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Abstract 

With any probability measure p on [ - 1 ,  1] we associate a sequence o f  polynomials Fn(z) which are Faber 
polynomials o f  a univalent function F(z) on Izl > 1. I f  the zeros o f  Fn(z) are in the open unit disk then there 
exists a Chebyshev-type quadrature formula for # with n nodes which is exact for all polynomials f ( t )  up 
to degree n -  1. 

For the normalized Jacobi measures dp(t)  = C~(I - t)-l/2-'~(1 + t) -U2 dt with 2 < 1/2 the function F(z) 
can be expressed in terms o f  hypergeometric functions. Using this expression it is proved that the zeros of  
the associated Faber polynomials are in the open unit disk in case 2 E (0, 20] for some 20 > 0. This result 
solves to a large extent a problem o f  F6rster. 

Keywords." Chebyshev-type quadrature; Ultraspherical and Jacobi measures; Faber polynomials; Hypergeometric functions 

1. Introduction and statement o f  results 

A Chebyshev-type quadrature formula is a numerical integration formula in which all weights are 
equal. Given a probability measure # on [ -1 ,  1], this is a formula of  the type 

1 1 
~b(t) d#(t) ~ - ~ ~b(xj), (1.1) 

-1  n j= l  

with (not necessarily distinct) nodes xl . . . . .  xn E [ -1 ,  1]. We call n the size of (1.1). The degree is 
the maximal number p such that equality holds for every polynomial ~b of degree ~< p. See [3,4,7] 
for surveys on Chebyshev-type quadrature and related topics. 
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The central question concerning Chebyshev-type quadrature is: with # and n fixed, what is the 
maximal degree that can be achieved by a suitable choice of the nodes xl , . . .  ,x,? 

For the arcsine measure d # ( t ) = T z - l ( 1 -  t2) -u2 dt, the Gauss formulas have equal weights. Hence 
for every n, there is a Chebyshev-type formula of size n and degree 2n - 1. Various modifications 
of  the arcsine measure admit Chebyshev-type quadrature of  size n and degree ~> n for every n, see 
[3] and the references given there. On the basis of  numerical computations, Frrster [2] concluded 
that it might be possible that also certain ultraspherical measures 

4~F( 1 - 22) ,  1 t2)-1/2-~ l (1.2) d#( t )=w~°) ( t )d t  " --- ~ -  ~ t - dt, 0 < 2 <  

have this property. In particular, he found that for 0 ~< 2 ~< 0.18, Chebyshev-type formulas of  size 
n and degree >i n exist for every n up to 55. 

Instead of  (1.2) we will consider the Jacobi measures 

2~F(1 - 2) "1 ! 
d/~(t) -- w~(t)dt"  - - F ( ~ ( T 5  -_--2)1, + t)-1/2(1 - t) -1/2-~ dt, 0 < 2 < z, (1.3) 

which are related to the ultraspherical measures (1.2) by a quadratic transformation. The main result 
of  this paper is the following. 

Theorem 1.1. There is a 2o > 0 such that for  every 2 E (0, 20], the measure w~(t ) dt of(1.3)  admits 
Chebyshev-type quadrature o f  size n and degree >~ n - 1 for  every n. 

From Theorem 1.1 easily follows: 

Corollary 1.2. There is a 20 > 0 such that for  every 2E(0,20], the measure w~°)(t)dt o f  (1.2) 
admits Chebyshev-type quadrature o f  size 2n and degree >>. 2n - 1 for  every n. 

To prove Theorem 1.1 we use the connection between Chebyshev-type quadrature and Faber 
polynomials which has also been used by Peherstorfer [12,13]. With any probability measure p on 
[ -1 ,  1] one associates a mapping F(z),  

F ( z ) = z + a o + a l z  -1 +a2z-Z + " ' ' ,  Izl > 1. (1.4) 

The Faber polynomial F,(z)  of  degree n is the polynomial part of  F(z)". The property which relates 
Faber polynomials and Chebyshev-type quadrature is the fact that if the zeros of F,(z)  are in the 
open unit disk then # admits Chebyshev-type quadrature of  size n and degree /> n - 1, see Theorem 
2.1. 

Let q,(w) be the inverse of F(z),  

• (w) ---- w + bo + blW -1 --}- b2w -2 q- ' ' . ,  (1.5) 

and let p be the smallest number such that q~(w) is univalent in Iwl > p. We denote by K the 
complement of   (Iwl > p). Then it is known, see Theorem 2.5, that limit points of  the zeros of 
F,(z)  are in K, and under additional assumptions one can prove that all zeros are in the interior of  
K. Thus if K is contained in {Izl 1} one has a chance to prove that the zeros of  Fn(z) are in 
tzl < 1. 
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We will prove the following results for the set K = K(2) associated with the measure w~(t)dt. 

Theorem 1.3. There exists a 2" > 0 such that the set K(2) is contained in {[z[ ~< 1} i f  and only 
/ f 0  < 2 ~< 2". 

Furthermore, for  0 < 2 ~< 2", K(2) is starlike with respect to the origin. 

Theorem 1.4. There exists a 20 > 0, (20 ~< 2") such that for  every 0 < 2 ~< 20 all zeros o f F , ( z )  
are in the interior o f  K ( 2 ) f o r  every n. 

Numerical experiments indicate that we have 2* ~ 0.1768 . . . .  which is pretty close to the value 
0.18 found by F6rster [2]. From the proof of  Theorem 1.4 it is not clear how to obtain estimates 
for 20. It might be true that 2* is the optimal value for 20. 

Theorem 1.1 is an immediate consequence of Theorems 1.3, 1.4, and the relation between 
Chebyshev-type quadrature and the zeros of  Faber polynomials. 

Finally, we present a result about the asymptotic zero distribution of  the Faber polynomials F,(z)  
associated with the measures w~(t)dt. More results on distributions of  zeros of  Faber polynomials 
can be found in [10]. 

Theorem 1.5. Let  0 < 2 < 2*, where 2* /s as & Theorem 1.3. Let  (j,,, j = l , . . . , n  denote the zeros 
o f F , ( z )  and let v~ be the normalized zero distribution o f F , ( z ) ,  i.e., 

1 
v, = - ~ 6¢j°. (1.6) 

n j = l  

Then in weak-star sense 

lim v. = vm~ ), (1.7) 

where vr(~) is the equilibrium distribution o f  K(2). 

2. Faber polynomials associated with Chebyshev-type quadrature 

Let p be a probability measure on [ -1 ,  1]. We define the function G ( z ) =  G(z;#) by 

G(z) • = - log(1 - 2tz + z2)dp(t).  (2.1) 
1 

Because of  the relation (see [17]) 

- log( 1 - 2tz + z 2) = ~ 2 k=l ~ Tk(t)z , 

where Tk(t) is the Chebyshev polynomial of  the first kind of  degree k, G(z) has the power series 
expansion 

G(z) = z k, ck = 2 Tk(t) d#(t). (2.2) 
k=l 1 
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From either (2.1) or (2.2) it is easily seen that G(z) is analytic in the open unit disk [z I < 1. 
For every nonnegative integer n, we introduce a polynomial P~(z)---P,(z; p) of degree ~< n as 

follows: P~(z) agrees with the power series expansion of  exp(-nG(z)) up to degree n. Thus, 

P.(z) : = exp(-nG(z)) + C(z "+l), (z ~ 0). (2.3) 

We also need the reversed polynomials which we denote by F~(z): 

F.(z)  : =z"P.(1/z ). (2.4) 

F,(z) is a monic polynomial of  precise degree n. 
The importance of  these polynomials for Chebyshev-type quadrature is given in the following 

theorem, due to Geronimus [5, Theorem 1] and Peherstorfer [12, Theorem 1], see also [9]. 

Theorem 2.1. I f  all zeros of  P,(z) have absolute value > 1 (or equivalently, all zeros of  F,(z) 
have absolute value < 1 ), then p admits Chebyshev-type quadrature of  size n and degree >>, n -  1. 

