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Abstract. We compute the inverse of a specific infinite-dimensional matrix,
thus unifying a number of previous matrix inversions. Our inversion theorem
is applied to derive a number of summation formulas of hypergeometric type.

1. Introduction

Let F = (fnk)n,k∈Z (Z denotes the set of integers) be an infinite-dimensional

lower-triangular matrix; i.e. fnk = 0 unless n ≥ k. The matrix (f−1
kl )k,l∈Z is the

inverse matrix of F if and only if

∑
n≥k≥l

fnkf
−1
kl = δnl

for all n, l ∈ Z. Such matrix inversions are very important in many fields of com-
binatorics and special functions. For example, when dealing with combinatorial
sums, application of the so-called “inverse relations” (see (4.1) and (4.2)), which
are based on matrix inversion, helps to simplify problems, or yields new identities.
Riordan dedicated two chapters of his book [21] to inverse relations and its appli-
cations. Riordans inverse relations were classified and given a unified method of
proof by Egorychev [7, Ch. 3]. Studying a specific class of inverse relations in a
series of papers [12–15], Gould and Hsu [16] finally discovered a very general matrix
inversion, which is equivalent to:

If

(1.1)(1) Ank =

∏n−1
j=k (aj + kbj)

(n− k)!
,

then

(1.1)(2) A−1
kl = (−1)k−l

al + lbl
ak + kbk

∏k
j=l+1(aj + kbj)

(k − l)! .
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48 C. KRATTENTHALER

(By convenience, products of the form
∏u−1
j=u are defined to be equal to 1, while

for u > v − 1 a product
∏v−1
j=u by definition is equal to 0.) The inverse pair (1.1)

contains a lot of inverse relations of Gould–type (cf. [21, pp. 50–51]) and Abel–type
(cf. [21, p. 99]). Carlitz [6] found a q-analogue of (1.1) which is equivalent to:

If

(1.2)(1) Bnk = q(
n−k

2 )
∏n−1
j=k (aj + qkbj)

(q; q)n−k
,

then

(1.2)(2) B−1
kl = (−1)k−l

al + qlbl
ak + qkbk

∏k
j=l+1(aj + qkbj)

(q; q)k−l
,

where (a; q)m = (1 − a)(1− aq) · · · (1− aqm−1). Special cases of (1.2) are of great
significance in q-series theory. Andrews [1] showed that the Bailey transform [2,
3], used to prove identities of Rogers–Ramanujan type, is equivalent to the case
aj = 1 and bj = −bqj of (1.2). Gessel and Stanton [11] used several specializations
of the aj = 1, bj = −bpj case of (1.2) to derive a number of basic hypergeometric
summations and transformations, and, once again, identities of Rogers–Ramanujan
type.

In [4] Bressoud considers finite forms of Rogers–Ramanujan identities. The trans-
form which he uses to prove them is equivalent to the matrix inversion [5]:

If

(1.3)(1) Cnk =
(1− aq2k)(b; q)n+k (ba−1; q)n−k(ba−1)k

(1− a)(aq; q)n+k (q; q)n−k
,

then

(1.3)(2) C−1
kl =

(1− bq2l)(a; q)k+l (ab−1; q)k−l (ab−1)l

(1− b)(bq; q)k+l (q; q)k−l
.

The purpose of this paper is to give the following generalization of (1.1)–(1.3),
which will be proved in section 2:

Theorem. Let (ai)i∈Z, (bi)i∈Z and (ci)i∈Z be arbitrary sequences such that ci 6= cj
if i 6= j.

If

(1.4)(1) fnk =

∏n−1
j=k (aj + ckbj)∏n
j=k+1(cj − ck)

,

then

(1.4)(2) f−1
kl =

al + clbl
ak + ckbk

∏k
j=l+1(aj + ckbj)∏k−1
j=l (cj − ck)

.

