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A NEW APPROACH TO q-GENOCCHI NUMBERS
AND POLYNOMIALS

Veli Kurt and Mehmet Cenkci

Abstract. In this paper, new q-analogs of Genocchi numbers and poly-
nomials are defined. Some important arithmetic and combinatoric rela-
tions are given, in particular, connections with q-Bernoulli numbers and
polynomials are obtained.

1. Introduction, definitions and notation

Carlitz has introduced the q-Bernoulli numbers and polynomials in [1]. Sri-
vastava and Pinter proved some relations and theorems between the Bernoulli
polynomials and Euler polynomials in [22]. They also gave some generalizations
of these polynomials. In [6, 7, 10, 11, 12, 14, 15, 16, 17], Kim et al. investigated
some properties of the q-Euler polynomials and Genocchi polynomials. They
gave some recurrence relations. In [2], Cenkci et al. gave the q-extension of
Genocchi numbers in a different manner. In [13], Kim gave a new concept for
the q-Genocchi numbers and polynomials. In [20], Simsek et al. investigated
the q-Genocchi zeta function and l-function by using generating functions and
Mellin transformation.

By using exponential function eq (x), Hegazi and Mansour [5] defined q-
Bernoulli polynomials by means of

∞∑
n=0

Bn (x, q)
zn

[n]q!
=

z

(1− q)
(
e

z
1−q − 1

)eq (zx) .

They proved some distribution relations as well. In [9], Kim gave q-Euler
polynomials with the help of the exponential function eq (x) as

∞∑
n=0

En,q (x)
zn

[n]q!
=

[2]q
eq (z) + 1

eq (zx) .
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In this paper we define new q-Genocchi numbers and polynomials by em-
ploying quantum calculus identities. We also give some properties such as
recurrence relations and show the connections with q-Bernoulli numbers and
polynomials. These relations, in fact, exhibit the connections between other
papers on related subjects.

Let q ∈ (0, 1) and define the q-shifted factorials by (cf. [4])

(a; q)0 = 1, (a; q)∞ =
∞∏

i=0

(
1− aqi

)
.

Two q-exponential functions are defined by the following relations (cf. [3, 8,
19, 21]):

eq (z) =
∞∑

n=0

zn

(q; q)n

=
1

(z; q)∞
and

Eq (z) =
∞∑

n=0

q
1
2 n(n−1)zn

(q; q)n

= (−z; q)∞ ,

where z ∈ C. These functions satisfy the following basic equalities (cf. [18]):

eq (z) Eq (−z) = 1, eq (qz) = (1− z) eq (z) , Eq (z) = (1 + z) Eq (qz) ,

in particular, for the q-commuting variables x and y such that xy = qyx,

(1.1) eq (x + y) = eq (x) eq (y) , Eq (x + y) = Eq (x)Eq (y) .

Note that limq→1 eq ((1− q) z) = ez = limq→1 Eq ((1− q) z).

Consider an arbitrary function f (x). Its q-differential is

dqf (x) = f (qx)− f (x) .

The q-derivative operator Dq is defined by

Dqf (x) =
dqf (x)

dqx
=

f (x)− f (qx)
x− qx

,

where x 6= 0. Note that limq→1 Dqf (x) = df(x)
dx . Suppose 0 < a < b. The

definite q-integral (also known as Jackson integral) is defined as
∫ b

0

f (x) dqx = (1− q) b

∞∑

j=0

qjf
(
qjb

)
and

∫ b

a

f (x) dqx =
∫ b

0

f (x) dqx−
∫ a

0

f (x) dqx.

An important concept of the q-integration theory is the Fundamental Theorem
of q-integration:



A NEW APPROACH TO q-GENOCCHI NUMBERS AND POLYNOMIALS 577

Theorem 1.1. If f ′ (x) exists in a neighborhood of x = 0 and is continuous at
x = 0, where f ′ (x) denotes the ordinary derivative of f (x), we have

∫ b

a

Dqf (x) dqx = f (b)− f (a) .

The q-analogue of the factorial is defined by

[n]q! =
{

1, if n = 0;
[n]q [n− 1]q · · · [2]q [1]q , if n = 1, 2, 3, . . . ,

where [n]q is the quantum number which is defined by

[n]q =
1− qn

1− q
.

The q-binomial coefficient
(
n
k

)
q

is defined by
(

n

k

)

q

=
(q; q)n

(q; q)k (q; q)n−k

=
[n]q!

[k]q! [n− k]q!

for k = 0, 1, 2, . . ..

2. q-Genocchi numbers and polynomials

The classical Genocchi numbers Gn and polynomials Gn (x) are defined by
means of the generating functions

∞∑
n=0

Gn
zn

n!
=

2z

ez + 1
and

∞∑
n=0

Gn (x)
zn

n!
=

2z

ez + 1
ezx

for |z| < π, respectively. Note that the following relation between Genocchi
polynomials and numbers can directly be obtained from the definition above:

Gn (x) =
n∑

l=0

(
n

l

)
Glx

n−l.

