x) \sigma=0, \\
& a_{0} b_{3}(x) \sigma=a_{1}(x)\left\{2\left(b_{3}(x) \sigma\right)^{\prime}-b_{2}(x) \sigma\right\} \tag{4.9}
\end{align*}
$$

and $b_{33} n(n-1)+b_{22} n+b_{11} \neq 0, n \geqslant 0$. Now (3.11) and (3.12) become

$$
\begin{align*}
\operatorname{MLD}\left[P_{n}\right] & =\left(b_{3} D^{2}+b_{2} D+b_{1}\right)\left(a_{1} D+a_{0}\right)\left[P_{n}^{\prime}\right] \\
& =a_{1} b_{3} P_{n}^{(4)}+\left(2 a_{1}^{\prime} b_{3}+a_{0} b_{3}+a_{1} b_{2}\right) P_{n}^{(3)}+\left(a_{1}^{\prime} b_{2}+a_{0} b_{2}+a_{1} b_{1}\right) P_{n}^{\prime \prime}+a_{0} b_{1} P_{n}^{\prime} \\
& =\lambda_{n} P_{n}, \tag{4.10}\\
\operatorname{LDM}\left[Q_{n}\right] & =\left(a_{1} D+a_{0}\right) D\left(b_{3} D^{2}+b_{2} D+b_{1}\right)\left[Q_{n}\right]=\lambda_{n+1} Q_{n} .
\end{align*}
$$

Therefore, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ must be either classical or classical-type OPS. Krall and Sheffer [14] considered this case only for $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(\alpha, \alpha)}(x)\right\}_{n=0}^{\infty}$ the Gegenbauer polynomials. In case $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a classical OPS, $\left\{P_{n+1}^{\prime}(x)\right\}_{n=0}^{\infty}$ is also a classical OPS so that Case 4.2 is reduced to Case 4.1. Hence, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ must be either Laguerre polynomials or Jacobi polynomials. We now claim that $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ cannot be a classical-type OPS. For example, assume that $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ is the Laguerre-type OPS which is orthogonal relative to $\sigma=$ $\left(\mathrm{e}^{-x} H(x)+(1 / R) \delta(x)\right) \mathrm{d} x$. Then, we may assume that $a_{1}(x) b_{3}(x)=x^{2}$ and $a_{1}(x)=1$ or x. If $a_{1}(x)=1$ and $b_{3}(x)=x^{2}$, then we obtain from (2.3) and (4.10)

$$
\begin{aligned}
& 2 a_{1}^{\prime}(x) b_{3}(x)+a_{0} b_{3}(x)+a_{1}(x) b_{2}(x)=4 x-2 x^{2}, \\
& a_{1}^{\prime}(x) b_{2}(x)+a_{0} b_{2}(x)+a_{1}(x) b_{1}(x)=x^{2}-(2 R+6) x, \\
& a_{0} b_{1}(x)=(2 R+2) x-2 R
\end{aligned}
$$

from which we have

$$
b_{3}(x)=x^{2}, \quad b_{2}(x)=-x^{2}+4 x, \quad b_{1}(x)=-2 x .
$$

Then, by (3.10), $P_{n}(0)=0, n \geqslant 1$, which is a contradiction. If $a_{1}(x)=x$ and $b_{3}(x)=x$, then we have similarly as above either (i) $a_{0}=2, R=0, b_{2}(x)=-2 x, b_{1}(x)=x$ or (ii) $a_{0}=-1, R=-\frac{3}{2}, b_{2}(x)=$ $-2 x+3, b_{1}(x)=x-3$. In case (i), $P_{n}(0)=0, n \geqslant 1$ by (3.10), which is a contradiction. In case (ii), we can see that $\left(b_{3} \sigma\right)^{\prime \prime}-\left(b_{2} \sigma\right)^{\prime}+b_{1} \sigma=2 \delta^{\prime}(x) \neq 0$, which contradicts to (4.9). By similar arguments, we can see that $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ can be neither a Legendre-type OPS nor a Jacobi-type OPS.
4.3. $k=2$ and $r=0$

Let $L[\cdot]=a_{2}(x) D^{2}+a_{1}(x) D+a_{0}$, where $a_{2}(x) \not \equiv 0$ and

$$
\begin{equation*}
\alpha_{n}:=a_{22} n(n-1)+a_{11} n+a_{0} \neq 0, \quad n \geqslant 0 \tag{4.11}
\end{equation*}
$$