We will also make frequent use of  the following two functions: 

f ( z )  : =zexpG(z) ,  Izl < 1, (2.5) 

F(z):=l/f(1/z)=zexp(-a(1/z)), Izl > 1. (2.6) 

Recall from the theory of  univalent functions that a univalent mapping on Iz[ < 1 is called starlike 
if  the image domain is starlike with respect to the origin. We denote by S~ the class of univalent 
functions g(z) on Izl < 1, normalized by g(0) = 0, g'(0) = 1, which are starlike and have real 
coefficients. 

Lemma 2.2. The function f ( z )  of (2 .5 )  belongs to S;~ and conversely, every function in S;~ equals 
zexp G(z; #) for some probability measure # on [ -1 ,  1]. 

Proof. By [14, Theorem 2.6] a function f ( z )  = z + a2z 2 + . . .  is starlike in the open unit disk if 
and only if f ( z )  = z exp G(z) with 

F G(z) = - 2  log(1 - e - i t z )  dT(t) 
7r 

for some probability measure 7 on [-zt, rq. The coefficients of f ( z )  are real if and only if V is 
symmetric with respect to t = 0. Simple transformations then show that G(z) has the form (2.1) for 
some probability measure # on [ -1 ,  1 ]. [] 

Corollary 2.3. For Izl < 1, ~(1 + zG'(z)) > O. 

Proof. By [14, Theorem 2.5] f ( z )  is starlike if and only if ~(z f ' ( z ) / f ( z ) )  > 0 for ]z] < 1. Then 
the corollary follows from (2.5) and Lemma 2.2. [] 
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From Lemma 2.2 we also conclude that F(z) is univalent in [z[ > 1 and it maps Izl > 1 onto the 
complement of  a compact set which is starlike and symmetric with respect to the real axis. The 
inverse mapping of  w = F(z) will be denoted by q~(w) as in (1.5). 

Lemma 2.4. The polynomial F,(z) defined in (2.4) satisfies 

F,(z) = F(z)" + (_9(I/z), (z ---+ oc). (2.7) 

Proof. Combination of  (2.4) and (2.3) yields 

F,(z) = z" [exp(-nG(1/z))  + (9(z-("+l))] = [z exp(-G(1/z))]"  + (9(l/z), 

which in view of  (2.6) gives (2.7). [] 

(g ----+ 0(3), 

Hence the polynomials F,(z) are the Faber polynomials of  F(z),  see e.g. [16], and as such many 
properties of  the polynomials F,(z) are known. We have, for example, the generating function 

O O  

w4"(w) _ E F,(z)w-", (2.8) 
• (w) - z ,=0 

which holds for Iw[ sufficiently large (depending on z). The relation (2.8) is often taken as the 
definition of  Faber polynomials, see [16, p. 130]. 

Note however, that usually the Faber polynomials arise as polynomials satisfying (2.7) where 
F(z) is a univalent mapping from the complement of  a compact set onto a domain Iwl > p. In our 
case the function F(z) is defined on Izl > 1 and it maps Izl > 1 onto the complement of  a compact 
set. 

In view of  Theorem 2.1 we are interested in the zeros of  F,(z). To state what is known we need 
to consider a domain which is mapped by F(z), or by an analytic extension of  F(z), univalently 
onto Iwl > p for some p. In that case ~(w) is univalent on Iwl > p. Let p be the smallest number 
such that q~(w) (or an analytic extension of  4,(w)) is defined and univalent on Iwl > p and let K 
be the complement of   (Iwl > p) in the z-plane. Thus p is the logarithmic capacity (transfinite 
diameter) of  K. Then the following hold. 

Theorem 2.5. (a) All limit points o f  the zeros o f  F,(z) are in K. 
(b) I f  K is convex then the zeros o f  F,(z) are in K for  every n. I f  in addition K is not a line 

segment then the zeros o f  F,(z) are in the interior o f  K for  every n. I f  K is a line segment then 
no zeros o f  F,(z) are at the end points o f  K. 

Proof. (a) See [16, p. 137]. (b) See [8]. [] 

It was conjectured that in general the convex hull of  K would contain the zeros of  all F,(z). 
However, Goodman [6] gave an example of  a compact set K for which this fails. Goodman's 
example is not starlike, so it might be that the conjectm'e holds for starlike K. 

Combining Theorems 2.1 and 2.5 we have the following sufficient condition for the existence of  
Chebyshev-type quadratm'e of  size n and degree ~> n -  1. 
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Corollary 2.6. Suppose F(z)  has an analytic extension (also denoted by F(z  ) ) to the complement 
o f  a compact convex set K contained in the closed unit disk which maps C \ K  univalently onto 
{Iwl > p} for  some p >~ O. Then the measure p admits Chebyshev-type quadrature o f  size n and 
degree >1 n - 1 for  every n. 

The assumptions of  Corollary 2.6 are satisfied if and only if f ( z )  has an analytic extension to a 
domain O~{Iz I < 1} for which K = {z [ 1/z f[ D} is convex, and this extension maps D one-one 
onto a disk Iwl < p-l,  

Corollary 2.6 applies to a large collection of measures #. Indeed, one can take any compact 
convex set K C{[z] ~< 1} which is symmetric with respect to the real axis and then consider the 
map F(z)  = z + ao + alz -1 + .." which maps C \ K  univalently onto {Iwl > p}, where p is the 
logarithmic capacity of  K. Then 1/F(1/z) is a function in S~ (it can be proved that it is starlike) 
and by Lemma 2.2 it is equal to z e x p G ( z ; # )  for some probability measure # on [ -1 ,1] .  By 
Corollary 2.6 # admits Chebyshev-type quadrature of size n and degree /> n - 1 for every n. 

The simplest example of  this kind is to take K = {b} with - 1  < b < 1. Then F(z)  = z  - b and 
the associated measure p is given by 

dp(t) -- 
1 -- bt  d t  

1 - 2bt + b 2 l Z X / ~  - -  t 2 

These measures were considered by Ullman [18]. 

3. The measures w ~ ( t ) d t  and the proof of  Theorem 1.3 

In the rest of  the paper we apply the results of  Section 2 to the Jacobi measures wx(t) dt defined 
in (1.3). These measures are related to the ultraspherical measures w~°)(t)dt of  (1.2) by a quadratic 
transformation: 

2sw~(2s 2 - 1) -- w]°)(s), 0 < s <  1. (3.1) 

1 Lemma 3.1. Let 2 < 3" I f  wa(t)dt admits a Chebyshev-type formula o f  size n and degree p then 

w~°)(t) dt admits a Chebyshev-type quadrature formula o f  size 2n and degree 2p + 1. 

Proof. Suppose x l , . . . , x ,  E [ -1 ,  1] are such that 

f_l 1 dp(t)w~(t) dt = - ~ dp(xj) (3.2) 
1 nj=l  

holds for all polynomials ~b of  degree ~< p. Define yj : = v/(1 + xj)/2 and consider the Chebyshev- 
type formula of  size 2n 

/ j  g(s)w~O)(s)ds ~ 1 ~ [g(yj) + g(_yj)]  (3.3) 
~nn " j= |  
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For odd polynomials O both sides of  (3.3) are equal to zero. Let 9 be an even polynomial of 
degree ~< 2p. Then there is a polynomial 4) of  degree ~< p such that 9(s)=Cg(s 2) and we find using 
(3.1) 

f '  ds 2 fo' f ' 9(s)w~°)(s) ds = dp(s 2)w~°)(s) = dp(s z)zsw~(zs 2 - ) 2 1 ds. 
I 

Putting 2s 2 - 1 = t and applying (3.2) we obtain 

O(s)w~°)(s)ds = 4)((1 + t) /2)wa(t)dt = 1 ~ 4)((1 + xj)/2). 
1 - 1  n j = l  

Since 9(Yy)=9(-Yy)=q~((1 +xj)/2) ,  it follows that equality holds in (3.3) and the lemma follows. [] 

From Lemma 3.1 it is clear that Corollary 1.2 is an immediate consequence of  Theorem 1.1. 
From now on we take 2 E (0, ½) and we use the notations of  Section 2 applied to the Jacobi 

measure w~(t)dt. If  we want to emphasize the dependence on 2, we write G(z; 2), Fn(z; 2), K(2) 
and so on. We first compute the coefficients ck = ck(2) of  (2.2). We use the standard notation 
(a)k : = a ( a +  l ) ' " ( a + k -  1). 