In fact, (1.1) is the special case ck = k, (1.2) is equivalent to the case ck = qk,
and (1.3) is equivalent to the case ck = q−k+aqk, aj = aq−j−1 +b2qj−1, bj = −b/q.
Moreover, replacing ck by (1 + ac2k)/ck, aj by (a+ b2j)/cj+1 and bj by −bj/cj+1 in
(1.4), we get after some simplification the following
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Corollary. With the assumption of the Theorem, a 6= (cjck)−1 for all j, k ∈ Z, if

(1.5)(1) gnk =

∏n−1
j=k (1− ckbj)

∏n−1
j=k (bj − ack)∏n

j=k+1(1− ackcj)
∏n
j=k+1(cj − ck)

,

then

(1.5)(2) g−1
kl =

(1− clbl)(bl − acl)
(1− ckbk)(bk − ack)

∏k
j=l+1(1− ckbj)

∏k
j=l+1(bj − ack)∏k−1

j=l (1− ackcj)
∏k−1
j=l (cj − ck)

.

For ck = qk the cases bj = bqj and bj = bq−j are equivalent to (1.3). In this
sense the form (1.5) of (1.4) is the natural generalization of Bressoud’s matrix
inverse (1.3), such as (1.4) is the natural generalization of Gould’s and Hsu’s (1.1)
and Carlitz’s (1.2).

A special case of (1.5), namely (4.3), which involves rising q-factorials with two
different bases, has been crucial in papers by Gasper and Rahman [8, 19]. They
used inversion together with an indefinite bibasic sum to derive numerous beautiful
bibasic, cubic, and quartic summation formulas for basic hypergeometric series (see
section 3 for “hypergeometric” definitions). (They also extended this method to
obtain bibasic, cubic, and quartic transformation formulas [9; 20; 10, sec. 3.6].) In
section 4 we add two more applications of this inversion. We derive a summation
formula (identity (4.8)) for series of hypergeometric type, and as a by-product of
the second application we obtain a basic hypergeometric transformation formula
(identity (4.12)). The former contains an infinite family of summation formulas for
very well-poised hypergeometric series. Besides, we use the opportunity to clearly
demonstrate that what Gasper and Rahman do in [8, 19] is indeed inversion, though
in disguise. This fact does not seem to be as accepted as it should be. (Their
extension in [9; 20; 10, sec. 3.6] has an explanation in terms of “partial inversion”.)

Finally, in section 5 we apply other special cases of (1.4) to obtain curious iden-
tities ((5.5), (5.9), (5.12)) which involve cubic, quartic, and quintic analogues of
rising factorials, respectively.

2. Proof of the Theorem

In [18] the author gave a method for solving Lagrange inversion problems. These
are closely connected with the problem of inverting lower-triangular matrices. For
convenience, by a formal Laurent series (fLs) we always mean a series of the form∑
i≥m αiz

i, for some m ∈ Z. Given the fLs’s a(z) and b(z) we introduce the bilinear

form 〈 , 〉 by

〈a(z), b(z)〉 = 〈z0〉 a(z)· b(z) ,

where 〈z0〉c(z) denotes the coefficient of z0 in c(z). Given any linear operator L
acting on a fLs, L∗ denotes the adjoint of L with respect to 〈 , 〉; i.e. 〈La(z), b(z)〉 =
〈a(z), L∗b(z)〉 for all fLs a(z) and b(z). What we need is the following special case
of [18, Theorem 1].

Lemma. Let F = (fnk)n,k∈Z be an infinite lower-triangular matrix with fkk 6= 0

for all k ∈ Z. For k ∈ Z, the formal Laurent series fk(z) and f̃k(z) are defined by
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50 C. KRATTENTHALER

fk(z) =
∑
n≥k fnkz

n and f̃k(z) =
∑
l≤k f

−1
kl z

−l, where (f−1
kl )k,l∈Z is the uniquely

determined inverse matrix of F . Suppose that for k ∈ Z

(2.1) Ufk(z) = ck · V fk(z)

holds, where U, V are linear operators acting on formal Laurent series, U being
bijective, and (ck)k∈Z is a sequence of constants. If hk(z) is a solution of

(2.2) U∗hk(z) = ck · V ∗hk(z) ,

with hk(z) 6≡ 0 for all k ∈ Z, then

(2.3) f̃k(z) =
1

〈fk(z), V ∗hk(z)〉V
∗hk(z) .

In order to prove (1.4), we set fk(z) =
∑
n≥k fnkz

n with fnk of (1.4)(1). Obvi-
ously, for n ≥ k

(2.4) (cn − ck)fnk = (an−1 + ckbn−1)fn−1,k .

