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Abstract
In this paper, we show some relationships between poly-Cauchy numbers

introduced by T. Komatsu and poly-Bernoulli numbers introduced by M.
Kaneko.
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1. Introduction

Let n and k be positive integers. Poly-Cauchy numbers of the first kind c
(k)
n are

defined by

c(k)n =

1∫

0

. . .

1∫

0︸ ︷︷ ︸
k

(x1x2 . . . xk)(x1x2 . . . xk − 1) . . . (x1x2 . . . xk − n+ 1)dx1dx2 . . . dxk
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(see in [7]). The concept of poly-Cauchy numbers is a generalization of that of the
classical Cauchy numbers cn = c

(1)
n defined by

cn =

1∫

0

x(x− 1) . . . (x− n+ 1)dx

(see e.g. [2, 8]). The generating function of poly-Cauchy numbers ([7, Theorem 2])
is given by

Lifk(ln(1 + x)) =
∞∑

n=0

c(k)n

xn

n!
,

where

Lifk(z) =
∞∑

m=0

zm

m!(m+ 1)k

is the k-th polylogarithm factorial function. An explicit formula for c(k)n ([7, The-
orem 1]) is given by

c(k)n = (−1)n
n∑

m=0

[ n
m

] (−1)m
(m+ 1)k

(n ≥ 0, k ≥ 1) , (1.1)

where
[
n
m

]
are the (unsigned) Stirling numbers of the first kind, arising as coeffi-

cients of the rising factorial

x(x+ 1) . . . (x+ n− 1) =
n∑

m=0

[ n
m

]
xm

(see e.g. [4]).
On the other hand, M. Kaneko ([6]) introduced the poly-Bernoulli numbers

B
(k)
n by

Lik(1− e−x)
1− e−x

=

∞∑

n=0

B(k)
n

xn

n!
,

where

Lik(z) =
∞∑

m=1

zm

mk

is the k-th polylogarithm function. When k = 1, Bn = B
(1)
n is the classical Bernoulli

number with B
(1)
1 = 1/2, defined by the generating function

xex

ex − 1
=

∞∑

n=0

Bn
xn

n!
.
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An explicit formula for B(k)
n ([6, Theorem 1]) is given by

B(k)
n = (−1)n

n∑

m=0

{ n

m

} (−1)mm!

(m+ 1)k
(n ≥ 0, k ≥ 1) , (1.2)

where
{

n
m

}
are the Stirling numbers of the second kind, determined by

{ n

m

}
=

1

m!

m∑

j=0

(−1)j
(
m

j

)
(m− j)n

(see e.g. [4]).
In this paper, we show some relationships between poly-Cauchy numbers and

poly-Bernoulli numbers.

2. Main result

Poly-Bernoulli numbers can be expressed by poly-Cauchy numbers ([7, Theorem8]).

Theorem 2.1. For n ≥ 1 we have

B(k)
n =

n∑

l=1

n∑

m=1

m!
{ n

m

}{m− 1

l − 1

}
c
(k)
l .

On the other hand,

c
(k)
2 =

1

2!
B

(k)
2 +

3

2
B

(k)
1

=
1

2!
(B

(k)
2 + 3B

(k)
1 ) ,

c
(k)
3 =

1

3!
B

(k)
3 + 2B

(k)
2 +

23

6
B

(k)
1

=
1

3!
(B

(k)
3 + 12B

(k)
2 + 23B

(k)
1 ) ,

c
(k)
4 =

1

4!
B

(k)
4 +

5

4
B

(k)
3 +

215

24
B

(k)
2 +

55

4
B

(k)
1

=
1

4!
(B

(k)
4 + 30B

(k)
3 + 215B

(k)
2 + 330B

(k)
1 ) ,

c
(k)
5 =

1

5!
B

(k)
5 +

1

2
B

(k)
4 +

207

24
B

(k)
3 +

95

2
B

(k)
2 +

1901

30
B

(k)
1

=
1

5!
(B

(k)
5 + 60B

(k)
4 + 1035B

(k)
3 + 5700B

(k)
2 + 7604B

(k)
1 ) ,

c
(k)
6 =

1

6!
B

(k)
6 +

7

48
B

(k)
5 +

707

144
B

(k)
4 +

1015

16
B

(k)
3 +

13279

45
B

(k)
2 +

4277

12
B

(k)
1
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=
1

6!
(B

(k)
6 + 105B

(k)
5 + 3535B

(k)
4 + 45675B

(k)
3 + 212464B

(k)
2 + 256620B

(k)
1 ) .