Then, the monic PS $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ defined by

$$
\alpha_{n} Q_{n}(x)=L\left[P_{n}\right](x)=a_{2}(x) P_{n}^{\prime \prime}(x)+a_{1}(x) P_{n}^{\prime}(x)+a_{0} P_{n}(x), \quad n \geqslant 0
$$

is an OPS relative to $\tau\left(=a_{0}^{-1}\left\{\left(b_{2} \sigma\right)^{\prime \prime}-\left(b_{1} \sigma\right)^{\prime}+b_{0} \sigma\right\}\right)$ if and only if there exist $b_{0}, b_{1}(x), b_{2}(x)$ (not all zero) satisfying

$$
\begin{align*}
& a_{2}(x) \tau=b_{2}(x) \sigma \\
& 2\left(a_{2}(x) \tau\right)^{\prime}-a_{1}(x) \tau=b_{1}(x) \sigma \tag{4.12}\\
& \left(a_{2}(x) \tau\right)^{\prime \prime}-\left(a_{1}(x) \tau\right)^{\prime}+a_{0} \tau=b_{0} \sigma
\end{align*}
$$

and $b_{22} n(n-1)+b_{11} n+b_{0} \neq 0, n \geqslant 0$. In this case, $b_{0} \neq 0$ and $b_{2}(x) \neq 0$ and

$$
\begin{align*}
M L\left[P_{n}\right]= & \left(b_{2} D^{2}+b_{1} D+b_{0}\right)\left(a_{2} D^{2}+a_{1} D+a_{0}\right)\left[P_{n}\right] \\
= & a_{2} b_{2} P_{n}^{(4)}+\left(2 a_{2}^{\prime} b_{2}+a_{1} b_{2}+a_{2} b_{1}\right) P_{n}^{(3)} \\
& +\left(a_{2}^{\prime \prime} b_{2}+2 a_{1}^{\prime} b_{2}+a_{0} b_{2}+a_{2}^{\prime} b_{1}+a_{1} b_{1}+a_{2} b_{0}\right) P_{n}^{\prime \prime} \tag{4.13}\\
& +\left(a_{1}^{\prime} b_{1}+a_{0} b_{1}+a_{1} b_{0}\right) P_{n}^{\prime}+a_{0} b_{0} P_{n}=\lambda_{n} P_{n}, \\
L M\left[Q_{n}\right]= & \left(a_{2} D^{2}+a_{1} D+a_{0}\right)\left(b_{2} D^{2}+b_{1} D+b_{0}\right)\left[Q_{n}\right]=\lambda_{n} Q_{n} .
\end{align*}
$$

Hence, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ and $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ must be either classical or classical-type OPS. We first consider the case when $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a classical-type OPS.

Case 1: $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ the Laguerre-type OPS. Then, $a_{2}(x) b_{2}(x)=x^{2}$ so that $a_{2}(x)=$ $1, x, x^{2}$.

Case 1.1: $a_{2}(x)=1$ or $a_{2}(x)=x^{2}$. If $a_{2}(x)=1$, then $b_{2}(x)=x^{2}$ and from (2.3) and (4.13), we obtain

$$
\begin{aligned}
& a_{1}(x) x^{2}+b_{1}(x)=4 x-2 x^{2}, \\
& 2 a_{1}^{\prime}(x) x^{2}+a_{0} x^{2}+a_{1}(x) b_{1}(x)+b_{0}=x^{2}-(2 R+6) x, \\
& a_{1}^{\prime}(x) b_{1}(x)+a_{0} b_{1}(x)+a_{1}(x) b_{0}=(2 R+2) x-2 R,
\end{aligned}
$$

from which we have

$$
a_{1}(x)=-2, \quad a_{0}=1, \quad b_{1}(x)=4 x, \quad b_{0}=0
$$

It is a contradiction since $b_{0} \neq 0$. If $a_{2}(x)=x^{2}$, then $b_{2}(x)=1$ and $R=-1$, which is also a contradiction.

Case 1.2: $a_{2}(x)=x$. Then $b_{2}(x)=x$ and (4.12) becomes

$$
\begin{align*}
& x \tau=x \sigma, \\
& 2(x \tau)^{\prime}-a_{1}(x) \tau=b_{1}(x) \sigma, \tag{4.14}\\
& (x \tau)^{\prime \prime}-\left(a_{1}(x) \tau\right)^{\prime}-a_{0}(x) \tau=b_{0}(x) \sigma .
\end{align*}
$$

Since $\sigma=\left(\mathrm{e}^{-x} H(x)+(1 / R) \delta(x)\right) \mathrm{d} x$,

$$
\begin{equation*}
(x \tau)^{\prime}=(x \sigma)^{\prime}=(1-x) \sigma \quad \text { and } \quad \sigma^{\prime}=-\sigma+\delta(x) . \tag{4.15}
\end{equation*}
$$

Applying (4.15) to (4.14), we obtain $\tau=\mathrm{e}^{-x} H(x) \mathrm{d} x$ and

$$
a_{1}(x)=-x+2, a_{0}(x)=-R-1 \quad \text { and } \quad b_{1}(x)=-x, b_{0}(x)=-R .
$$