These numbers and polynomials are closely related to other special numbers
and polynomials such as

Gn = 2 (1− 2n) Bn, Gn+1 (x) = (n + 1) En (x) ,

where ∞∑
n=0

Bn
zn

n!
=

z

ez − 1
and

∞∑
n=0

Bn (x)
zn

n!
=

z

ez − 1
ezx

are Bernoulli numbers and polynomials, and
∞∑

n=0

En (x)
zn

n!
=

2
ez + 1

ezx

are Euler polynomials.
By using q-exponential function eq (z), we define new q-Genocchi numbers

and polynomials as follows:
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Definition. We define q-Genocchi polynomials Gn (x; q) as

(2.1)
∞∑

n=0

Gn (x; q)
zn

[n]q!
=

2z

(1− q)
(
e

z
1−q + 1

)eq (zx) .

For x = 0, Gn (0; q) = Gn (q) are q-Genocchi numbers, thus

∞∑
n=0

Gn (q)
zn

[n]q!
=

2z

(1− q)
(
e

z
1−q + 1

) .

Note that limq→1 Gn (x; q) = Gn (x) and limq→1 Gn (q) = Gn. This definition is
motivated from Hegazi and Mansour [5]. In that work, q-Bernoulli polynomials
Bn (x; q) are defined by

(2.2)
∞∑

n=0

Bn (x; q)
zn

[n]q!
=

z

(1− q)
(
e

z
1−q − 1

)eq (zx) .

The values of Bn (x; q) at x = 0 are called q-Bernoulli numbers, that is,

∞∑
n=0

Bn (q)
zn

[n]q!
=

z

(1− q)
(
e

z
1−q − 1

) .

We note that limq→1 Bn (x; q) = Bn (x) and limq→1 Bn (q) = Bn.

Alternative definitions of special polynomials also arise in the literature.
For instance, by using q-exponential function eq (z), Kim [9] defined q-Euler
polynomials En,q (x) by

∞∑
n=0

En,q (x)
zn

n!
=

[2]q
eq (z) + 1

eq (zx) .

In the sequel, we list some properties of q-Genocchi numbers and polynomials
as well as recurrence relations and identities involving q-Bernoulli numbers and
polynomials.

Proposition 2.1. We have

DqGn (x; q) = [n]q Gn−1 (x; q) .

Proof. From (2.1) we can write

∞∑
n=0

DqGn (x; q)
zn

[n]q!
=

2z

(1− q)
(
e

z
1−q + 1

)Dqeq (zx)
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=
2z

(1− q)
(
e

z
1−q + 1

)zeq (zx)

= z

∞∑
n=0

Gn (x; q)
zn

[n]q!

=
∞∑

n=0

[n]q Gn−1 (x; q)
zn

[n]q!
.

Comparing coefficients on both sides yields the result. ¤

Theorem 2.2. For q-commuting variables x and y such that xy = qyx, we
have

Gn (x + y; q) =
n∑

j=0

(
n

j

)

q

Gj (x; q) yn−j .

Proof. From (2.1) and (1.1), we get

(2.3)

∞∑
n=0

Gn (x + y; q)
zn

[n]q!
=

2z

(1− q)
(
e

z
1−q + 1

)eq (z (x + y))

= eq (zy)
2z

(1− q)
(
e

z
1−q + 1

)eq (zx)

= eq (zy)
∞∑

n=0

Gn (x; q)
zn

[n]q!
.

On the other hand,

(2.4)

∞∑
n=0

n∑

j=0

(
n

j

)

q

Gj (x; q) yn−j zn

[n]q!
=

∞∑
n=0

n∑

j=0

(yz)n−j

[n− j]q!
Gj (x; q) zj

[j]q!

=
∞∑

n=0

ynzn

[n]q!

∞∑
n=0

Gn (x; q)
zn

[n]q!

= eq (zy)
∞∑

n=0

Gn (x; q)
zn

[n]q!
.

(2.3) and (2.4) entail the result. ¤

Theorem 2.3. We have

Gn (x; q) = 2
(
Bn (x; q)− 2nBn

(x

2
; q

))
.
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Proof. From (2.1) and (2.2), we get
∞∑

n=0

Gn (x; q)
zn

[n]q!

=
2z

(1− q)
(
e

z
1−q + 1

)eq (zx) =
2z

(
e

z
1−q − 1

)

(1− q)
(
e

2z
1−q − 1

)eq (zx)

= 2
z

(1− q)
(
e

z
1−q − 1

)eq (zx)− 2
2z

(1− q)
(
e

2z
1−q − 1

)eq

(
2z

x

2

)

= 2
∞∑

n=0

Bn (x; q)
zn

[n]q!
− 2

∞∑
n=0

Bn

(x

2
; q

) 2nzn

[n]q!
.