In general, we have the following identity, expressing poly-Cauchy numbers c(k)n

by using poly-Bernoulli numbers B(k)
n .

Theorem 2.2. For n ≥ 1 we have

c(k)n = (−1)n
n∑

l=1

n∑

m=1

(−1)m
m!

[ n
m

] [m
l

]
B

(k)
l .

Proof. By (1.1) and (1.2), we have

RHS = (−1)n
n∑

l=1

n∑

m=1

(−1)m
m!

[ n
m

] [m
l

]
(−1)l

l∑

i=0

{
l

i

}
(−1)ii!
(i+ 1)k

= (−1)n
n∑

m=1

(−1)m
m!

[ n
m

] n∑

l=0

[m
l

]
(−1)l

l∑

i=0

{
l

i

}
(−1)ii!
(i+ 1)k

= (−1)n
n∑

m=1

(−1)m
m!

[ n
m

] n∑

i=0

(−1)ii!
(i+ 1)k

n∑

l=i

(−1)l
[m
l

]{ l

i

}

= (−1)n
n∑

m=0

(−1)m
m!

[ n
m

] (−1)mm!

(m+ 1)k
(−1)m

= (−1)n
n∑

m=0

[ n
m

] (−1)m
(m+ 1)k

= LHS .

Note that
[
m
0

]
= 0 (m ≥ 1) and

[
m
l

]
= 0 (l > m), and

m∑

l=i

(−1)m−l
[m
l

]{ l

i

}
=

{
1 (i = m);

0 (i 6= m).

3. Poly-Cauchy numbers of the second kind

Poly-Cauchy numbers of the second kind ĉ
(k)
n are defined by

ĉ(k)n =

1∫

0

. . .

1∫

0︸ ︷︷ ︸
k

(−x1x2 . . . xk)(−x1x2 . . . xk − 1)

. . . (−x1x2 . . . xk − n+ 1)dx1dx2 . . . dxk
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(see in [7]). If k = 1, then ĉ
(1)
n = ĉn is the classical Cauchy numbers of the second

kind defined by

ĉn =

k∫

0

(−x)(−x− 1) . . . (−x− n+ 1)dx

(see e.g. [2, 8]). The generating function of poly-Cauchy numbers of the second
kind ([7, Theorem 5]) is given by

Lifk(− ln(1 + x)) =
∞∑

n=0

ĉ(k)n

xn

n!
.

An explicit formula for ĉ(k)n ([7, Theorem 4]) is given by

ĉ(k)n = (−1)n
n∑

m=0

[ n
m

] 1

(m+ 1)k
(n ≥ 0, k ≥ 1) . (3.1)

In a similar way, we have a relationship, expressing poly-Cauchy numbers of
the second kind ĉ

(k)
n by using poly-Bernoulli numbers B

(k)
n . The proof is similar

and omitted.

Theorem 3.1. For n ≥ 1 we have

ĉ(k)n = (−1)n
n∑

l=1

n∑

m=1

1

m!

[ n
m

] [m
l

]
B

(k)
l .

In addition, we also obtain the corresponding relationship to Theorem 2.1.

Theorem 3.2. For n ≥ 1 we have

B(k)
n = (−1)n

n∑

l=1

n∑

m=1

m!
{ n

m

}{m
l

}
ĉ
(k)
l .