Hence, $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(0)}(x)\right\}_{n=0}^{\infty}$ and

$$
\begin{align*}
& (-n-R-1) L_{n}^{(0)}(x)=x R_{n}^{\prime \prime}(x)+(2-x) R_{n}^{\prime}(x)-(R+1) R_{n}(x), \tag{4.16}\\
& (-n-R) R_{n}(x)=x L_{n}^{(0)}(x)^{\prime \prime}-x L_{n}^{(0)}(x)^{\prime}-R R_{n}(x) . \tag{4.17}
\end{align*}
$$

Case 2: $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ the Legendre-type OPS. Then $a_{2}(x) b_{2}(x)=\left(x^{2}-1\right)^{2}$ so that $a_{2}(x)=x^{2}-1,(x+1)^{2},(x-1)^{2}$. If $a_{2}(x)=(x+1)^{2}$ or $a_{2}(x)=(x-1)^{2}$, then by the same arguments as in Case 1.1, we can derive a contradiction.

Case 2.1: $a_{2}(x)=x^{2}-1$. Then $b_{2}(x)=x^{2}-1$ and (4.12) becomes

$$
\begin{align*}
& \left(x^{2}-1\right) \tau=\left(x^{2}-1\right) \sigma, \\
& 2\left(\left(x^{2}-1\right) \tau\right)^{\prime}-a_{1}(x) \tau=b_{1}(x) \sigma, \tag{4.18}\\
& \left(\left(x^{2}-1\right) \tau\right)^{\prime \prime}-\left(a_{1}(x) \tau\right)^{\prime}-a_{0}(x) \tau=b_{0}(x) \sigma .
\end{align*}
$$

Since $\sigma=\sigma_{L}+(1 / \alpha)(\delta(x-1)+\delta(x+1))$, where $\sigma_{L}=H\left(1-x^{2}\right) \mathrm{d} x$ is the Legendre moment functional, we have

$$
\left(\left(x^{2}-1\right) \tau\right)^{\prime}=\left(\left(x^{2}-1\right) \sigma\right)^{\prime}=2 x \sigma_{L} \quad \text { and } \quad \sigma_{L}^{\prime}=\delta(x+1)-\delta(x-1) .
$$

Applying these to (4.18) gives $\tau=\sigma_{L}$ and

$$
a_{1}=4 x, a_{0}=2 \alpha+2 \quad \text { and } \quad b_{1}=0, b_{0}=2 \alpha .
$$

Hence $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(0,0)}(x)\right\}_{n=0}^{\infty}$ and

$$
\begin{align*}
& (n(n-1)+4 n+2 \alpha+2) P_{n}^{(0,0)}(x)=\left(x^{2}-1\right) P_{n}^{(\alpha)}(x)^{\prime \prime}+4 x P_{n}^{(\alpha)}(x)^{\prime}+(2 \alpha+2) P_{n}^{(\alpha)}, \tag{4.19}\\
& (n(n-1)+2 \alpha) P_{n}^{(\alpha)}(x)=\left(x^{2}-1\right) P_{n}^{(0,0)}(x)^{\prime \prime}+2 \alpha P_{n}^{(0,0)}(x) . \tag{4.20}
\end{align*}
$$

Case 3: $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{S_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ the Jacobi-type OPS. Then $\left(a_{2} b_{2}\right)(x)=\left(x^{2}-x\right)^{2}$ and so that $a_{2}(x)=x^{2}-x, x^{2},(x-1)^{2}$. Recall that $\left\{S_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ is orthogonal relative to

$$
\begin{equation*}
\sigma=\sigma_{\alpha}+\frac{1}{M} \delta(x), \tag{4.21}
\end{equation*}
$$

where $\sigma_{\alpha}=(1-x)_{+}^{\alpha} H(x) \mathrm{d} x$ is a classical moment functional satisfying the moment equation

$$
\begin{equation*}
\left(x^{2}-x\right) \sigma_{\alpha}^{\prime}=\alpha x \sigma_{\alpha}, \quad \alpha \neq-1,-2, \ldots . \tag{4.22}
\end{equation*}
$$

Since $\left\langle\sigma_{\alpha}, 1\right\rangle=1 /(\alpha+1)$, we obtain from (4.22),

$$
\begin{equation*}
\left((x-1) \sigma_{\alpha}\right)^{\prime}=(\alpha+1) \sigma_{\alpha}-\delta(x) \tag{4.23}
\end{equation*}
$$