Lemma 3.2. For k >>. 1, 

_2) (3.4) ck = 2(1 ~)k" 

Proof.  We use Rodrigues' formula for Tk(t): 

(-- 1 )k (1 -- t2) 1/2 t2) k-I/2. Tk(t) = 2k(½)~ (1 - (3.5) 

Inserting (1.3) and (3.5) into (2,2), one can evaluate ck by integrating by parts k times. 

Ck : ~ f - - - - 1 - -  1 F(~)F(~ - 2)(i)k ~ (1 - t2) k-vz (1 - t ) -~dt  

= 2  ----  T--.-i- (1 - t2) k-1/2 d k 
F(k + ~)F(~ - 2) , ~ (1 - t) -~ dt 

2~-kF(1 -- 2)(2)k f l  : 2r- ¥ ( i  +,)'-1J2(i dr. 

l)F(½ -- 2)/F(k + I - 2), so that The last integral is a beta integral which has the value 2k-~F(k + 

r ( 1  - 2 ) ( 2 ) k  _ 

ck = 2 F (  k + 1 - 2) )k" [] 
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By (3.4) the function G(z)= G(z;2) of (2.2) is 

G ( z ) = 2 ~  (2)k z k 
k=l (1 ---2)k k"  (3.6) 

It follows that G(z) can be expressed in terms of hypergeometric functions. We use the notation 
F(a,b; c;z) for hypergeometric functions as in [1, Ch. II]. Then we have 

(2)k z k _ l = 2 1 2 2 F ( 1 , 1 +  2 ; 2 _ 2 ; z ) .  G'(z) = 2 k~=~ (1 -- 2)k 

Thus G'(z) has an analytic continuation to the complex plane with a cut along [1,oo) given by 
Euler's integral representation (see [ 1, Section 2.1.3]) 

r(1 -Z~,t)2) ~v[1 6 ' ( z )  = 2 t~(1 - -  t ) - 2 ' t ( 1  - -  tz) -1 dt. ( 3 . 7 )  

After integration we see that G(z) has an analytic extension to C \ [1, oo) given by 

F(1  - ,~) f l 1 
G(z )=  2F(2--~(-f ---22 ) ~ t;~-~(1 - t ) - 2 ~ l o g ~ d t ,  l a r g ( 1 - z ) [  <rr .  (3.8) 

Here log denotes the principal branch of the logarithm. Hence also f ( z ) = z  exp G(z) has an analytic 
extension to C \ [ 1, oc). 

Before we come to the proof of Theorem 1.3 we need several lemmas. The first two describe the 
behavior of If(z)  I along circles Izl = r and along rays argz = 0, respectively. 

Lemma 3.3. Let r > 0 be fixed. The function 

O ~  [f(rei°)[, 0 < 0 <  

is strictly decreasing. 

Proof. Clearly, [f(rei°)[ = rexp(~G(rei°)), and by (3.8), 

F ( 1  -__22)2) ~1 t )  -2;~ ~RG(re i°) = - 2  F(~T/~(i t~-~(1 - log l1 - trei°l dt. 

For every t E (0, 1), 0 ~ I 1 - trei° I is strictly increasing for 0 < 0 < re. Hence NG(re i°) is strictly 
decreasing and the lemma follows. [] 

1 For every OE [½~, 3 Lemma 3.4. (a) Let 0 < 2 < ~. ~lt], there is a unique R(O) >. 1 such that 

r ~ [f(rei°)l, r > 0 

is increasing for 0 < r < R(O) and decreasing for r > R(O). 
(b) Let 0 < 2 <% ¼. For every 0 E (0, 2~), there is a unique R(O) >~ 1 such that 

r ~ [f(rei°)[, r > 0 

is increasing for 0 < r < R(O) and decreasin9 for r > R(O). 
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Proof .  It suffices to consider 0 < 0 ~< n. Fix 0 and write z ( r ) =  re i°. We have 

[ ~ ] drr log I f ( z ( r ) ) [  = ~ ~ l o g f ( z ( r ) )  = l~ ( l r  + zG'(z)).  

Thus we have to prove that in the two cases (a) and (b)  there is a unique R(O) ~> 1 such that 

> 0  f o r z = r e  i°, O<r<R(O),  
~(1 + zG'(z ) )  . (3.9) 

< 0  for z = re '°, r > R(O). 

By Corollary 2.3 we need only consider r > 1. 
1 I 0 < 2 ~< ~ These two We distinguish the two cases i n  ~< 0 ~< ~z, 0 < 2 < ½, and 0 < 0 < 5~, ~. 

cases cover the cases (a) and (b)  o f  the lemma. 
1 1 Case 1. 5 n ~ < 0 ~ < n a n d 0 < 2 < 5 .  

From (3.7) it follows that 

r(1 - 2) f '  
1 + zG'(z)  = F(2--~(1 - - 2 2 )  J0 t~-l(1 - t)-2~ 1 - t z l  + tz dt. (3.10) 

For every t E ( 0 ,  1), z ~ (1 + tz)/(1 - t z )  is a Mfb ius  transformation which maps argz = 0 onto a 
1 circular arc from +1 to - 1 .  Using ~ ~< 0 ~< re, we can easily see that ~((1 + tz)/(1 - t z ) ) ,  z = r e  '° 

is a strictly decreasing function o f  r > 0. Thus ~(1 + zG'(z)) ,  z = re i° is strictly decreasing. Since 
it is positive for r < 1 and has limit - 1  for r ~ c~, (3.9) follows in Case 1. 

1 and 0 < 2 ~ 1 Case 2. O < O < ~ rc ~. 
We have from (3.6), 

1 + z G ' ( z ) = - 1  + 2F(1 ,2 ;  1 - 2;z).  

By  a transformation for hypergeometric functions, see [1, Section 2.10, formula(I)] ,  and some 
manipulations we arrive at 

r ( 1  - 2 ) r ( 1  + 
1 + zG'(z)  = - 1 + F ( 1 , 2 ;  1 + 22; 1 - z) + 22!zZ(1 - z) -2a. (3.11 ) 

r(1 +2)  

We show that the real parts o f  the terms on the right-hand side o f  (3.11 ) are decreasing for z = re ~°, 
r > l .  

We have for z = re i°, 

Ez ( r os0 ,) 
~ ( 1 - z )  -2~ = r ~ ( 1 - 2 r c o s O + r 2 ) - ~ c o s  2 2 r c + 2 0 - 2 2 a r c c o t  

r sin 0 " 

Since arccot((r  cos 0 - 1 )/(r sin 0))  is decreasing for r > O, we obtain 

2 r c < c o s ( 2 2 r c + 2 0  22arccot  r c ° s 0 - 1 )  - . < 22rc - 20 < - .  
r sm 0- 2 

1 Hence it follows that The last inequality holds because we  have assumed that 0 < 0 and 0 < 2 ~< ~. 
cos (22rt + 20 - 22 arccot(r  cos 0 - 1 )/(r sin 0))  is positive and strictly decreasing for r > 0. Next  
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since 

0 [ r 1 l - r 2  
O-r 1 - 2 r c o s 0 + r  2 - - - - ( 1 - 2 r c o s 0 + r  2)2' 

it is also clear that r~(1 - 2 r c o s 0  + r2) -~ is positive and strictly decreasing for r > 1. Hence the 
real part of the last term in (3.11) is strictly decreasing for z = re i°, r > 1. 

