A NEW APPROACH TO q-GENOCCHI NUMBERS AND POLYNOMIALS

Veli Kurt and Mehmet Cenkci

Abstract

In this paper, new q-analogs of Genocchi numbers and polynomials are defined. Some important arithmetic and combinatoric relations are given, in particular, connections with q-Bernoulli numbers and polynomials are obtained.

1. Introduction, definitions and notation

Carlitz has introduced the q-Bernoulli numbers and polynomials in [1]. Srivastava and Pinter proved some relations and theorems between the Bernoulli polynomials and Euler polynomials in [22]. They also gave some generalizations of these polynomials. In $[6,7,10,11,12,14,15,16,17]$, Kim et al. investigated some properties of the q-Euler polynomials and Genocchi polynomials. They gave some recurrence relations. In [2], Cenkci et al. gave the q-extension of Genocchi numbers in a different manner. In [13], Kim gave a new concept for the q-Genocchi numbers and polynomials. In [20], Simsek et al. investigated the q-Genocchi zeta function and l-function by using generating functions and Mellin transformation.

By using exponential function $e_{q}(x)$, Hegazi and Mansour [5] defined q Bernoulli polynomials by means of

$$
\sum_{n=0}^{\infty} B_{n}(x, q) \frac{z^{n}}{[n]_{q}!}=\frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)} e_{q}(z x)
$$

They proved some distribution relations as well. In [9], Kim gave q-Euler polynomials with the help of the exponential function $e_{q}(x)$ as

$$
\sum_{n=0}^{\infty} E_{n, q}(x) \frac{z^{n}}{[n]_{q}!}=\frac{[2]_{q}}{e_{q}(z)+1} e_{q}(z x)
$$

[^0]In this paper we define new q-Genocchi numbers and polynomials by employing quantum calculus identities. We also give some properties such as recurrence relations and show the connections with q-Bernoulli numbers and polynomials. These relations, in fact, exhibit the connections between other papers on related subjects.

Let $q \in(0,1)$ and define the q-shifted factorials by (cf. [4])

$$
(a ; q)_{0}=1, \quad(a ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right)
$$

Two q-exponential functions are defined by the following relations (cf. [3, 8 , 19, 21]):

$$
\begin{aligned}
& e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}}=\frac{1}{(z ; q)_{\infty}} \text { and } \\
& E_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{\frac{1}{2} n(n-1)} z^{n}}{(q ; q)_{n}}=(-z ; q)_{\infty}
\end{aligned}
$$

where $z \in \mathbb{C}$. These functions satisfy the following basic equalities (cf. [18]):

$$
e_{q}(z) E_{q}(-z)=1, e_{q}(q z)=(1-z) e_{q}(z), E_{q}(z)=(1+z) E_{q}(q z)
$$

in particular, for the q-commuting variables x and y such that $x y=q y x$,

$$
\begin{equation*}
e_{q}(x+y)=e_{q}(x) e_{q}(y), \quad E_{q}(x+y)=E_{q}(x) E_{q}(y) \tag{1.1}
\end{equation*}
$$

Note that $\lim _{q \rightarrow 1} e_{q}((1-q) z)=e^{z}=\lim _{q \rightarrow 1} E_{q}((1-q) z)$.
Consider an arbitrary function $f(x)$. Its q-differential is

$$
d_{q} f(x)=f(q x)-f(x)
$$

The q-derivative operator D_{q} is defined by

$$
D_{q} f(x)=\frac{d_{q} f(x)}{d_{q} x}=\frac{f(x)-f(q x)}{x-q x}
$$

where $x \neq 0$. Note that $\lim _{q \rightarrow 1} D_{q} f(x)=\frac{d f(x)}{d x}$. Suppose $0<a<b$. The definite q-integral (also known as Jackson integral) is defined as

$$
\begin{aligned}
& \int_{0}^{b} f(x) d_{q} x=(1-q) b \sum_{j=0}^{\infty} q^{j} f\left(q^{j} b\right) \text { and } \\
& \int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x .
\end{aligned}
$$

An important concept of the q-integration theory is the Fundamental Theorem of q-integration:

Theorem 1.1. If $f^{\prime}(x)$ exists in a neighborhood of $x=0$ and is continuous at $x=0$, where $f^{\prime}(x)$ denotes the ordinary derivative of $f(x)$, we have

$$
\int_{a}^{b} D_{q} f(x) d_{q} x=f(b)-f(a)
$$

The q-analogue of the factorial is defined by

$$
[n]_{q}!= \begin{cases}1, & \text { if } n=0 \\ {[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q},} & \text { if } n=1,2,3, \ldots\end{cases}
$$

where $[n]_{q}$ is the quantum number which is defined by

$$
[n]_{q}=\frac{1-q^{n}}{1-q}
$$

The q-binomial coefficient $\binom{n}{k}_{q}$ is defined by

$$
\binom{n}{k}_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

for $k=0,1,2, \ldots$.