If we define the linear operatorsA,B, C byAzk = akz
k,Bzk = bkz

k and Czk = ckz
k,

(2.4) may be rewritten in the form

(2.5) (C − zA)fk(z) = ck(1 + zB)fk(z) ,

valid for all k ∈ Z. Equation (2.5) is a system of equations of type (2.1) with
U = C − zA and V = 1 + zB. The dual equations (2.2) for the auxiliary fLs hk(z)
in this case read

(2.6) (C∗ −A∗z)hk(z) = ck(1 + B∗z)hk(z) .

Because of A∗z−k = akz
−k etc., by comparing the coefficients of z−l in (2.6) we

obtain
(cl − ck)hkl = (al + ckbl)hk,l+1 .

If we set hkk = 1, we get

hkl =

∏k−1
j=l (aj + ckbj)∏k−1
j=l (cj − ck)

.

Taking into account (2.3), here we have f̃k(z) = (1 + B∗z)hk(z). Hence again,
comparing coefficients of z−l leads to

f−1
kl = hkl + blhk,l+1 =

al + clbl
ak + ckbk

∏k
j=l+1(aj + ckbj)∏k−1
j=l (cj − ck)

,

which is exactly (1.4)(2).
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3. Hypergeometric and basic hypergeometric notation

All the notation and terminology is adopted from [10, pp. 1–6]. The (generalized)
hypergeometric series is defined by

rFs

[
a1, . . . , ar
b1, . . . , bs

; z

]
=
∞∑
n=0

(a1)n · · · (ar)n
n! (b1)n · · · (bs)n

zn ,

where the rising factorial (a)n is given by (a)n := a(a + 1) · · · (a + n − 1), n ≥ 1,
(a)0 := 1. The gamma function can be used to extend rising factorials by defining
(a)β = limγ→a Γ(γ + β)/Γ(γ), β arbitrary (cf. [17, p. 211f]). A hypergeometric
series r+1Fr is called very well-poised if ai + bi = 1 + a0 for i = 1, 2, . . . , r, and
among the parameters ai occurs 1 + a0/2. We use the standard abbreviation for
very well-poised hypergeometric series,

r+1Vr(a0; a2, a3, . . . , ar; z)

:= r+1Fr

[
a0, 1 + a0/2, a2, a3, . . . , ar

a0/2, 1 + a0 − a2, 1 + a0 − a3, . . . , 1 + a0 − ar
; z

]
.

We shall also use the compact Gasper-Rahman notation

(a1, a2, . . . , ar)n := (a1)n (a2)n · · · (ar)n

and

Γ

[
a1, a2, . . . , ar
b1, b2, . . . , bs

]
:=

Γ(a1) Γ(a2) · · · Γ(ar)

Γ(b1) Γ(b2) · · · Γ(bs)
.

Given a (fixed) complex number q with |q| < 1, the basic hypergeometric series
is defined by

rφs

[
a1, . . . , ar
b1, . . . , bs

; q, z

]
=
∞∑
n=0

(a1; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (bs; q)n

(
(−1)nq(

n
2)
)s−r+1

zn ,

where, as before, the rising q-factorial (a; q)n is given by

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1, (a)0 := 1.

The infinite q-factorial (a; q)∞ :=
∏∞
i=0(1 − aqi) can be used to extend (finite)

q-factorials by defining (a; q)β := (a; q)∞/(aq
β; q)∞, β arbitrary. A basic hyper-

geometric series r+1φr is called very well-poised if aibi = qa0 for i = 1, 2, . . . , r,
and among the parameters ai occur both q

√
a0 and −q√a0. We use the standard

abbreviation for very well-poised basic hypergeometric series,

r+1Wr(a0; a3, a4, . . . , ar; z) := r+1φr

[
a0, q
√
a0,−q

√
a0, a3, a4, . . . , ar√

a0,−
√
a0, qa0/a3, qa0/a4, . . . , qa0/ar

; z

]
.

We use short notations in the basic hypergeometric context which are analogous to
the hypergeometric ones.