We turn to the term F(1,2; 1 + 22; 1 - z )  in (3.11 ), for which we have the integral representation, 
see [1, Section 2.1.3], 

F(1 + 22) ~ 
F ( 1 , 2 ; l + 2 2 ; 1 - Z ) = F ( 2 ) F ( l + 2 ) _ ~  t a - l ( 1 - t ) a ( 1 - t ( 1 - z ) ) - J d t .  

An argument similar to the one given in Case 1 shows that for every t E (0, 1), the real part of 
(1 - t ( 1  - z ) )  -1, z = r e  i° is strictly decreasing for r > 0. Here it is important that 0 < 0 < ½n. Hence 
r H ~(F(1,2;  1 + 22; 1 - z ) ) ,  z = re i° is strictly decreasing for r > 0. 

Now (3.9) follows just as in Case 1. [] 

We will also need the following lemma. 

Lemma 3.5. I f  h(t)  is a decreasing funct ion  on [0, 1], then the funct ion  

r(1 - ,~) f~ 1 2 ~-* F(2--~-(1 - 2 2 )  ~ t~-l(1 - t)-E~h(t)dt,  0 < 2 < 

is decreasing. 

Proof. Write 

~ [ z ) t ( l  - zz) 

Let 0 < 21 < 22 < ½. It is easily seen that there is a to E (0, 1) such that p~,(t) > p~2(t) for 0 < t < to 

and p~,(t) < p;~2(t) for to < t < 1. Using the fact that f~ p~, ( t )d t  = f~ p~2(t)dt,  we find 

f01 /0 (p;~,(t) - pa~(t))h(t)dt  = (pa,( t)  - pa2(t))(h(t) - h( to))dt  >~ 0 

since the integrand in the last integral is nonnegative on [0, 1]. [] 

Proof of Theorem 1.3. Write 

D = D(~.) : = { z  I 1/z /~ K(~.)}. 

Clearly K(2) C{]z I ~< 1} if and only if D(2) ~{]z[ < 1}. The function f ( z )  maps D one-one onto the 
disk {[w I < p- l} .  Since z = l  is a branch point o f f ( z )  it cannot belong to D. Hence {Izl < 1} C D  if 
and only if z = 1 belongs to 0D and in that case f ( z )  maps D onto {I w] < f ( 1 ) } ,  
i.e. p =  f ( 1 )  - l .  
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For numerical computations it is helpful that f ( 1 )  can be evaluated explicitly. Since [1, Section 
1.7.4, formula (30)] 

(2)k 1 
G(1) : 2 k=l ~ (1 --~2)k k -- 2(~b(1 - 2) - ¢(1 - 22)), (3.12) 

where ~,(z)= F'(z)/F(z), we have 

f ( 1 )  = exp [2(~,(1 - 2) - ~,(1 - 22))]. (3.13) 

Consider f ( z )  on the negative real axis. Since f ( z ) = z  exp G(z) and G(z) is real for argz=rc,  see 
(3.8), it is clear that f ( z )  maps the negative real axis into itself. By Lemma 3.4(a) there is a unique 
Ro = Ro(2) ~> 1 such that f ( z )  is increasing for -R0 < z < 0 and decreasing for z < - Ro. Thus 
the negative real axis is mapped onto the interval [ f ( - R o ) ,  0). This gives a necessary condition for 
{[z[ < 1} c D ,  namely 

If(-Ro)l  f> f (1 ) .  (3.14) 

This is a condition on 2. Note that both f ( z )  and R0 depend on 2; we write f (z;  2) and Ro(2). 
i This is obvious from (3.13) and The right-hand side of  (3.14) is strictly increasing for 0 < 2 < 5" 

(3.12). We prove that the left-hand side is decreasing. By (3.8) we have for a fixed x > 0, 

F(1 - 2) ~1 x 
log I f ( - x ;  2)1 = G(-x; ,l) + logx = r( -5-f(i .v t~-l(1 - t)-2~ log (1 + xt) 2 dt. (3.15) 

Since log(x/(1 + x t )  2) is decreasing for t E [0, 1], Lemma 3.5 gives that log [ f ( - x ; 2 ) [  is decreasing 
1 i n 4 .  T h e n i f 0 < 4 1  < 4 2 < 5 ,  

]f(-Ro(42); 22)] ~< [f(-Ro(22); 21 )[ ~< If(-Ro(2, ); 2~ )1, 

where the second inequality holds because [ f ( - x ;  41 )[, X > 0 is maximal for x=Ro(41 ). This proves 
1 that the left-hand side of  (3.14) is decreasing for 0 < 4 < 5" 

Since lim~__.o ] f ( -R0)]  = ~ ,  lim~_.0 f ( 1 ) =  0 and lim~--,1/2 f ( 1 ) =  ~ ,  it now follows that there is 
a unique 4" > 0 such that (3.14) holds if and only if 0 < 4 ~< 4". Numerical computations give the 
approximation 

4" ~ 0.1768 . . . .  (3.16) 

Next we prove that the necessary condition (3.14) (or equivalently 0 < 4 ~< 4"), is also a sufficient 
condition for {[z[ < 1} CD.  

Thus suppose (3.!4) holds and let Ro =R0(4)  be as before. By Lemma 3.3 and (3.14) we have 
for every 0, 0 < 0 ~< 

[f(Roei°)[ >1 f (1 ) .  

Let R(O) be as in Lemma 3.4(b) (which we may apply since 4" < ¼, see also remark (2) below). 
It follows that [f(R(O)ei°)[ >i f ( 1 )  and that there is a unique r(O), 1 <~ r(O) <<. R(O) such that 

[f(r(O)ei°)[ = f (1 ) ,  0 < 0 ~< re. (3.17) 
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The uniqueness of  r(O) implies that r(O) depends continuously on 0. We define r(0) = 1, and 
r(2rc - 0) = r(O). Then (3.17) holds for 0 ~< 0 ~< 2~. The closed curve 0 ~ r(O)e i°, 0 <<, 0 <<, 2rt 
encloses a domain Do, 

Do" : { r e  i° 10 ~< 0 <( 27z, 0 ~< r < r (0 )} ,  (3.18) 

which contains {Izl < 1}. We can now easily see (using Rouchr's theorem and the fact that f ( z )  
has precisely one zero in Do) that f ( z )  maps Do one-one onto {Iwl < f (1)} .  Thus Do = D ( 2 )  and 
we have shown that (3.14) is also a sufficient condition for {Izl < 1} cD.  

Finally, it is clear from (3.18) that D(2) (and thus also K(2))  is starlike with respect to the 
origin. [] 

Corollary 3.6. For 0 < 2 ~< 2*, we have 

~(1  +zG'(z)) > 0, zED(2) .  (3.19) 

Proof. Since D(2) is starlike (by Theorem 1.3), we obtain from [14, Theorem 2.5] that N(wdp'(w)/ 
¢(w)) > 0, Iwl < p-l, where q~(w) is the inverse of  f (z) .  This readily implies (3.19). [] 

Note that Corollary 3.6 is an extension of  Corollary 2.3. 

Remarks. (1) The proof of Theorem 1.3 also gives a simple method to compute 2* numerically. 
For given 2, compute the unique maximum of  If(-x; 2)1 for x > 0, with the aid of  formula (3.15). 
If this maximum is larger than f ( 1 ; 2 )  then 2 < 2*; if not then 2 i> 2*. The value of  f ( 1 ; 2 )  is 
evaluated explicity in (3.13). In this way we obtained the approximation (3.16). 

l This follows of  course from the (2) In the proof of  Theorem 1.3 we used the fact that 2" < ~. 
numerical estimate (3.16), but can also be shown directly as follows. 

If 2 --- ¼ and x > 1, then it can be seen from (3.11) that 

~(1 + x G ' ( x ) ) = - 1  + F ( 1 , 2 ;  1 + 22; 1 - x ) .  