Comparing power series gives the result. ¤
Taking x = 0 in Theorem 2.3, we obtain

(2.5) Gn (q) = 2 (1− 2n)Bn (q) .

Note that as q → 1, this identity reduces to the well known relation between
classical Bernoulli and Genocchi numbers.

Next relation is the representation of q-Genocchi numbers as a finite sum of
q-Bernoulli numbers.

Theorem 2.4. For n > 1, we have

Gn (q) =
n∑

k=1

(
n

k

)

q

1

(1− q)k

[k]q!
k!

2n−kBn−k (q) .

Proof. From (2.1) and (2.2), we write

(2.6)
∞∑

n=0

Bn (q)
2nzn

[n]q!
=

2z

(1− q)
(
e

2z
1−q − 1

) =
1

e
z

1−q − 1

∞∑
n=0

Gn (q)
zn

[n]q!
.

Multiplying both sides of (2.6) by e
z

1−q − 1, expanding the resulting power
series, arranging the limits of the summations and simplifying, we get

∞∑
n=0

Gn (q)
zn

[n]q!
=

∞∑
n=1

(
n∑

k=1

1

(1− q)k

1
k!

2n−k Bn−k (q)
[n− k]q!

)
zn.

Comparing coefficients of zn gives the desired result. ¤
Utilizing (2.5) in Theorem 2.4, we obtain a recurrence relation for q-Genocchi

numbers.

Theorem 2.5. For n > 1, q-Genocchi numbers satisfy the recurrence relation

Gn (q) =
n∑

k=1

(
n

k

)

q

1

(1− q)n−k

[n− k]q!
(n− k)!

2k−1

1− 2k
Gk (q) .
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By the same method proceeded in the proof of Theorem 2.4, we find similar
relations for q-Genocchi and q-Bernoulli polynomials.

Theorem 2.6. For n > 1, we have
n∑

k=1

(
n

k

)
(1− q)k

k!
[k]q!

{Gk (x; q)− 2Bk (x; q)} = 2,

where
(
n
k

)
= n(n−1)···(n−k+1)

k! is the binomial coefficient.

Proof. Comparing defining equations of q-Genocchi and q-Bernoulli polynomi-
als and equating common terms, we get

1
2

(
e

z
1−q + 1

) ∞∑
n=0

Gn (x; q)
zn

[n]q!
=

(
e

z
1−q − 1

) ∞∑
n=0

Bn (x; q)
zn

[n]q!
.

Arranging this equality yields

G0 (x; q)+
∞∑

n=1

(
n∑

k=0

1

(1− q)k

1
k!

1
[n− k]q!

{
Gn−k (x; q)

2
−Bn−k (x; q)

})
zn = 0.

Thus G0 (x; q) = 0 and
n∑

k=1

(
n

k

)
(1− q)k

k!
[k]q!

{Gk (x; q)− 2Bk (x; q)} = 2B0 (x; q) .

Since B0 (x; q) = 1, the proof is completed. ¤

Theorem 2.7. q-Genocchi polynomials and q-Bernoulli polynomials satisfy the
following relation

2q − 1
2 (1− q)n

n!
+

n∑

k=1

1

(1− q)k

1
k!

1
[n− k]q!

{Gn−k (x; q)−Bn−k (x; q)} = 0,

where n > 1.

Higher order generalizations of the q-Genocchi polynomials can be defined
in a natural way:

Definition. For α ∈ Z, α > 1, we define q-Genocchi polynomials of order α as

∞∑
n=0

G(α)
n (x; q)

zn

[n]q!
=


 2z

(1− q)
(
e

z
1−q + 1

)



α

eq (zx) .

For α = 1, G
(1)
n (x; q) = Gn (x; q) and for x = 0, G

(α)
n (0; q) = G

(α)
n (q) are

q-Genocchi numbers of order α.
The higher order q-Genocchi polynomials satisfy the following relations.
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Theorem 2.8. For the q-Genocchi polynomials of order α, we have

G(α)
n (x; q) =

n∑

j=0

(
n

j

)

q

G
(α)
j (q)xn−j .

Theorem 2.9. For the q-commuting variables x and y such that xy = qyx and
α, β ∈ Z, α > 1, β > 1, we have

G(α+β)
n (x + y; q) =

n∑

j=0

(
n

j

)

q

G
(α)
j (x; q)G

(β)
n−j (y; q) .

Theorem 2.10. For the q-Genocchi polynomials of order α, we have

G(α)
n (x; q) =

n∑

j=0

(
n

j

)

q

G
(α)
j (q)xn−j .

All these results can be proved by the methods presented in this paper, so
we omit the proofs.
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