All identities in our paper are subject to suitable conditions on the parameters
such that the involved hypergeometric or basic hypergeometric series converge. We
shall not state these conditions for each identity. The reader should consult [10,
pp. 4–5].
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52 C. KRATTENTHALER

4. Hypergeometric summation formulas from inversion

There is a standard technique for deriving new summation formulas from known
ones by using inverse matrices (cf. [1, 11, 21]). If (fnk) and (f−1

kl ) are lower-
triangular matrices that are inverses of each other, then of course the following is
true:

(4.1)
n∑
k=0

fnkak = bn if and only if
k∑
l=0

f−1
kl bl = ak.

If one side in (4.1) is known, then the other produces another summation formula.
There is also a less used dual version, which in Riordan’s book [21] is called “rotated
inversion”. It reads

(4.2)
∞∑
n=k

fnkBn = Ak if and only if
∞∑
k=l

f−1
kl Ak = Bl,

subject to suitable convergence conditions. Again, if one side in (4.2) is known,
then the other produces a possibly new identity.

What Gasper and Rahman do in [8, 19] is rotated inversion, though in dis-
guise. Recall that the rotated inversion (4.2) bases on the orthogonal relation∑n
k=l fnkf

−1
kl = δnl. (δnl is the usual Kronecker delta.) Typically, Gasper and Rah-

man start with such an orthogonality relation, but with l = 0, i.e.
∑n
k=0 fnkf

−1
k0 =

δn0. (As inverse pair (fnk), (f−1
kl ) they choose special cases of (4.3), with the roles of

fnk and f−1
kl interchanged.) Then they multiply both sides by Bn, say, and sum over

all n. This gives
∑∞
n=0Bn

∑n
k=0 fnkf

−1
k0 = B0. Next the sums are interchanged

to give
∑∞
k=0 f

−1
k0

∑∞
n=k fnkBn = B0. The inner sum in all cases is simplified by

means of Bailey’s nonterminating extension of Jackson’s 8φ7-sum, to Ak say. Thus
the identity

∑∞
k=0 f

−1
k0 Ak = B0 is proved. Of course, the reader will have observed

that this is exactly the proof of the left-to-right implication of (4.2), for l = 0.
Hence, why not start with l generic? The answer is that there is no problem of
doing the same with arbitrary l. But in the end it turns out that the resulting
identity is not more general. In fact, a simple parameter substitution eliminates all
occurrences of l, and one is left with the identity for l = 0. This l = 0 phenomenon
will be exemplified in the following application of the inversion (1.5).

Before we start, another digression appears to be of interest. Gasper and Rah-
man’s indefinite bibasic sum [10, (3.6.13)], which is so important in their derivations,
comes from a telescoping argument which is based on a mysterious factorization
[10, (3.6.10)] of a difference of two four-term products into a four-term product.
This factorization loses some of its mystery if one observes that it is just equivalent
to the n = 1 case of Jackson’s 8φ7-sum [10, (2.6.2)] (replace a by adpkqk−1, b by
bpk, c by cqk, d by apk in Jackson’s sum with n = 1).

In this section we use the inverse matrices of (1.5) with the choices ck = qk and
bj = bpj . This inversion can be written in the form:

If

(4.3)(1) fnk =
(bpkqk; p)n−k (bpkq−k/a; p)n−k

(aq2k+1; q)n−k (q; q)n−k
,
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then
(4.3)(2)

f−1
kl = pl−k

(1− bplql)(1− ap−lql/b)
(1− bpkqk)(1− ap−kqk/b)

(bpkqk; p−1)k−l (bpkq−k/a; p−1)k−l
(aq2k−1; q−1)k−l (q−1; q−1)k−l

.

If in (4.3) we replace a by qB, b by qB−C , q by pA, and let p→ 1, we obtain the
inverse pair:

If

(4.4)(1) fnk =
(AB −AC + (1 +A)k)n−k(−AC + (1−A)k)n−k

(B + 2k + 1)n−k(n− k)!
,

then

(4.4)(2) f−1
kl =

(−AC + (1−A)l) (AB −AC + (1 +A)l)

(−AC + (1−A)k) (AB −AC + (1 +A)k)

(−AB +AC − (1 +A)k)k−l(AC − (1−A)k)k−l
(1−B − 2k)k−l k!