Proof. By (1.2) and (3.1), we have

RHS = (−1)n
n∑

l=1

n∑

m=1

m!
{ n

m

}{m
l

}
(−1)l

l∑

i=0

[
l

i

]
1

(i+ 1)k

= (−1)n
n∑

m=1

m!
{ n

m

} n∑

l=0

{m
l

}
(−1)l

l∑

i=0

[
l

i

]
1

(i+ 1)k

= (−1)n
n∑

m=1

m!
{ n

m

} n∑

i=0

1

(i+ 1)k

n∑

l=i

(−1)l
{m

l

}[ l
i

]
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= (−1)n
n∑

m=0

m!
{ n

m

} 1

(m+ 1)k
(−1)m

= (−1)n
n∑

m=0

{ n

m

} (−1)mm!

(m+ 1)k
= LHS .

Note that
m∑

l=i

(−1)m−l
{m

l

}[ l
i

]
=

{
1 (i = m);

0 (i 6= m).

4. Poly-Cauchy polynomials and poly-Bernoulli
polynomials

Poly-Cauchy polynomials of the first kind c
(k)
n (z) are defined by

c(k)n (z) = n!

1∫

0

. . .

1∫

0︸ ︷︷ ︸
k

(x1x2 . . . xk − z)(x1x2 . . . xk − 1− z)

· · · (x1x2 . . . xk − (n− 1)− z)dx1dx2 . . . dxk,

and are expressed explicitly in terms of Stirling numbers of the first kind ([5,
Theorem 1])

c(k)n (z) =
n∑

m=0

[ n
m

]
(−1)n−m

m∑

i=0

(
m

i

)
(−z)i

(m− i+ 1)k
.

Poly-Cauchy polynomials of the second kind ĉ
(k)
n (z) are defined by

ĉ(k)n (z) = n!

1∫

0

. . .

1∫

0︸ ︷︷ ︸
k

(−x1x2 . . . xk + z)(−x1x2 . . . xk − 1 + z)

· · · (−x1x2 . . . xk − (n− 1) + z)dx1dx2 . . . dxk,

and are expressed explicitly in terms of Stirling numbers of the first kind ([5,
Theorem 4].

ĉ(k)n (z) =
n∑

m=0

[ n
m

]
(−1)n

m∑

i=0

(
m

i

)
(−z)i

(m− i+ 1)k
.

In 2010, Coppo and Candelpergher [3], 2011 Bayad and Hamahata [1, (1.5)] intro-
duced the poly-Bernoulli polynomials B(k)

n (z) given by

Lik(1− e−x)
1− e−x

e−xz =
∞∑

n=0

B(k)
n (z)

xn

n!
,
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and
Lik(1− e−x)

1− e−x
exz =

∞∑

n=0

B(k)
n (z)

xn

n!
,

respectively, satisfying B
(k)
n (0) = B

(k)
n .

If we define still different poly-Bernoulli polynomials B(k)
n by

B(k)
n (z) = (−1)n

n∑

m=0

{ n

m

}
(−1)mm!

m∑

i=0

(
m

i

)
(−z)i

(m− i+ 1)k
,

satisfying B
(k)
n (0) = B

(k)
n (n ≥ 0, k ≥ 1), then we have relationships between the

poly-Bernoulli polynomials and poly-Cauchy polynomials similar to those between
the poly-Bernoulli numbers and the poly-Cauchy numbers.

Theorem 4.1. For n ≥ 1 we have

B(k)
n (z) =

n∑

l=1

n∑

m=1

m!
{ n

m

}{m− 1

l − 1

}
c
(k)
l (z) ,

= (−1)n
n∑

l=1

n∑

m=1

m!
{ n

m

}{m
l

}
ĉ
(k)
l (z) ,

c(k)n (z) = (−1)n
n∑

l=1

n∑

m=1

(−1)m
m!

[ n
m

] [m
l

]
B

(k)
l (z)

ĉ(k)n (z) = (−1)n
n∑

l=1

n∑

m=1

1

m!

[ n
m

] [m
l

]
B

(k)
l (z) .
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