2. q-Genocchi numbers and polynomials

The classical Genocchi numbers G_{n} and polynomials $G_{n}(x)$ are defined by means of the generating functions

$$
\sum_{n=0}^{\infty} G_{n} \frac{z^{n}}{n!}=\frac{2 z}{e^{z}+1} \text { and } \sum_{n=0}^{\infty} G_{n}(x) \frac{z^{n}}{n!}=\frac{2 z}{e^{z}+1} e^{z x}
$$

for $|z|<\pi$, respectively. Note that the following relation between Genocchi polynomials and numbers can directly be obtained from the definition above:

$$
G_{n}(x)=\sum_{l=0}^{n}\binom{n}{l} G_{l} x^{n-l}
$$

These numbers and polynomials are closely related to other special numbers and polynomials such as

$$
G_{n}=2\left(1-2^{n}\right) B_{n}, G_{n+1}(x)=(n+1) E_{n}(x),
$$

where

$$
\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}=\frac{z}{e^{z}-1} \text { and } \sum_{n=0}^{\infty} B_{n}(x) \frac{z^{n}}{n!}=\frac{z}{e^{z}-1} e^{z x}
$$

are Bernoulli numbers and polynomials, and

$$
\sum_{n=0}^{\infty} E_{n}(x) \frac{z^{n}}{n!}=\frac{2}{e^{z}+1} e^{z x}
$$

are Euler polynomials.
By using q-exponential function $e_{q}(z)$, we define new q-Genocchi numbers and polynomials as follows:

Definition. We define q-Genocchi polynomials $G_{n}(x ; q)$ as

$$
\begin{equation*}
\sum_{n=0}^{\infty} G_{n}(x ; q) \frac{z^{n}}{[n]_{q}!}=\frac{2 z}{(1-q)\left(e^{\frac{z}{1-q}}+1\right)} e_{q}(z x) \tag{2.1}
\end{equation*}
$$

For $x=0, G_{n}(0 ; q)=G_{n}(q)$ are q-Genocchi numbers, thus

$$
\sum_{n=0}^{\infty} G_{n}(q) \frac{z^{n}}{[n]_{q}!}=\frac{2 z}{(1-q)\left(e^{\frac{z}{1-q}}+1\right)}
$$

Note that $\lim _{q \rightarrow 1} G_{n}(x ; q)=G_{n}(x)$ and $\lim _{q \rightarrow 1} G_{n}(q)=G_{n}$. This definition is motivated from Hegazi and Mansour [5]. In that work, q-Bernoulli polynomials $B_{n}(x ; q)$ are defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}(x ; q) \frac{z^{n}}{[n]_{q}!}=\frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)} e_{q}(z x) \tag{2.2}
\end{equation*}
$$

The values of $B_{n}(x ; q)$ at $x=0$ are called q-Bernoulli numbers, that is,

$$
\sum_{n=0}^{\infty} B_{n}(q) \frac{z^{n}}{[n]_{q}!}=\frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)}
$$

We note that $\lim _{q \rightarrow 1} B_{n}(x ; q)=B_{n}(x)$ and $\lim _{q \rightarrow 1} B_{n}(q)=B_{n}$.
Alternative definitions of special polynomials also arise in the literature. For instance, by using q-exponential function $e_{q}(z)$, Kim [9] defined q-Euler polynomials $E_{n, q}(x)$ by

$$
\sum_{n=0}^{\infty} E_{n, q}(x) \frac{z^{n}}{n!}=\frac{[2]_{q}}{e_{q}(z)+1} e_{q}(z x) .
$$

In the sequel, we list some properties of q-Genocchi numbers and polynomials as well as recurrence relations and identities involving q-Bernoulli numbers and polynomials.