Hence limx~l ~(1 +xG'(x))=O, and it follows as in the proof of Lemma 3.4 that If(x)l is decreasing 
for x > 1. Thus If(R0)l ~< f (1 ) .  By Lemma 3.3 we have If(-R0)l < If(R0)l and it follows that 

1 1 and therefore 2* < 4" If(-R0)l < f (1 ) .  Hence (3.14) does not hold if 2 -- ~ 

4. The proof of  Theorem 1.4: starlikeness with respect to z = 1 and positive coefficients 

4.1. A result on the zeros of  F,(z) 

In view of  Theorem 2.5 it would be sufficient for our purposes to prove that for 2 sufficiently 
small, K(2) is a convex set. Unfortunately, we were not able to prove this, although computer 
experiments indicate that it is very likely. Instead of  Theorem 2.5 we will use the following result 
to conclude that the zeros of the Faber polynomials are in the interior of  K(2). 
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Proposition 4.1. Let 0 < 2 ~< 2* with 2* as in Theorem 1.3. Let ~(w) be the inverse o fF( z )  and 
write 

0¢)  

~(w) = w + ~ bkw -k. 
k=0 

Suppose that the followin9 properties are satisfied: 
(A) K(2 )  is starlike with respect to z = 1. 
(B)  The coefficients bk are positive for every k. 

Then the zeros of  every Faber polynomial F,(z) are located in the interior o f  K(2).  

Proof .  Let as before p = F(1  ) = cap(K).  Then 0 ~ q~(pei°), 0 E [0, 2re) is a parametrization o f  8K. 
Property (A) implies that arg(q~(pe i°) - 1 ), 0 < 0 < 2n is nondecreasing. Thus, 

o r  

0 ~< ~ a rg (~(pe  i°) - 1) : ~ log(q,(pe i°) - 1) : ~ pei°~'(pei°) 
• (pe i0) - 1 , 0 < 0 < 2 n ,  

( f _ ~ )  1 l l + p f ( z )  zED,  z ¢ I .  
H = (1 - z ) ( 1  + zG'(z)) 2 1 - p f ( z ) '  

Here D = D ( 2 )  is as in the proof  o f  Theorem 1.3. Since by  (3.11) 

1 + zG'(z) = F(1 - 2)F(1  + 22) (  1 _ z)_2~ + (9((1 - z)l-Ea), 
r(1 + 2) 

we have 

1 F(1 + 2) 
(1 -z)(1 +zG'(z)) r(1 -2)r(1 +22) 

Further, from 

(zED,  z---~ 1), 

G(1)  - G(z)= 

(1 --Z)-1+22+(9((1 --Z)22), (zED,  z--~ 1). 

r(1  - 2)F(1 + z)l_2a 

-o : 

(4.3) 

] 
/ ~ (w ) - l J  />0, Iwl=p,w(p. 

Since ~((w + p)lCw - p ) )  = o for Iwl = P, w # p, it follows that 

R[H(w)] ~>0, lwl=p,w#p, (4.1) 

where 

w~'(w) 1 w + p 
H ( w ) :  - Iwl /> p,w ~ p. (4.2) 

• (w) - 1 2 w - p '  

To study the behavior o f  H(w) near w =  p we put w = 1/f(z), where f ( z ) = z e x p  G(z). Then (4.2) 
gives 
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see (4.9)-(4.11)  below, it follows that 

r ( 1  - 2 ) r ( 1  + 22)., 
1 - o f ( z ) =  -(i 2-22--~-1 ~ - ~  t ' - z )  1-2)" + ( 9 ( 1 - z ) ,  
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( z E D ,  z ~ 1). 

which implies that H ( 1 / f ( z ) )  > 0 for z E R, z < 1 close to z=  1. Consequently H(w)  > 0 for w E R, 
w > p close to w = p. Together with (4.1) this implies by the maximum principle for harmonic 
functions that ~ ( H ( w ) )  > 0 for Iw[ > p. 

We have the series expansion, see (2.8) and (4.2), 

o o  

H(w)  = ~ + ~ ( F . ( 1 )  - p")w-" 
n=l 

which converges for [wl > O, since H(w)  is analytic for Iwl > o. Hence the function 

w ~-. 2H(o/w ) = 1 + 2 ~ ( F , ( 1 )  - p" 
n=l 0 

has positive real part for [w[ < 1. Then Carath6odory's coefficient estimate, see [14, Corollary 2.3], 
gives 

I F . ( 1 )  - P"l < O", n = 1 , 2  . . . . .  ( 4 . 4 )  

Next we write 

- w" = Iwl 1> O. 
k= l  

The coefficients ft,, are called the Grunsky coefficients. Schur [15] proved that each ft,, can be 
expressed as a polynomial with nonnegative integer coefficients in the coefficients b, of  ~. Therefore, 
Property (B) of  the proposition implies that all Grunsky coefficients are positive. Hence for Iw I >i P, 

I F n ( ~ ( W ) )  -- Wnl ~ ~ flnkP -k  : F n ( 1 )  - O n < O n ~ Iwl", 
k=l 

(4.5) 

where we used the inequality (4.4). From (4.5) it is clear that [F,(~(w))  I ¢ 0 for Iw[ >i O- That is, 
all zeros of  F,(z)  are in the interior of  K(2). [] 

In the rest of  this section it will be proved that for 2 sufficiently small, the Properties (A) and 
(B) of  Proposition 4.1 are satisfied. 

and 

1 1 + p f ( z )  _ (1 - 22)F(1 + 2 ) . ,  _ z)_1+2~ 1+4~), 
2 1 - o f ( z )  F(1---2-~(1-+2--f) [' + ( 9 ( ( 1 - z ) -  

So from (4.3) 

F(1 + 2) z)_l+2 ~ Z)_1+42) ' 
H ( 1 / f ( z ) )  = 22F(  1 _ 2)F(1 + 22) (1 - + (9((1 - 

( zED,  z ~ 1), 

( z E D ,  z ~ 1), 
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4.2. Some estimates 

First we need estimates on 1 +zG'(z)  and G(z)+ logz. We write as in (3.11), 

1 + zG'(z) = A(z) + B(z) 

with 

A(z) = - 1  + F(1,2;  1 + 2 2 ;  1 - z ) =  
2 

22(1 - z)F(1, 1 + 2; 2 + 22; 1 - z), 
1 + 

(4.6) 

(4.7) 

B(z) = F(1 - 2)F(1 + 22)z~( 1 _ z)_2~" (4.8) 
r(1 + 2) 

After integration we obtain 

G(z) + logz = G(1 ) + Ao(z) + Bo(z) (4.9) 

with fz fz 
A(t) dt, Bo(z) = dt. (4.10) A0(z) = t t 

For Bo(z) we have the following expressions: 

Bo(z) = F(1 - 2)F(1 + 22) ta-l(1 - t) -2a dt (4.11) 
r(1 +2 )  

r(1 - 2)r(1 + 22). 
= - (i 2 ~ - ~ i  ~ ~ t l - z)l-2aza-~F(1, 1 - 2;2 - 22;1 - I/z). (4.12) 

To obtain (4.12) from (4.11) we have applied [1, Section 2.5.3, p.87] to express the incomplete 
beta integral as a hypergeometric function followed by the transformation [1, Section 2.10, formula 
(6)1. 

Lemma 4.2. For ~tz >~ 1 with [z - 1 [ = r the following estimates hold: 

IA(z)l ~< 2r, 

IA0(z)l ~< 2r2(r + 1) - l ,  

In(z)] t> r -z~, 

IB0(z)l/> rl-2~(r + 1) ~-l. 