Case 3.1: $a_{2}(x)=x^{2}-x$ and $b_{2}(x)=x^{2}-x$. Then (4.12) becomes

$$
\begin{align*}
& \left(x^{2}-x\right) \tau=\left(x^{2}-x\right) \sigma \tag{4.24}\\
& 2\left(\left(x^{2}-x\right) \tau\right)^{\prime}-a_{1}(x) \tau=b_{1}(x) \sigma, \tag{4.25}\\
& \left(\left(x^{2}-x\right) \tau\right)^{\prime \prime}-\left(a_{1}(x) \tau\right)^{\prime}+a_{0} \tau=b_{0} \sigma \tag{4.26}
\end{align*}
$$

From (4.21) and (4.24), we have

$$
\begin{equation*}
\tau=\sigma_{\alpha}+\lambda \delta(x)+\mu \delta(x-1) \tag{4.27}
\end{equation*}
$$

for some constants λ and μ. By (4.22) and (4.27), (4.25) becomes

$$
\left((2 \alpha+4) x-2-a_{1}(x)-b_{1}(x)\right) \sigma_{\alpha}=\left(\lambda a_{1}(0)+\frac{1}{M} b_{1}(0)\right) \delta(x)+\mu a_{1}(1) \delta(x-1)
$$

Hence $\mu a_{1}(1)=0, a_{1}(x)+b_{1}(x)=(2 \alpha+4) x-2$, and

$$
\begin{equation*}
\lambda a_{1}(0)=-\frac{1}{M} b_{1}(0) \tag{4.28}
\end{equation*}
$$

Multiply (4.26) by $\left(x^{2}-x\right)$ and apply (4.22). Then we have

$$
\left(\alpha+2+a_{0}-a_{1}^{\prime}(x)-b_{0}\right)(x-1)=\alpha\left((\alpha+2) x-a_{1}(x)-1\right)
$$

and $\lambda a_{1}(0)=0$. Thus from (4.28), $b_{1}(0)=0$ and so $a_{1}(x)=A x-2, b_{1}(x)=(2 \alpha+4-A) x$ for some constant A so that $\lambda=0$ since $a_{1}(0)=-2$. There are two cases: $\alpha=0$ or $A=\alpha+3$.

Case 3.11: $A=\alpha+3$. Then $a_{1}(x)=(\alpha+3) x-2, b_{1}(x)=(\alpha+1) x$ and $\mu=0$. Thus $\tau=\sigma_{\alpha}$ and (4.26) becomes

$$
\begin{equation*}
\left((1-x) \sigma_{\alpha}\right)^{\prime}=\left(b_{0}-a_{0}\right) \sigma_{\alpha}+\frac{1}{M} b_{0} \delta(x) \tag{4.29}
\end{equation*}
$$

From (4.23) and (4.29), we obtain $a_{0}(x)=\alpha+M+1$ and $b_{0}(x)=M$. Hence, we have

$$
\begin{align*}
& \left(n^{2}+2 n+\alpha n+\alpha+M+1\right) Q_{n}(x) \\
& \quad=\left(x^{2}-x\right) S_{n}^{(\alpha)}(x)^{\prime \prime}+((\alpha+3) x-2) S_{n}^{(\alpha)}(x)^{\prime}+(\alpha+M+1) S_{n}^{(\alpha)}(x) \tag{4.30}\\
& \left(n^{2}+\alpha n+M\right) S_{n}^{(\alpha)}(x)=\left(x^{2}-x\right) Q_{n}(x)^{\prime \prime}+(\alpha+1) Q_{n}(x)^{\prime}+M Q_{n}(x) \tag{4.31}
\end{align*}
$$

Note that $Q_{n}(x)=(-2)^{-n} P_{n}^{(0, \alpha)}(1-2 x), n \geqslant 0$.
Case 3.12: $\alpha=0$. Then $\tau=\sigma_{\alpha}+\mu \delta(x-1), a_{1}(x)=A x-2$, and $b_{1}(x)=(4-A) x$. Since $\sigma_{\alpha}=$ $H(x) H(1-x) \mathrm{d} x, \sigma_{\alpha}^{\prime}=\delta(x)-\delta(x-1)$ so that we obtain from (4.26)

$$
b_{0} \sigma_{\alpha}+\frac{1}{M} b_{0} \delta(x)=\left(a_{0}-A+2\right) \sigma_{\alpha}+\delta(x)+\left(a_{0} \mu-3+A\right) \delta(x-1)
$$