Proposition 2.1. We have

$$
D_{q} G_{n}(x ; q)=[n]_{q} G_{n-1}(x ; q)
$$

Proof. From (2.1) we can write

$$
\sum_{n=0}^{\infty} D_{q} G_{n}(x ; q) \frac{z^{n}}{[n]_{q}!}=\frac{2 z}{(1-q)\left(e^{\frac{z}{1-q}}+1\right)} D_{q} e_{q}(z x)
$$

$$
\begin{aligned}
& =\frac{2 z}{(1-q)\left(e^{\frac{z}{1-q}}+1\right)} z e_{q}(z x) \\
& =z \sum_{n=0}^{\infty} G_{n}(x ; q) \frac{z^{n}}{[n]_{q}!} \\
& =\sum_{n=0}^{\infty}[n]_{q} G_{n-1}(x ; q) \frac{z^{n}}{[n]_{q}!} .
\end{aligned}
$$

Comparing coefficients on both sides yields the result.

Theorem 2.2. For q-commuting variables x and y such that $x y=q y x$, we have

$$
G_{n}(x+y ; q)=\sum_{j=0}^{n}\binom{n}{j}_{q} G_{j}(x ; q) y^{n-j} .
$$

Proof. From (2.1) and (1.1), we get

$$
\begin{align*}
\sum_{n=0}^{\infty} G_{n}(x+y ; q) \frac{z^{n}}{[n]_{q}!} & =\frac{2 z}{(1-q)\left(e^{\frac{z}{1-q}}+1\right)} e_{q}(z(x+y)) \\
& =e_{q}(z y) \frac{2 z}{(1-q)\left(e^{\frac{z}{1-q}}+1\right)} e_{q}(z x) \tag{2.3}\\
& =e_{q}(z y) \sum_{n=0}^{\infty} G_{n}(x ; q) \frac{z^{n}}{[n]_{q}!}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\sum_{n=0}^{\infty} \sum_{j=0}^{n}\binom{n}{j}_{q} G_{j}(x ; q) y^{n-j} \frac{z^{n}}{[n]_{q}!} & =\sum_{n=0}^{\infty} \sum_{j=0}^{n} \frac{(y z)^{n-j}}{[n-j]_{q}!} \frac{G_{j}(x ; q) z^{j}}{[j]_{q}!} \\
& =\sum_{n=0}^{\infty} \frac{y^{n} z^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} G_{n}(x ; q) \frac{z^{n}}{[n]_{q}!} \tag{2.4}\\
& =e_{q}(z y) \sum_{n=0}^{\infty} G_{n}(x ; q) \frac{z^{n}}{[n]_{q}!} .
\end{align*}
$$

(2.3) and (2.4) entail the result.

Theorem 2.3. We have

$$
G_{n}(x ; q)=2\left(B_{n}(x ; q)-2^{n} B_{n}\left(\frac{x}{2} ; q\right)\right) .
$$

Proof. From (2.1) and (2.2), we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} G_{n}(x ; q) \frac{z^{n}}{[n]_{q}!} \\
= & \frac{2 z}{(1-q)\left(e^{\frac{z}{1-q}}+1\right)} e_{q}(z x)=\frac{2 z\left(e^{\frac{z}{1-q}}-1\right)}{(1-q)\left(e^{\frac{2 z}{1-q}}-1\right)} e_{q}(z x) \\
= & 2 \frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)} e_{q}(z x)-2 \frac{2 z}{(1-q)\left(e^{\frac{2 z}{1-q}}-1\right)} e_{q}\left(2 z \frac{x}{2}\right) \\
= & 2 \sum_{n=0}^{\infty} B_{n}(x ; q) \frac{z^{n}}{[n]_{q}!}-2 \sum_{n=0}^{\infty} B_{n}\left(\frac{x}{2} ; q\right) \frac{2^{n} z^{n}}{[n]_{q}!} .
\end{aligned}
$$

Comparing power series gives the result.
Taking $x=0$ in Theorem 2.3, we obtain

$$
\begin{equation*}
G_{n}(q)=2\left(1-2^{n}\right) B_{n}(q) . \tag{2.5}
\end{equation*}
$$

Note that as $q \rightarrow 1$, this identity reduces to the well known relation between classical Bernoulli and Genocchi numbers.

Next relation is the representation of q-Genocchi numbers as a finite sum of q-Bernoulli numbers.