.

For Bn we choose

(4.5) Bn =
(D)n

(−B +AB − 2AC +D)n
.

Now we form the sum Ak =
∑∞
n=k fnkBn. In hypergeometric notation this is

Ak =
(D)k

(−B +AB − 2AC +D)k

· 3F2

[
D + k,−AC + k −Ak,AB −AC + k +Ak
−B +AB − 2AC +D + k, 1 +B + 2k

; 1

]
.

To the 3F2 we apply a nonterminating extension of the Pfaff–Saalschütz summation
[23, (2.4.4.4)]

3F2

[
a, b, c

d, 1 + a+ b+ c− d ; 1

]
= Γ

[
1 + a− d, 1 + b− d, 1 + c− d, 1 + a+ b+ c− d
1− d, 1 + b+ c− d, 1 + a+ c− d, 1 + a+ b− d

]
− Γ

[
d− 1, 1 + a− d, 1 + b− d, 1 + c− d, 1 + a+ b+ c− d

1− d, a, b, c, 2 + a+ b+ c− 2d

]
· 3F2

[
1 + a− d, 1 + b− d, 1 + c− d

2− d, 2 + a+ b+ c− 2d
; 1

]
,

(4.6)

thus obtaining
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Ak = Γ

[
1 +B −AB + 2AC, 1 +B − AB +AC −D − Ak,1 +B + AC −D + Ak

1 +B − AB + 2AC −D − k, 1 +B −D + k, 1 +B +AC + k +Ak

](4.7)

· Γ
[

1 +B + 2k,−B + AB − 2AC +D,D + k
1 +B −AB + AC + k − Ak,D,−B +AB − 2AC +D + k

]
− Γ

[
−1−B + AB − 2AC +D + k, 1 +B − AB + 2AC, 1 +B − AB +AC −D −Ak

1 +B −AB + 2AC −D − k,−AC + k − Ak,AB −AC + k +Ak

]
· Γ
[

1 +B +AC −D +Ak, 1 +B + 2k,−B +AB − 2AC +D
2 + 2B −AB + 2AC −D + k,D,−B +AB − 2AC +D + k

]
3F2

[
1 +B −AB + 2AC, 1 +B − AB +AC −D −Ak, 1 +B +AC −D + Ak

2 +B − AB + 2AC −D − k, 2 + 2B −AB + 2AC −D + k
; 1

]
.

By rotated inversion (4.2) the identity
∑∞
k=l f

−1
kl Ak = Bl, with f−1

kl , Ak, Bl given by
(4.4)(2), (4.7), (4.5), respectively, holds. The sum on the left-hand side splits into
two sums, one of which is actually a double sum. In this double sum we interchange
summations and simplify. In the resulting identity we replace B by B − 2l, C by
C + (1 − A)l/A, and D by D − l. The effect of this last step is the same as if we
would have set l = 0. This is the l = 0 phenomenon which was described before.
Thus we arrive at the summation

(4.8)
∞∑
k=0

(B)k(1 + B
2

)k(AB −AC)(1+A)k(1 +B +AC −D)Ak(−AC)(1−A)k

k! (B
2

)k(1 +B +AC)(1+A)k(1 + AB −AC)Ak(1 +B −AB + AC)(1−A)k

(1 +B − AB +AC −D)−Ak(D)k

(1− AC)−Ak(1 +B −D)k

− Γ

[
1 +B − AB +AC, 1 +B + AC, 1 +B −D,−1−B + AB − 2AC +D

AB − AC,−AC, 2 + 2B − AB + 2AC −D,D

]
∞∑
j=0

(1 +B − AB + 2AC)j(1 +B +AC −D)j(1 +B − AB + AC −D)j

j! (2 +B −AB + 2AC −D)j(2 + 2B −AB + 2AC −D)j

∞∑
k=0

(B)k(1 + B
2

)k(−1−B + AB − 2AC +D − j)k
k! (B

2
)k(2 + 2B −AB + 2AC −D + j)k

(1 +B + AC −D + j)Ak(1 +B − AB +AC −D + j)−Ak
(1 + AB −AC)Ak(1− AC)−Ak

= Γ

[
1 +B −AB +AC, 1 +B + AC, 1 +B −D, 1 +B − AB + 2AC −D
1 +B, 1 +B − AB + 2AC, 1 +B −AB + AC −D, 1 +B + AC −D

]
.