Thus, $b_{0}=M, a_{0}=b_{0}+A-2$, and $A=-a_{0} \mu+3$. If $\mu=0$, then $A=3, a_{1}(x)=3 x-2, a_{0}=M+1, b_{1}(x)=x$, and $b_{0}=M$ so that it becomes the Case 3.11 with $\alpha=0$. If $\mu \neq 0$, then we have $A=2$ so that $\mu=1 / M, a_{1}(x)=2(x-1), b_{1}(x)=2 x, a_{0}=b_{0}=M$, and

$$
\tau=\left(H(x) H(1-x)+\frac{1}{M} \delta(x)\right) \mathrm{d} x .
$$

Hence

$$
\begin{align*}
& \left(n^{2}+n+M\right) Q_{n}(x)=\left(x^{2}-x\right) P_{n}^{\prime \prime}(x)+2(x-1) P_{n}^{\prime}(x)+M P_{n}(x) \tag{4.32}\\
& \left(n^{2}+n+M\right) P_{n}(x)=\left(x^{2}-x\right) Q_{n}^{\prime \prime}(x)+2 x Q_{n}^{\prime}(x)+M Q_{n}(x) \tag{4.33}
\end{align*}
$$

Note that $Q_{n}(x)=(-1)^{n} S_{n}^{(0)}(1-x), n \geqslant 0$, are also Jacobi-type polynomials.
Case 3.2: $a_{2}(x)=x^{2}$ or $a_{2}(x)=(x-1)^{2}$. Then by the same argument as in Case 1.1 , we have if $a_{2}(x)=x^{2}$, then $a_{1}(x)=0, a_{0}(x)=-2$ and if $a_{2}(x)=(x-1)^{2}$, then $a_{0}(x)=0$ and $M=0$. Hence, these contradict our assumptions that $\alpha_{2} \neq 0$ in (4.11) and $M \neq 0$.

We now consider the case when $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a classical OPS. If $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ satisfy the differential equation (2.2), then the differential operator $M L[\cdot]$ in (4.13) must be a linear combination of $I, \mathscr{L}, \mathscr{L}^{2}$ (see [20, Proposition 1]), where I is the identity operator.

Krall and Sheffer [14] considered this case only for $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(0)}(x)\right\}_{n=0}^{\infty}$ or $\left\{P_{n}^{(\alpha, \beta)}(x)\right\}_{n=0}^{\infty}$ through the factorization of fourth order differential equations satisfied by $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ into the product of two second order differential equations. Instead, we use moment functional relations (4.12), which is much easier to handle.

Case 4: $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{H_{n}(x)\right\}_{n=0}^{\infty}$ the Hermite polynomials. Then we may assume $a_{2}(x)=b_{2}(x)=1$. Hence $\tau=\sigma$ by (4.12) so that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{H_{n}(x)\right\}_{n=0}^{\infty}$.

Case 5: $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ the Laguerre polynomials. Then we may assume $a_{2}(x) b_{2}(x)=x^{2}$ so that $a_{2}(x)=x^{2}, x, 1$.

Case 5.1: $a_{2}(x)=x^{2}$. Then $b_{2}(x)=1$ and (4.12) becomes

$$
\begin{align*}
& x^{2} \tau=\sigma, \\
& 2\left(x^{2} \tau\right)^{\prime}-a_{1}(x) \tau=b_{1}(x) \sigma, \tag{4.34}\\
& \left(x^{2} \tau\right)^{\prime \prime}-\left(a_{1}(x) \tau\right)^{\prime}+a_{0} \tau=b_{0} \sigma .
\end{align*}
$$

Multiplying the second equation in (4.34) by x^{2} and using $(x \sigma)^{\prime}=(\alpha+1-x) \sigma$, we have $a_{1}(x)=2 \alpha x$ and $b_{1}(x)=-2$. Similarly from the third equation in (4.34), we have $a_{0}=\alpha^{2}-\alpha$ and $b_{0}=1$ so that $\alpha \neq 0,1$. Since $\sigma=x_{+}^{\alpha} \mathrm{e}^{-x} \mathrm{~d} x$,

$$
\tau=a_{0}^{-1}\left\{\left(b_{2} \sigma\right)^{\prime \prime}-\left(b_{1} \sigma\right)^{\prime}+b_{0} \sigma\right\}=x_{+}^{\alpha-2} \mathrm{e}^{-x} \mathrm{~d} x \quad(\alpha \neq 1,0,-1, \ldots)
$$

so that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(\alpha-2)}(x)\right\}_{n=0}^{\infty}$ and

$$
\begin{align*}
& \left(n(n-1)+2 \alpha n+\alpha^{2}-\alpha\right) L_{n}^{(\alpha-2)}(x)=x^{2} L_{n}^{(\alpha)}(x)^{\prime \prime}+2 \alpha x L_{n}^{(\alpha)}(x)^{\prime}+\left(\alpha^{2}-\alpha\right) L_{n}^{(\alpha)}(x), \tag{4.35}\\
& L_{n}^{(\alpha)}(x)=L_{n}^{(\alpha-2)}(x)^{\prime \prime}-2 L_{n}^{(\alpha-2)}(x)^{\prime}+L_{n}^{(\alpha-2)}(x) \tag{4.36}
\end{align*}
$$