Theorem 2.4. For $n \geqslant 1$, we have

$$
G_{n}(q)=\sum_{k=1}^{n}\binom{n}{k}_{q} \frac{1}{(1-q)^{k}} \frac{[k]_{q}!}{k!} 2^{n-k} B_{n-k}(q)
$$

Proof. From (2.1) and (2.2), we write

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}(q) \frac{2^{n} z^{n}}{[n]_{q}!}=\frac{2 z}{(1-q)\left(e^{\frac{2 z}{1-q}}-1\right)}=\frac{1}{e^{\frac{z}{1-q}}-1} \sum_{n=0}^{\infty} G_{n}(q) \frac{z^{n}}{[n]_{q}!} \tag{2.6}
\end{equation*}
$$

Multiplying both sides of (2.6) by $e^{\frac{z}{1-q}}-1$, expanding the resulting power series, arranging the limits of the summations and simplifying, we get

$$
\sum_{n=0}^{\infty} G_{n}(q) \frac{z^{n}}{[n]_{q}!}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} \frac{1}{(1-q)^{k}} \frac{1}{k!} 2^{n-k} \frac{B_{n-k}(q)}{[n-k]_{q}!}\right) z^{n} .
$$

Comparing coefficients of z^{n} gives the desired result.
Utilizing (2.5) in Theorem 2.4, we obtain a recurrence relation for q-Genocchi numbers.

Theorem 2.5. For $n \geqslant 1, q$-Genocchi numbers satisfy the recurrence relation

$$
G_{n}(q)=\sum_{k=1}^{n}\binom{n}{k}_{q} \frac{1}{(1-q)^{n-k}} \frac{[n-k]_{q}!}{(n-k)!} \frac{2^{k-1}}{1-2^{k}} G_{k}(q) .
$$

By the same method proceeded in the proof of Theorem 2.4, we find similar relations for q-Genocchi and q-Bernoulli polynomials.

Theorem 2.6. For $n \geqslant 1$, we have

$$
\sum_{k=1}^{n}\binom{n}{k} \frac{(1-q)^{k} k!}{[k]_{q}!}\left\{G_{k}(x ; q)-2 B_{k}(x ; q)\right\}=2
$$

where $\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}$ is the binomial coefficient.
Proof. Comparing defining equations of q-Genocchi and q-Bernoulli polynomials and equating common terms, we get

$$
\frac{1}{2}\left(e^{\frac{z}{1-q}}+1\right) \sum_{n=0}^{\infty} G_{n}(x ; q) \frac{z^{n}}{[n]_{q}!}=\left(e^{\frac{z}{1-q}}-1\right) \sum_{n=0}^{\infty} B_{n}(x ; q) \frac{z^{n}}{[n]_{q}!}
$$

Arranging this equality yields
$G_{0}(x ; q)+\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{(1-q)^{k}} \frac{1}{k!} \frac{1}{[n-k]_{q}!}\left\{\frac{G_{n-k}(x ; q)}{2}-B_{n-k}(x ; q)\right\}\right) z^{n}=0$.
Thus $G_{0}(x ; q)=0$ and

$$
\sum_{k=1}^{n}\binom{n}{k} \frac{(1-q)^{k} k!}{[k]_{q}!}\left\{G_{k}(x ; q)-2 B_{k}(x ; q)\right\}=2 B_{0}(x ; q) .
$$

Since $B_{0}(x ; q)=1$, the proof is completed.
Theorem 2.7. q-Genocchi polynomials and q-Bernoulli polynomials satisfy the following relation

$$
\frac{2 q-1}{2(1-q)^{n} n!}+\sum_{k=1}^{n} \frac{1}{(1-q)^{k}} \frac{1}{k!} \frac{1}{[n-k]_{q}!}\left\{G_{n-k}(x ; q)-B_{n-k}(x ; q)\right\}=0
$$

where $n \geqslant 1$.
Higher order generalizations of the q-Genocchi polynomials can be defined in a natural way:

Definition. For $\alpha \in \mathbb{Z}, \alpha>1$, we define q-Genocchi polynomials of order α as

$$
\sum_{n=0}^{\infty} G_{n}^{(\alpha)}(x ; q) \frac{z^{n}}{[n]_{q}!}=\left(\frac{2 z}{(1-q)\left(e^{\frac{z}{1-q}}+1\right)}\right)^{\alpha} e_{q}(z x)
$$

For $\alpha=1, G_{n}^{(1)}(x ; q)=G_{n}(x ; q)$ and for $x=0, G_{n}^{(\alpha)}(0 ; q)=G_{n}^{(\alpha)}(q)$ are q-Genocchi numbers of order α.