Proof.  The Euler integral formula gives 

F(2 + 22) f ~  1 
F ( 1 , 1 + 2 ; 2 + 2 2 ; 1 - z ) -  F ( l + 2 )  2~U t ~ ( 1 - t ) ~ l - t ( 1 - z )  dt" 

For ~.z~> 1 and tE  [0,1] we have I1 - t ( 1  - z ) [  /> 1, Hence, 

IF(l ,  1 + 2;2 + 22; 1 - z ) l  ~< 1, ~z>_-l.  

In view of  (4.7) this gives (4.13). 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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For z = 1 + re i~, 1~//[ ~< 1 in ,  we have by (4.10) 

fo r A(1 + se iq~) ia, Ao(z) . . . .  --~ e" ds. 
1 + se,~ 

By (4.13) we have IA(1 +se~*)l ~< 2s for every s > 0. Also I 1 + sei~' I /> x/1 + s  2. Hence, 

r s d s = 2 ( ~ l + r  2 - 1 ) ~ 2 -  IA0(z)l < ;t x/1 "~-S 2 r + 1 ' 

which is (4.14). 
The estimate (4.15) is obvious from (4.8), since F(1 - 2)F(1 + 22) > F(1 + 2). 
To estimate IB0(z)] we use (4.12). From the Euler integral 

F(2 - 22) ~1 1 
F ( 1 , 1 - 2 ; 2 - Z 2 ; 1 - 1 / z ) - - - ~  - -~ov  t - ~ ( 1 - t ) - ~ l - t ( 1 - 1 / z )  dt (4.17) 

and the fact that ~R(1/(1 - t(1 - I /z)))  >/1 for ~tz i> 1, t E [0, 1], we get 

I F ( 1 , 1 - 2 ; Z - Z ) ~ ; 1 - 1 / z ) l > ~  1, ~z>~ 1. 

Now (4.16) follows from this and (4.12). [] 

4.3. Starlikeness with respect to z = 1 

We will now concentrate on Property (A) and prove that K(2) is starlike with respect to z = 1 
in case 2 is sufficiently small. 

Lemma 4.3. Let 0 < 2 ~< 2*. Then K(2) is starlike with respect to z = 1 i f  and only i f  

~[(1 - z ) ( 1  +zG'(z))] >>. O, zED(2) .  (4.18) 

Proof.  Proof as in [14, Theorem 2.9]. See also the proof of  Proposition 4.1. [] 

To prove that (4.18) holds we divide D(2) into two parts, 

D~ =D~(2)  : =D(2)  N {~z ~< 1}, D2 =D2(2)  : =D(2)  M {~tz >~ 1} (4.19) 

and we consider (4.18) in the two parts D~, D2 separately. 

Proposition 4.4. Let 0 < 2 ~< 2*. For zED1(2)  the inequality (4.18) holds. 

Proof.  Let zED1(2) .  Without loss of  generality we may assume .~z i> 0. From (3.10) it is easily 
seen that 3(1 +zG'(z) )  >t O. By Corollary 3.6 we also have ~(1 +zG'(z) )  >>. O. Hence 0 ~< arg(1 + 

1 Since l zG'(z)) <<. i n. - ~ n <~ arg(1 - z) ~< 0 for z E D~, it follows that 

1 - S n  ~< arg((1 - z ) ( 1  +zG'(z ) ) )  <~ ½n, z E D i ,  

which gives (4.18). [] 
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The part/)2(2) will be more difficult to handle. We need two lemmas. 
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Lemma 4.5. For 0 < 2 ~< 2", let y(2) be defined by 

y(2) : = sup{y > 0 [ 1 + iy E D(2)}. (4.20) 

There is a constant C~ > 0 such that for 2 small enouoh, 

y(2) ~< C,x/~. (4.21) 

Proof. Clearly l im~0  y ( 2 ) = 0 .  Let 2 be such that y(2) < 1. If z =  1 + i y ( 2 )  then log(1/I 1 - t z l )  >>. 0 
for every t E [0, 1]. Hence by (3.8) ~G(z)  >~ 0 and then f (1  ) =  If(z)l = Iz exp G(z)[ ~> [z I. By (3.13) 
this gives 

y(2) 2 ~< - 1 + exp(4(~,(1 - 2) - ~,(1 - 22)), 

and (4.21) follows. [] 

Lemma 4.6. Let 0 < 2 ~< 2*. The boundary o f  D(2) makes in z = 1 an anole 

1 2 
0 =  8(2)" = ~ n  1 - 2 ~  n (4.22) 

with the interval [1, oo). Furthermore, for  2 sufficiently small, the half-line z = 1 + rei°(~),r > 0 is 
completely outside D(2). 

Proof. From (4.9)-(4.11) it follows that 

F(1 - 2)F(1 + 22),  z)l_2~ 
G ( z ) + l o g z = G ( 1 ) -  ~_--22--~1~_-~tl- + ~ 0 ( 1 - z ) ,  ( z - , I ) .  

Since the boundary of D(2) is the curve ~ ( G ( z ) +  l o g z ) =  G(1), it follows that the angle with 
[1,oo) is given by (4.22). 

Next we write z(r) = 1 + re i°, r > 0 with 0 = 8(2) defined by (4.22) and we prove that for 2 
small, r ~ [f(z(r))  I is increasing for 0 < r < 1. An easy calculation shows that this amounts to 
proving that 

~ [ ~ ( l + z G ' ( z ) ) ]  > 0 ,  z = z ( r ) , O < r <  1. (4.23) 

From (4.8) we have for z = z(r), 

argB(z) = 228 + 2argz = i n _ l  0 + 2 argz. 

From (4.13) and (4.15) it follows that 

[arg(1 + A(z)/B(z))[ <<. [A(z)/B(z)l <~ 2r 1+2a. 

It now readily follows that 

[z' ] _ _ :  _ 
arg ~-(1 +zG' (z ) )  1 - (1 2)argz  + 6(z;2), where 16(z;2)1 ~< 2r l+2a 
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Since argz >~ Cr for some constant C > 0 (independent of  2), we see that for 2 sufficiently small, 
(4.23) holds. 

Now (4.23) implies that z = z ( r ) ,  0 < r < 1 is outside of D(2) for 2 small. It is easy to see that 
z = z (r ) ,  r > 1 is outside of  D(2) for 2 sufficiently small, and therefore the lemma is proved. [] 

Proposition 4.7. For 2 > 0 sufficiently small, the inequality (4.18) holds f o r  every z E D2(2). 

Proof. Let 2 be such that the half-line z = 1 + re i°0), r > 0 is outside of D(2) (see Lemma 4.6) 
and such that y(2)  ~< Clx/~ (see Lemma 4.5). Let z EDz(2), Iz - 11 = r. We may assume .~z t> 0. 
From Lemma 4.6 it follows that 

(4.24) - rt + 0 ~< arg(1 - z) ~< - 5re. 

From (4.8) we have 

arg((1 - z ) B ( z ) )  = (1 - 22) arg( 1 - z) + 2 arg z. (4.25) 

Using (4.22), (4.24) and (4.25) we get 

-½n  + 2argz  ~< arg((1 - z ) B ( z ) )  <<. O. 

Since by (4.15) 1(1 - z )B(z ) l  >~ r l-z~ we obtain from this 

~((1 - z ) B ( z ) )  >~ r I-2a sin(2 argz). (4.26) 

Next from (4.13) we have I(1 - z )A(z ) l  <~ 2r 2 and it follows that 

~[(1 - z ) ( 1  + zG' (z ) )]  >>, r 1-2~ sin(2argz) - 2r 2. (4.27) 

Hence to prove (4.18) it suffices to show that the fight-hand side of  (4.27) is positive. 
From Lemma 4.6 we have 

r sin 0 
arg z >t arg( 1 + re i°) = arctan 

1 + r c o s 0  

and from Lemma 3.3 and the definition of  y(2)  it follows that r ~< y(2)~< C1 x/-2. Thus we are left 
to prove 

( r sin O_ ~ 2r1+2,~, Cl X/~, 
sin 2 arctan 1 + r cos 0 ] >~ r ~< 

for 2 sufficiently small. 
Using (4.22), it is rather straightforward to show that for r ~< C~2, 

[s_inO ~ = 2 r ( 1 + C ( 2 ) ) ,  ( 2 ~ 0 ) .  
sin 2arctan l + r c o s O ]  

For the fight-hand side of  (4.28) we have for r ~< C1x/2, 

2r  1+22 ~ 2 r (C1v/~)  22 = 2r(1 + 21og2 + (9(2)), (2 --~ 0). 