Case 5.2: $a_{2}(x)=x$. Then $b_{2}(x)=x$ and (4.12) becomes

$$
\begin{aligned}
& x \tau=x \sigma \\
& 2(x \tau)^{\prime}-a_{1}(x) \tau=b_{1}(x) \sigma, \\
& (x \tau)^{\prime \prime}-\left(a_{1}(x) \tau\right)^{\prime}+a_{0} \tau=b_{0} \sigma
\end{aligned}
$$

so that $\tau=\sigma+\lambda \delta(x)$ for some constant λ. If $\lambda=0$, then $\tau=\sigma$ so that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$. If $\lambda \neq 0$, then we have $a_{1}(x)=-x, b_{1}(x)=-x+2, b_{0}=a_{0}-1$, and $\alpha=0$. Then $\tau=\sigma-\left(1 / a_{0}\right) \delta(x)$ so that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is the Laguerre-type OPS $\left\{R_{n}(x)\right\}_{n=0}^{\infty}$ with $R=-a_{0} \neq 0,-1,-2, \ldots$.

Case 5.3: $a_{2}(x)=1$. Then $b_{2}(x)=x^{2}$ and $\tau=x^{2} \sigma=x_{+}^{\alpha+2} \mathrm{e}^{-x} \mathrm{~d} x$ so that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{L_{n}^{(\alpha+2)}(x)\right\}_{n=0}^{\infty}$.

Case 6: $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{B_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$ the Bessel polynomials. Then we may assume that $a_{2}(x) b_{2}(x)=x^{4}$ so that $a_{2}(x)=x^{2}$ and $b_{2}(x)=x^{2}$ and (4.12) becomes

$$
\begin{aligned}
& x^{2} \tau=x^{2} \sigma \\
& 2\left(x^{2} \tau\right)^{\prime}-a_{1}(x) \tau=b_{1}(x) \sigma, \\
& \left(x^{2} \tau\right)^{\prime \prime}-\left(a_{1}(x) \tau\right)^{\prime}+a_{0} \tau=b_{0} \sigma .
\end{aligned}
$$

Hence $\tau=\sigma+\lambda \delta(x)+\mu \delta^{\prime}(x)$ for some constants λ and μ. In this case, by the same arguments as in Case 5 using $\left(x^{2} \sigma\right)^{\prime}=(\alpha x+2) \sigma$, we can obtain

$$
a_{1}(x)=b_{1}(x)=\alpha x+2, \quad a_{0}=b_{0} \quad \text { and } \quad \lambda=\mu=0
$$

so that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{B_{n}^{(\alpha)}(x)\right\}_{n=0}^{\infty}$.
Case 7: $\left\{P_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(\alpha, \beta)}(x)\right\}_{n=0}^{\infty}$ the Jacobi polynomials. Then we may assume $a_{2}(x) b_{2}(x)=$ $\left(1-x^{2}\right)^{2}$ so that $a_{2}(x)=(1-x)^{2},(1+x)^{2}, 1-x^{2}$.

Case 7.1: $a_{2}(x)=(1-x)^{2}$. Then $b_{2}(x)=(1+x)^{2}$ and (4.12) becomes

$$
\begin{align*}
& (1-x)^{2} \tau=(1+x)^{2} \sigma, \\
& 2\left((1-x)^{2} \tau\right)^{\prime}-a_{1}(x) \tau=b_{1}(x) \sigma, \tag{4.37}\\
& \left((1-x)^{2} \tau\right)^{\prime \prime}-\left(a_{1}(x) \tau\right)^{\prime}+a_{0} \tau=b_{0} \sigma .
\end{align*}
$$

Then using $\left(\left(1-x^{2}\right) \sigma\right)^{\prime}=(\beta-\alpha-(\alpha+\beta+2) x) \sigma$, we can easily obtain from (4.37) $a_{1}(x)=2 \alpha(x-$ 1), $b_{1}(x)=(2 \beta+4)(x+1), a_{0}=\alpha(\alpha-1), b_{0}=(\beta+2)(\beta+1)$ so that $\alpha \neq 0$, Since $\sigma=(1-x)_{+}^{\alpha}(1+x)_{+}^{\beta} \mathrm{d} x$,

$$
\tau=a_{0}^{-1}\left\{\left(b_{2} \sigma\right)^{\prime \prime}-\left(b_{1} \sigma\right)^{\prime}+b_{0} \sigma\right\}=(1-x)_{+}^{\alpha-2}(1+x)_{+}^{\beta+2} \mathrm{~d} x
$$

so that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(\alpha-2, \beta+2)}(x)\right\}_{n=0}^{\infty}$ and