Unfortunately, the inner sum in the double sum cannot be evaluated in general. (It
can for A = 1. In this case even a q-analogue exists, see below.) If we terminate
the first series by setting D = −n, n a nonnegative integer, then the term with the
double sum vanishes because of the occurrence of Γ(D) in the denominator of this
expression. The resulting summation can be rewritten as

(4.9)
∞∑
k=0

(B)k(1 + B
2 )k(AB −AC)(A+1)k(AC)Ak(−B +AB −AC)(A−1)k

k! (B2 )k(1 +B +AC)(A+1)k(1 + AB −AC)Ak(1 +AC)(A−1)k

(1 +B +AC + n)Ak(−n)k
(−B +AB −AC − n)Ak(1 +B + n)k

=
(1 +B)n(1 +B −AB + 2AC)n

(1 +B +AC)n(1 +B −AB +AC)n
.

If A is a positive integer (4.8) and (4.9) give summation formulas for (nonterminat-
ing, respectively terminating) very well-poised 4A+3F4A+2-series. The case A = 1

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



A NEW MATRIX INVERSE 55

of (4.9) is almost equivalent to a known 7F6-summation [23, (2.4.1.5)]. In fact, both
formulas can be derived from each other by contiguous relations. Besides, identity
(4.8) for a fixed A is equivalent to (4.8) with A replaced by −A. (Hence, the same
is true for (4.9).) In fact, replacing A by −A is the same as replacing C by B −C.

Letting n tend to ∞ in (4.9) leads to the summation

(4.10)
∞∑
k=0

(B)k(1 + B
2 )k(AB −AC)(A+1)k(AC)Ak(−B +AB −AC)(A−1)k

k! (B2 )k(1 +B +AC)(A+1)k(1 +AB −AC)Ak(1 +AC)(A−1)k

= Γ

[
1 +B, 1 +B −AB + 2AC

1 +B +AC, 1 + B −AB +AC

]
.

If A is a positive integer (4.10) gives a summation formula for nonterminating very
well-poised 3A+2F3A+1-series.

It is only the case A = 1, where we are able to give a q-analogue of (4.8)
(and hence of (4.9) and (4.10)). This is due to the absence of a suitable bibasic
analogue of the Pfaff–Saalschütz formula. (Recently a bibasic analogue of the Pfaff–
Saalschütz formula has been discovered by Singer [22], but it is not suited for our
purposes.) To obtain the q-analogue of (4.8) in case A = 1, start with the inverse
pair (fnk), (f−1

kl ) from (4.3), with p = q, a = B, b = B/C. For Bn choose
Bn = qn(D; q)n/(D/C

2; q)n. Then proceed as before. Instead of (4.6) use the
nonterminating extension of the q-Pfaff–Saalschütz sum [10, (2.10.12)]. To evaluate
the inner sum of the arising double sum, use the very well-poised 6φ5-summation
[10, (2.7.1)]. What is finally obtained is the summation

(4.11)

10W9(B;

√
B√
C
,−
√
B√
C
,

√
Bq√
C
,−
√
Bq√
C
,
BCq

D
,C,D; q, q)

− (Bq, 1/C,D,B/C,D/C2, BCq2/D; q)∞
(Bq/D,BCq,D/C2q,D/C, q,Bq/C; q)∞

· 3φ2

[
C2q, C2q/D,BCq/D
C2q2/D,BCq2/D

; q,
q

C

]
=

(C2q, Cq/D,BCq/D,Bq; q)∞
(Cq,C2q/D,Bq/D,BCq; q)∞

.