Now (4.28) easily follows and the proposition is proved. [] 

(4.28) 
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Combining Lemma 4.3 with Propositions 4.4 and 4.7 we have proved the following result. 

Theorem 4.8. There is 21 E (0, 2*] such that for  every 0 < 2 ~< 21, the set K(2) is starlike with 
respect to z = 1. 

4.4. Positive coefficients 

We turn to the proof of  Property (B) of  Proposition 4.1. Let 

bl b2 
~(w) = w +  b0 + - -  + + ".- (4.29) 

w 

be the inverse of  F(z). Of course, the coefficients bk depend on 2. If necessary we write bk = bk(2). 

Lemma 4.9. For k >>- 1, 

' f  
bk = 2rfik f ( z ) - k z  -2dz, (4.30) 

where ? is a closed contour which encloses z = 0 once in the positive direction. 

Proof. From (4.29) and the Cauchy formula we get 

bk = ~ ~(w)w k-I dw. 

Set in the integral w = 1/ f (z )  to obtain 

if bk = ~ f ( z ) - k - l z - l  f ' ( z ) d z  

and integrate by parts 

1 f f ( z ) _ k z _  z dz + (k + 1)bk. 
bk = F ~ i  , 

This gives (4.30). [] 

To obtain the positivity of  bk from the integral in (4.30), we will consider the path of  steepest 
descent from z =  1. This is the curve for which G ( z ) + l o g z  is real and > G(1). To be precise, we 
define z ( s ) =  z(s; 2) as the solution of  

G ( z ) + l o g z = G ( 1 ) + s ,  z ( 0 ) = l  

which lies on the sheet of  the Riemarm surface of  G(z) + logz where 

_ 3 _ n ~ < a r g ( l _ z ) ~ < _ r c ,  - S n ~ < a r g z ~ < 0 .  
2 

By (4.9) we have 

Ao(z)+ Bo(z )=s ,  z = z ( s ) .  (4.31) 

We need several estimates on z(s). 
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L e m m a  4.10. (1) For s > 0, a rgz(s )  < 0. 
5 (2) There is a constant C2 > 0 such that f o r  all 2 sufficiently small, we have a r g ( 1 - z ( s ) )  > - a n ,  

as lono as I z ( s ) -  11 ~< C2 2-1/3. 

( 3 ) / f  Iz(s) - 11 < 1 then arg(1 - z ( s ) )  < - rt - 2rt. 
(4) There is a constant C3 > O, independent o f  2, such that f o r  [z(s) - 11 < 1, we have Iz(s) - 

11 t> C3 S1/(1-22). 

Proof .  (1) For argz = 0, z > 1, Ao(Z) is real and by (4.12) a r g B 0 ( z ) =  (1 - 2 2 ) ( - r t ) +  rt = 22rt. 
Hence A o ( z ) + B o ( z )  is not real for such z, and it follows that the curve z ( s )  does not cross the real 
axis. This proves (1). 

(2) Let arg(1 - z ) =  -an5 and r =  Iz - 1 I. It is easy to see from the integral representation (4.17) 
that a rgF(1 ,  1 - 2 ; 2 -  22; 1 - I / z ) <  0. Thus it follows from (4.12) that 

a r g B o ( z ) < r t - ( 1 - 2 2 ) ~ r t + ( 2 - 1 ) a r g z = - a r t + '  -~2rt + ( 1 -  2) la rgz  I. 

Since 

I arg z I = arctan ( 1 

we find 

) ~< a= 2 v / ~ + 2 r  ' v ~ + r  

argB0(z) ~< 92rt - (1 - 2 )2x/~  + 2r" 

Further from (4.14) and (4.16) it follows that IAo(z)/Oo(z)l ~ 2r 1+~, so that 

arg(Ao(z) + Bo(z))  ~< -942rt - (1 - 2 )2x/~  + 2r + 2rl+)'" 

It is easy to see from this that there exists C2 > 0, independent  o f  2, such that for r < C22 -~/3 and 
2 sufficiently small, we have arg(A0(z) + Bo(z))  < 0. This implies that z ( s )  does not cross the line 
a r g ( 1 - z ) =  5 -a rc  as long as Iz(s) - 11 < C2 2-1/3 This proves (2). 

(3) Let z =  1 + r e - i ~ , 0  < r < 1. From (4.11) we get 

Bo(Z) = e  2~iF(1 -['(-1~7~)2)F(1 + 22)_ f t  z(t - 1)-2;T ~-1 dt 

= e2).Trie_i~Zte2)?~i F( 1 - 2)F(1 + 22) p-2,~ 1 
I'(-1 ~7~) (1 + p e - i ~ )  l-~ dp,  

where we put  t = 1 + pe -i)~. It follows that 

argB0(z) > 22rt - 2rt + 222rt > 2rt. 

Since from (4.14) and (4.16) we have for 0 < r < 1, IAo(z)/Bo(z)l <~ 2r 1+~ < 2, we see that 

arg(A0(z) + Bo(z))  > 2rt - 2 > 0 

and (3) follows. 
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(4) From (4.12) we easily get that 

le0(z)l < gr  '-2~, ~Ptz >>. 1,r -- Iz - I I  < 1. 

Here K > 1 is a constant independent of  2. Combined with (4.14) this gives 

id0(z) + B0(z)l ~< Kr 1-24, ~z ~> 1, r = Iz - 11 < 1, 

with a (possibly larger) positive constant K, independent of  2. So if Iz(s) - 1] = r < 1, then 

s = [Ao(z(s)) + Bo(Z(S))[ <. Kr |-2~ 

This gives (4) with e.g., C3 = K -2. [] 

Theorem 4.11. There is 22E(0, ~,*] such that for every 0 < 2 <~ 22, all coefficients bk(2) are positive. 

Proof. In formula (4.30) we take the following contour ?. Let R1(2) : ----C22 -1/3, where C2 is as in 
Lemma 4.10 part (2), and let 7 be the closed contour starting in z = 1, following the upper side of  
the cut [1,c~) up to the point RI(2), followed by the circle Izl =R1(2),  and then on the lower side 
of  the cut back to z =  1. Let 2 be so small that if I z ( s ) -  11 < Rl(2) then arg(1 - z ( s ) )  > - ¼rr, see 
Lemma 4.10 part (2). [In the course of  the proof we might take a smaller 2.] 

Since ? is symmetric in the real axis, (4.30) gives 

bk -- 1 3  ~+ f ( z ) -k z  -2 dz, (4.32) 
7ck 

where 7 + is the part of  ? in the upper half-plane. 
Let So = s0(2) be such that Iz(s0(2); 2)[ = Rl(2), where z(s )= z(s; 2) is defined as in (4.31). We 

deform 7 + into a contour y* as follows. Starting at z = 1 we follow the curve z(s) from s = 0 to 
S=So. This part will be denoted by ?~. Then we follow the circle Izl =R1(2)  from Z(So) to -R1(2).  
This part will be denoted by ?~. 

The integral in (4.32) can be taken over 7* instead of  ?+ and we get bk = bk,~ + bk,2, where 

1 .~L. f (z )_kz_2dz ,  j = l , 2 .  
bk, j -- ~rk 

We are going to prove that bk,~ > Ibk,21 for all k in case 2 is sufficiently small. 
Using the substitution G(z) + logz = G(1) + s, 0 < s < so, we get 

1 -koo 
bk,1 : - ~--~e )~Jo~°e-~z2i,s) 

f z'(s) 
ds. 