$$
\begin{align*}
& (n(n-1)+2 \alpha n+\alpha(\alpha-1)) P_{n}^{(\alpha-2, \beta+2)}(x) \\
& \quad=(x-1)^{2} P_{n}^{(\alpha, \beta)}(x)^{\prime \prime} 1+2 \alpha(x-1) P_{n}^{(\alpha, \beta)}(x)^{\prime}+\alpha(\alpha-1) P_{n}^{(\alpha, \beta)}(x), \tag{4.38}\\
& (n(n-1)+(2 \beta+4) n+(\beta+2)(\beta+1)) P_{n}^{\alpha, \beta)}(x) \\
& \quad=(x+1)^{2} P_{n}^{(\alpha-2, \beta+2)}(x)^{\prime \prime}+(2 \beta+4)(x+1) P_{n}^{(\alpha-2, \beta+2)}(x)^{\prime} \\
& \quad+(\beta+2)(\beta+1) P_{n}^{(\alpha-2, \beta+2)}(x) . \tag{4.39}
\end{align*}
$$

Case 7.2: $a_{2}(x)=(1+x)^{2}$. This case is reduced to Case 7.1 by replacing x by $-x$.
Case $7.3 a_{2}(x)=1-x^{2}$. Then $b_{2}(x)=1-x^{2}$ and (4.12) becomes

$$
\begin{align*}
& \left(1-x^{2}\right) \tau=\left(1-x^{2}\right) \sigma, \\
& 2\left(\left(1-x^{2}\right) \tau\right)^{\prime}-a_{1}(x) \tau=b_{1}(x) \sigma, \tag{4.40}\\
& \left(\left(1-x^{2}\right) \tau\right)^{\prime \prime}-\left(a_{1}(x) \tau\right)^{\prime}+a_{0} \tau=b_{0} \sigma .
\end{align*}
$$

Then we have for some constants λ and μ

$$
\begin{aligned}
& \tau=\sigma+\lambda \delta(x-1)+\mu \delta(x+1), \\
& b_{1}(x)=2(\beta-\alpha-(\alpha+\beta+2) x)-a_{1}(x), \\
& \lambda\left(a_{11}+a_{10}\right)=\mu\left(a_{11}-a_{10}\right)=0 .
\end{aligned}
$$

Case 7.3.1: $\lambda=\mu=0$. Then $\tau=\sigma$ so that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{(\alpha, \beta)}(x)\right\}_{n=0}^{\infty}$.

Case 7.3.2: $a_{11}+a_{10}=a_{11}-a_{10}=0$, that is $a_{1}(x)=0$. Then

$$
\alpha=\beta=0, \quad b_{1}(x)=-4 x, \quad b_{0}=a_{0}-2
$$

so that $\sigma=H(1-x) H(1+x) \mathrm{d} x$ and

$$
\tau=a_{0}^{-1}\left\{\left(b_{2} \sigma\right)^{\prime \prime}-\left(b_{1} \sigma\right)^{\prime}+b_{0} \sigma\right\}=\sigma-\frac{2}{a_{0}}(\delta(x+1)+\delta(x-1))
$$

Hence, $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{P_{n}^{\left(-a_{0} / 2\right)}(x)\right\}_{n=0}^{\infty}$ is the Legendre-type OPS.
Case 7.3.3: $\lambda=0$ and $a_{11}-a_{10}=0$. Then $\tau=\sigma+\mu \delta(x+1)$ and (4.40) gives

$$
a_{1}(x)=-(\alpha+1)(x+1), \quad b_{1}(x)=-(\alpha+3) x-\alpha+1, \quad b_{0}=a_{0}-\alpha-1
$$

and $\beta=0, \mu=-2^{\alpha+1} a_{0}^{-1}$ since $\sigma=H(x+1)(1-x)_{+}^{\alpha} \mathrm{d} x$. Hence $\tau=\sigma-2^{\alpha+1} a_{0}^{-1} \delta(x+1)\left(a_{0} \neq\right.$ $n(n+\alpha), n \geqslant 0)$ and so $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is the Jacobi-type OPS satisfying

$$
\begin{aligned}
L M[y]= & \left(x^{2}-1\right)^{2} y^{(i v)}+2\left(x^{2}-1\right)((\alpha+4) x+\alpha) y^{\prime \prime}+(x+1)\left\{\left(\alpha^{2}+9 \alpha-\right.\right. \\
& \left.\left.-2 a_{0}+14\right) x+\alpha^{2}-3 \alpha+2 a_{0}-10\right\} y^{\prime \prime}-2\left\{(\alpha+2)\left(a_{0}-\alpha-1\right) x\right. \\
& \left.-\alpha^{2}-3 \alpha+a_{0} \alpha-2\right\} y^{\prime}+a_{0}\left(a_{0}-\alpha-1\right) y=\lambda_{n} y .
\end{aligned}
$$