By comparing this identity with a special case of a transformation of Verma and
Jain [24, (7.1); 10, Ex. 2.25, a = B/C, b = qB/C2, c = 1, d = 1, e = D],

10W9(B;

√
B√
C
,−
√
B√
C
,

√
Bq√
C
,−
√
Bq√
C
,C,D,

BCq

D
; q, q)

+
(Bq,Cq/D,B/C,D,C,Bq2/D,BC3q3/D2; q)∞

(Cq,Bq/D,BCq,C2q/D,D/Cq,Bq/C,BC2q3/D2; q)∞

· 10W9(
BC2q2

D2
;

√
BCq

D
,−
√
BCq

D
,

√
BCq

3
2

D
,

−
√
BCq

3
2

D
,Cq,

BCq

D
,
C2q

D
; q, q)

=
(Bq,Cq/D,C2q,BCq/D; q)∞
(Cq,Bq/D,BCq,C2q/D; q)∞

,
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we obtain a transformation formula between a very well-poised 10φ9 and a 3φ2

series,

10W9(
BC2q2

D2
;

√
BCq

D
,−
√
BCq

D
,

√
BCq

3
2

D
,

−
√
BCq

3
2

D
,Cq,

C2q

D
,
BCq

D
; q, q)

=
(q/C,BCq2/D,C2q2/D,BC2q3/D2; q)∞

(q, Cq2/D,Bq2/D,BC3q3/D2; q)∞

· 3φ2

[
C2q, C2q/D,BCq/D
C2q2/D,BCq2/D

; q,
q

C

]
,

or after having replaced B by BD2/C2q2, C by B/C, D by qD/C, in that order,

(4.12) 10W9(B;
√
C,−

√
C,
√
Cq,−

√
Cq,D,

Bq

C
,
B2

CD
; q, q)

=
(Cq/B,Dq,B2q/CD,Bq; q)∞
(q,Bq/D,CDq/B,B2q/C; q)∞

3φ2

[
B2q/C2, B2/CD,D

B2q/CD,Dq
; q,

Cq

B

]
.

Mizan Rahman (private communication) showed me how to derive this transforma-
tion from standard basic hypergeometric transformation formulas by a sequence of
series manipulations.

5. More identities

In this section we restrict ourselves to terminating series. Therefore here we use
the “usual” inversion (4.1). We use special cases of (1.4) which are different from
the one, (4.3), used in the previous section.

First, let us take ck = (k + c)3, aj = (j + a)3, bj = 1. The inverse pair (1.4) in
this special case reads

(5.1)(1) fnk =
(n+ a)3 + (n+ c)3

(k + a)3 + (k + c)3

∏n−1
j=k ((j + a)3 + (k + c)3)∏n
j=k+1((j + c)3 − (k + c)3)

and

(5.1)(2) f−1
kl =

∏k
j=l+1((j + a)3 + (k + c)3)∏k−1
j=l ((j + c)3 − (k + c)3)

.

Now choose

(5.2) bl =
(a+ c, 1 + a/2 + c/2, d, 2a− c− d+ 1)l
(1, a/2 + c/2, 1 + a+ c− d, 2c− a+ d)l

.

We form ak =
∑k
l=0 f

−1
kl bl, which can be written as

ak =

∏k
j=1((j + a)3 + (k + c)3)∏k−1
j=0 ((j + c)3 − (k + c)3)

7V6(a+ c; 1 + 2a− c− d, d, c− cω − kω, c− cω2 − kω2,−k; 1).
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Here, ω denotes a third root of unity. The 7V6 can be evaluated by means of
Dougall’s sum [23, (2.3.4.4)]

(5.3) 7V6(a; b, c, d, 1 + 2a− b− c− d+ n,−n; 1)

=
(1 + a)n(1 + a− b− c)n(1 + a− b− d)n(1 + a− c− d)n
(1 + a− b)n(1 + a− c)n(1 + a− d)n(1 + a− b− c− d)n

,

thus obtaining

(5.4) ak =
(1 + a+ c)2k (−a+ 2c)k

(1 + a+ c− d)2k (−a+ 2c+ d)k

∏k
j=1((j + a− d)3 + (k + c)3)∏k−1
j=0 ((j + c)3 − (k + c)3)

after simplification. Now, by the inversion (4.1), the identity
∑n
k=0 fnkak = bn

holds, with fnk, ak, bn given in (5.1)(1), (5.4), (5.2), respectively. This identity
reads

(5.5)

n∑
k=0

(n+ a)3 + (n+ c)3

(k + a)3 + (k + c)3

∏n−1
j=k ((j + a)3 + (k + c)3)∏n
j=k+1((j + c)3 − (k + c)3)

·
∏k
j=1((j + a− d)3 + (k + c)3)∏k−1
j=0 ((j + c)3 − (k + c)3)

(1 + a+ c)2k (−a+ 2c)k
(1 + a+ c− d)2k (−a+ 2c+ d)k

=
(a+ c, 1 + a/2 + c/2, d, 2a− c− d+ 1)n
(1, a/2 + c/2, 1 + a+ c− d, 2c− a+ d)n

.