We integrate by parts to obtain 

bk ,=~le-kao) -~[e-~°Z(so) l  l + k f o  ~° -k~ 1 ds] . , e 

By Lemma 4.10, parts (1) and (2) and by the definition of  So, 1/z(s) has positive imaginary part 
for 0 < s ~< So. Hence 

bk ,~>le -ka( l )  f S ° e - k ~ (  1 ) 
' rt Jo z - ~  ds. (4.33) 
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Next, we let sl = s l ( 2 )  be such that Iz(s1(2);2) - 11 = 1. Since z(sl(2);2) ~ 2 for 2 ~ 0, we get 
s1(2) ~ log2, and there is a constant a > 0 such that s1(2) > a for all 2. For s < tr we have 

.~z( s ) 
~(1 / z ( s ) ) -  iz(s)l---- 5 >/¼t~z(s)l = ¼t~(z ( s ) -  1)1 = ¼1z(s)- ill sin arg(1 - z ( s ) ) [ .  

Using Lemma 4.10 parts (3) and (4) we obtain from this 

(') ..~ " ~  >i Kis1/(1-22)~. ~ K1sI/2,~, (4.34) 

with a constant K~ > 0, independent of  2. Thus from (4.33) and (4.34) and the positivity of 
.~(1/z(s) ), 

f o ~ ( )  1 bkl >1 le-kGO) e - ~  1 ds >i -e-kG<~>K~2 e-~'s ~/2 ds 
' ~ 7~ 

K2)~k- 3/2e -kG(1) (4.35) 

with another positive constant K2. 
Next we estimate bk,2. On the circle Izl = R1(,~) we have I f (z ) l  > / [ f ( - R ~ ( 2 ) ) l ,  see Lemma 3.3. 

Recall that f ( z )= z exp G(z) and by (3.8) 

F(1 - 2) f '  
G(-RI) = - 2 F ( 2 ) F (  1 _ 22) J0 t~-l(1 - t)-2~ l°g(1 + tR1)dt. 

We use log(1 + tR1) <~ tRl to obtain 

G(-R1)>>'-2R1F( ) ( 1 - 2 2 )  ta(1- t ) -Zadt=-2Rll-2"  

Now R1 =R1(2)  = C2~. -1/3, so that G(-RI) >>. - 2(7222/3/(1 - 2) and 

If(-R~)l = R, ea<-R') f> C22-~/3 exp - 2 G  1 _--2- ~ >1/(32 -1/3 

for a positive constant K3. Hence 

1 f,,. v 1 ~k/3~l/3v-k Ibk,2l ~< ~ I f (z) t -klz l -2ldzt  <~..4~.~ .~ .-3 • 
- t  2 

Now bk(2) will be positive if bk, t > Ibk,21 which by (4.35), (4.36) is the case if 

K41,~k/3 21/3K3 k < Kz2k-3/2e-kC(l ), 

or written otherwise, 

1 kl/2exp[-k(llog-~+logK3-G(1))] <.1(.522/3. 

Note that for 2 sufficiently small, 

log 1 ~ + log/(3 - G(1 ) > 2. 

(4.36) 

(4.37) 
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[Actually, G(1) also depends on 2, but it remains bounded near 2 = 0, see (3.12).] For such 2, the 
left-hand side of  (4.37) is decreasing in k. Thus for such 2 and k ~> 3, 

1 
k l / 2 e x p [ - k ( l l o g - ~ - G ( 1 ) ) ]  <~ 31/22exp(3G(1))K33, (4.38, 

and for possibly even smaller 2 the right-hand side of  (4.38) is less than Ks/l 2/3. Hence for 2 
sufficiently small the coefficients bk(2) are positive for k t> 3. It is easily checked that b0(2), b~(2) 
and bz(2) are also positive for small 2. The theorem now follows. [] 

4.5. Conclusion 

Theorem 1.4 is an immediate consequence of  Proposition 4.1 and Theorems 4.8 and 4.11. 

5. Asymptotic distribution of the zeros: the proof of Theorem 1.5 

In this section we fix 2 < 2" and use the notation as before. Thus we have by Theorem 1.3 a 
starlike compact set K = K ( 2 )  such that F(z)  is the conformal mapping from C \ K  onto {Iw[ > p} 
and cap(K) = p. 

Let v, --- v(F,) be the normalized zero distribution of  the Faber polynomials F,(z). That is, if 
~1,~, ~2,,,..., ~,,, are the zeros of  Fn(z), then 

1 
v, • - -  ~ ~¢,°, (5.1) 

nj=l 

where 6c is the point distribution with total mass 1 at the point ~. Let VK be the equilibrium measure 
of  K. This is the unique probability measure on K such that 

- fK log [Z -- t[ dvx(t) = -- log cap(K) = - log p, z E K. (5.2 ) 

For every measure v on K we denote by UV(z) = - fx log [z - t[ dv(t) the potential of  v. For the 
normalized zero distributions v, we have 

UV,(z) = _ 1  log [F,(z)[. (5.3) 
n 

Lemma 5.1. 

lim [F~(0)I 1/~ = p. 
n - - - + ~  

(5.4) 

Proof. From (2.3) and (2.4) we see that Fn(0) is the coefficient of  z n in the Taylor expansion of  
exp(-nG(z)) .  Thus by the Cauchy formula 

Fn(O) = ~ z "+l exp(nG(z)) dz = ~ f ( z ) - " z  -1 dz, (5.5) 

where 7 is a closed contour which encloses z = 0 once in the positive direction. 
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For large n, we apply asymptotic analysis to the integral in (5.5). Since 0 < 2 < 2*, we can 
choose 7 such that 7 passes through z =  1 and such that If(z)[ > f ( 1 )  for all ZET, z ¢ 1. To be 
specific, we take ~, to be the segment [1,R0(2)] on the upper side of the cut [1,oo), followed by 
the circle [z[ = R0(2) and on the lower side of the cut back to z = 1. Here R0(2) is as in the proof 
of  Theorem 1.3. Using the symmetry with respect to the real axis one gets from (5.5) 

F.(O) = 1 3  f f ( z ) - " z  -l dz, 
7z j ;.+ 

where 7 + is the part of  7 in the upper half-plane. Since for z = x real on the upper side of  the cut, 
one has by (4.9), (4.12), 

F(1 - 2)F(1 +2_2)e2~.i( x -  1)1_2~ + C ( x -  1), (x ~ 1), G(x) + logx = G(1) + -~ -- -2 2-~-(-1 + 2) 

asymptotic analysis as in Wong [19, II 5] yields 

F,( O ) ~ -Ce-"GO }n -1/{1-2;~), 

where C is a positive constant. Here c, ~ d, means lim,__.~ c,/dn = 1. 
Now (5.4) follows, since e x p G ( 1 ) =  lip. [] 

P r o o f  o f  T h e o r e m  1.5. In view of  Theorem 2.5(a) every weak-star limit of  the sequence (v,) is a 
probability measure on K and it suffices to prove that vx is the only possible limit. 

Let v be any weak-star limit of  the sequence (v,). Since 

l i m  IFn(z)l 1/n = IF(z)[, uniformly on compact subsets of  C\K,  

cf. [16, p. 135], we find that 

UV(z) = - log [F(z)l ,  z E C\K. 

Because UV(z) is superharmonic (5.6) gives 

UV(z) 

Next from 

uv(o) 

From (5.7) 
- log p for 
m e a s u r e  YK 

(5.6) 

/> - log p, z E K. (5 .7)  

(5.3), (5.4), the Principle of  descent (see [11, Theorem 1.3]) and (5.7) it follows that 

= - log p. (5.8) 

and (5.8) it follows by the minumum principle for superharmonic functions that UV(z)= 
every z E K. Hence v satisfies the property (5.2) which characterizes the equilibrium 
and Theorem 1.5 follows. [] 
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