In fact, $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}=\left\{2^{n} S_{n}^{(\alpha)}((x+1) / 2)\right\}_{n=0}^{\infty}\left(M=-\alpha_{0}\right)$ and

$$
\begin{align*}
&\left(n^{2}+\alpha n-a_{0}\right) Q_{n}(x)=\left(x^{2}-1\right) P_{n}^{(\alpha, 0)}(x)^{\prime \prime}+(\alpha+1)(x+1) P_{n}^{(\alpha, 0)}(x)^{\prime}-a_{0} P_{n}^{(\alpha, 0)}(x) \tag{4.41}\\
&\left(n^{2}+\alpha n+2 n+\alpha-a_{0}+1\right) P_{n}^{(\alpha, 0)}(x)=\left(x^{2}-1\right) Q_{n}^{\prime \prime}(x)+((\alpha+3) x+\alpha-1) Q_{n}^{\prime}(x) \\
&+\left(\alpha-a_{0}+1\right) Q_{n}(x) \tag{4.42}
\end{align*}
$$

Case 7.3.4: $\mu=0$ and $a_{11}+a_{10}=0$. This case is reduced to Case 7.3 .3 by replacing x by $-x$.

Acknowledgements

This work is partially supported by Korea Ministry of Education (BSRI-1998-015-D00028) and KOSEF(98-0701-03-01-5).

References

[1] S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929) 730-736.
[2] T.S. Chihara An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[3] F. Grünbaum, L. Haine, Orthogonal polynomials satisfying differential equations: the role of the Darboux transformation, in: D. Levi, L. Vinet, P. Winternitz (Eds.), Symmetries and Integrability of Differential Equations, Vol. 9, CRM Proceedings Lecture Notes, Amer. Math. Soc., Providence, RI, 1996, pp. 143-154.
[4] W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Z. 39 (1935) 638-643.
[5] W. Hahn, Über höhere Ableitungen von Orthogonal Polynomen, Math. Z. 43 (1937) 101.
[6] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, New York, 1983.
[7] A.M. Krall, Orthogonal polynomials satisfying fourth order differential equations, Proc. Roy. Soc. Edin. 87(A) (1981) 271-288.
[8] H.L. Krall, On derivatives of orthogonal polynomials, Bull AMS 42 (1936) 423-428.
[9] H.L. Krall, On higher derivatives of orthogonal polynomials, Duke Math. J. 42 (1936) 867-870.
[10] H.L. Krall, Certain differential equations for Tchebycheff polynomials, Duke Math. J. 4 (1938) 705-718.
[11] H.L. Krall, On Orthogonal Polynomials Satisfying a Certain Fourth Order Differential Equation, The Penn. State College Studies, Vol. 6, The Penn. State College, PA, 1940.
[12] H.L. Krall, O. Frink, A new class of orthogonal polynomials: the Bessel polynomials, Trans. Amer. Math. Soc. 65 (1949) 100-115.
[13] H.L. Krall, I.M. Sheffer, A characterization of orthogonal polynomials, J. Math. Anal. Appl. 8 (1964) 232-244.
[14] H.L. Krall, I.M. Sheffer, On pairs of related orthogonal polynomial sets, Math. Z. 86 (1965) 425-450.
[15] K.H. Kwon, S.S. Kim, S.S. Han, Orthogonalizing weights of Tchebychev sets of polynomials, Bull. London Math. Soc. 24 (1992) 361-367.
[16] K.H. Kwon, J.K. Lee, B.H. Yoo, Characterizations of classical orthogonal polynomials, Result in Math. 24 (1993) 119-128.
[17] K.H. Kwon, L.L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997) 973-1008.
[18] K.H. Kwon, L.L. Littlejohn, B.H. Yoo, Characterizations of orthogonal polynomials satisfying differential equations, SIAM J. Math. Anal. 25 (1994) 976-990.
[19] K.H. Kwon, L.L. Littlejohn, B.H. Yoo, New characterizations of classical orthogonal polynomials, Indag. Math. N. S. 7 (1996) 199-213.
[20] K.H. Kwon, B.H. Yoo, G.J. Yoon, A characterization of Hermite polynomials, J. Comput. Appl. Math. 78 (1997) 295-299.
[21] L.L. Littlejohn, On the classification of differential equations having orthogonal polynomial solutions, Ann. Mat. Pura Appl. 138 (1984) 35-53.
[22] G. Szegö, Orthogonal Polynomials, 4th Edition, Vol. 23, Amer. Math. Soc. Colloq. Publ., Providence, RI, 1975.
[23] M.S. Webster, Orthogonal polynomials with orthogonal derivatives, Bull AMS. 44 (1938) 880-887.

[^0]: * Corresponding author. Fax: $+42-869-2710$.

 E-mail address: khkwon@jacobi.kaist.ac.kr (K.H. Kwon)