The products which occur in the sum can be considered as cubic analogues of the
rising factorials. For example,

∏n−1
j=k ((j + a)3 + (k + c)3) is a cubic analogue of

(2k + a+ c)n−k =
∏n−1
j=k ((j + a) + (k + c)).

Next we choose ck = (k + c)4, aj = (j + a)4, bj = −1. The inverse pair (1.4)
now reads

(5.6)(1) fnk =
(n+ a)4 − (n+ c)4

(k + a)4 − (k + c)4

∏n−1
j=k ((j + a)4 − (k + c)4)∏n
j=k+1((j + c)4 − (k + c)4)

and

(5.6)(2) f−1
kl =

∏k
j=l+1((j + a)4 − (k + c)4)∏k−1
j=l ((j + c)4 − (k + c)4)

.

For bl we take

(5.7) bl =
(a+ c, 1 + a/2 + c/2, 1− 2c+ 2a)l

(1, a/2 + c/2, 3c− a)l
.

Then we form ak =
∑k
l=0 f

−1
kl bl. Again, the sum can be evaluated by means of

Dougall’s sum (5.3). Thus we get

(5.8) ak =
(1 + a+ c)2k

(3c− a)2k

∏k−1
j=0 ((j + 2c− a)4 − (k + c)4)∏k−1

j=0 ((j + c)4 − (k + c)4)
.
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The inversion (4.1) then yields

(5.9)
n∑
k=0

(n+ a)4 − (n+ c)4

(k + a)4 − (k + c)4

∏n−1
j=k ((j + a)4 − (k + c)4)∏n
j=k+1((j + c)4 − (k + c)4)

·
∏k−1
j=0 ((j + 2c− a)4 − (k + c)4)∏k−1

j=0 ((j + c)4 − (k + c)4)

(1 + a+ c)2k

(3c− a)2k

=
(a+ c, 1 + a/2 + c/2, 1− 2c− 2a)n
(1, a/2 + c/2, 1 + a+ c− d, 3c− a)n

.

In this identity there occur quartic analogues of rising factorials.
Finally, we take ck = (k + c)5, aj = (j + a)5, bj = 1. The inverse pair (1.4) then

reads

(5.10)(1) fnk =
(n+ a)5 + (n+ c)5

(k + a)5 + (k + c)5

∏n−1
j=k ((j + a)5 + (k + c)5)∏n
j=k+1((j + c)5 − (k + c)5)

and

(5.10)(2) f−1
kl =

∏k
j=l+1((j + a)5 + (k + c)5)∏k−1
j=l ((j + c)5 − (k + c)5)

.

Now choose

(5.11) bl =
(a+ c, 1 + a/2 + c/2)l

(1, a/2 + c/2)l
.

Then for c choose (2a + 1)/3 and subsequently replace a by 3a + 1. If we do the
same as in the previous two derivations, we finally obtain the following identity
which contains quintic analogues of rising factorials,

(5.12)
n∑
k=0

(n+ 3a+ 1)5 + (n+ 2a+ 1)5

(k + 3a+ 1)5 + (k + 2a+ 1)5

∏n−1
j=k ((j + 3a+ 1)5 + (k + 2a+ 1)5)∏n
j=k+1((j + 2a+ 1)5 − (k + 2a+ 1)5)

· (5a+ 3)2k (1 + a+ (1 + 2a+ k)(ω + ω2), 1 + a+ (1 + 2a+ k)(ω + ω3),∏k−1
j=0 ((j + 2a+ 1)5 − (k + 2a+ 1)5)

· 1 + a+ (1 + 2a+ k)(ω + ω4))k
=

(5a+ 2, 5a/2 + 2)n
(1, 5a/2 + 1)n

.

Here, ω denotes a fifth root of unity.
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