The higher order q-Genocchi polynomials satisfy the following relations.

Theorem 2.8. For the q-Genocchi polynomials of order α, we have

$$
G_{n}^{(\alpha)}(x ; q)=\sum_{j=0}^{n}\binom{n}{j}_{q} G_{j}^{(\alpha)}(q) x^{n-j} .
$$

Theorem 2.9. For the q-commuting variables x and y such that $x y=q y x$ and $\alpha, \beta \in \mathbb{Z}, \alpha>1, \beta>1$, we have

$$
G_{n}^{(\alpha+\beta)}(x+y ; q)=\sum_{j=0}^{n}\binom{n}{j}_{q} G_{j}^{(\alpha)}(x ; q) G_{n-j}^{(\beta)}(y ; q)
$$

Theorem 2.10. For the q-Genocchi polynomials of order α, we have

$$
G_{n}^{(\alpha)}(x ; q)=\sum_{j=0}^{n}\binom{n}{j}_{q} G_{j}^{(\alpha)}(q) x^{n-j} .
$$

All these results can be proved by the methods presented in this paper, so we omit the proofs.

References

[1] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[2] M. Cenkci, M. Can, and V. Kurt, q-extensions of Genocchi numbers, J. Korean Math. Soc. 43 (2006), no. 1, 183-198.
[3] G. Gasper, Lecture notes for an introductory minicourse on q-series, arXiv.math. CA/9509223.
[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[5] A. S. Hegazi and M. Mansour, A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 13 (2006), no. 1, 9-18.
[6] L. C. Jang and T. Kim, q-Genocchi numbers and polynomials associated with fermionic p-adic invariant integrals on \mathbb{Z}_{p}, Abstr. Appl. Anal. 2008 (2008), Art. ID 232187, 8 pp. doi:10.1155/2008/232187.
[7] L. C. Jang, T. Kim, D. H. Lee, and D. W. Park, An application of polylogarithms in the analogue of Genocchi numbers, NNTDM 7 (2000), 66-70.
[8] V. Kac and P. Cheung, Quantum Calculus, Springer Verlag, New York, 2002.
[9] T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math. Phys. 13 (2006), no. 3, 293-298.
[10] , On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), no. 2, 1458-1465.
[11] _, A note on p-adic q-integral on \mathbb{Z}_{p} associated with q-Euler numbers, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), no. 2, 133-137.
[12] _ , q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), no. 1, 15-27.
[13] , A note on the q-Genocchi numbers and polynomials, J. Inequal. Appl. 2007 (2007), Art. ID 71452, 8 pp. doi:10.1155/2007/71452.
[14] , On the multiple q-Genocchi and Euler numbers, Russ. J. Math. Phys. 15 (2008), no. 4, 481-486.
[15] , Note on q-Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) $\mathbf{1 7}$ (2008), no. 1, 9-15.
[16] T. Kim, L.-C. Jang, and H.-K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 8, 139-141.
[17] T. Kim, M.-S. Kim, L.C. Jang, and S.-H. Rim, New q-Euler numbers and polynomials associated with p-adic q-integrals, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), no. 2, 243-252.
[18] T. H. Koornwinder, Special functions and q-commuting variables, Special functions, q series and related topics (Toronto, ON, 1995), 131-166, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
[19] B. A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 412-422.
[20] Y. Simsek, I. N. Cangul, V. Kurt, and D. Kim, q-Genocchi numbers and polynomials associated with q-Genocchi-type l-functions, Adv. Difference Equ. 2008 (2008), Art. ID 815750, 12 pp. doi:10.11555.2008/85750.
[21] A. De Sole and V. Kac, On integral representations of q-gamma and q-beta functions, arXiv:math QA/0302032.
[22] H. M. Srivastava and A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004), no. 4, 375-380.

Veli Kurt
Department of Mathematics
Akdeniz University
Antalya, 07058, Turkey
E-mail address: vkurt@akdeniz.edu.tr
Mehmet Cenkci
Department of Mathematics
Akdeniz University
Antalya, 07058, Turkey
E-mail address: cenkci@akdeniz.edu.tr

[^0]: Received December 14, 2008; Revised June 12, 2009.
 2000 Mathematics Subject Classification. Primary 11G55, 11B68.
 Key words and phrases. q-exponential functions, q-Genocchi numbers and polynomials, q-Bernoulli numbers and polynomials.

 This work was supported by Akdeniz University Scientific Research Project Unit.

