Some relationships between poly-Cauchy numbers and poly-Bernoulli numbers*

Takao Komatsu ${ }^{a}$, Florian Luca ${ }^{b}$
${ }^{a}$ Graduate School of Science and Technology
Hirosaki University, Hirosaki, Japan
komatsu@cc.hirosaki-u.ac.jp
${ }^{b}$ Fundación Marcos Moshinsky
Instituto de Ciencias Nucleares UNAM, Circuito Exterior, Mexico
fluca@matmor. unam.mx

Abstract

In this paper, we show some relationships between poly-Cauchy numbers introduced by T. Komatsu and poly-Bernoulli numbers introduced by M. Kaneko.

Keywords: Bernoulli numbers; Cauchy numbers; poly-Bernoulli numbers; poly-Cauchy numbers

MSC: 05A15, 11B75

1. Introduction

Let n and k be positive integers. Poly-Cauchy numbers of the first kind $c_{n}^{(k)}$ are defined by

$$
c_{n}^{(k)}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(x_{1} x_{2} \ldots x_{k}\right)\left(x_{1} x_{2} \ldots x_{k}-1\right) \ldots\left(x_{1} x_{2} \ldots x_{k}-n+1\right) d x_{1} d x_{2} \ldots d x_{k}
$$

[^0](see in [7]). The concept of poly-Cauchy numbers is a generalization of that of the classical Cauchy numbers $c_{n}=c_{n}^{(1)}$ defined by
$$
c_{n}=\int_{0}^{1} x(x-1) \ldots(x-n+1) d x
$$
(see e.g. [2, 8]). The generating function of poly-Cauchy numbers ([7, Theorem 2]) is given by
$$
\operatorname{Lif}_{k}(\ln (1+x))=\sum_{n=0}^{\infty} c_{n}^{(k)} \frac{x^{n}}{n!}
$$
where
$$
\operatorname{Lif}_{k}(z)=\sum_{m=0}^{\infty} \frac{z^{m}}{m!(m+1)^{k}}
$$
is the k-th polylogarithm factorial function. An explicit formula for $c_{n}^{(k)}$ ([7, Theorem 1]) is given by
\[

c_{n}^{(k)}=(-1)^{n} \sum_{m=0}^{n}\left[$$
\begin{array}{c}
n \tag{1.1}\\
m
\end{array}
$$\right] \frac{(-1)^{m}}{(m+1)^{k}} \quad(n \geq 0, k \geq 1)
\]

where $\left[\begin{array}{c}n \\ m\end{array}\right]$ are the (unsigned) Stirling numbers of the first kind, arising as coefficients of the rising factorial

$$
x(x+1) \ldots(x+n-1)=\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] x^{m}
$$

(see e.g. [4]).
On the other hand, M. Kaneko ([6]) introduced the poly-Bernoulli numbers $B_{n}^{(k)}$ by

$$
\frac{\operatorname{Li}_{k}\left(1-e^{-x}\right)}{1-e^{-x}}=\sum_{n=0}^{\infty} B_{n}^{(k)} \frac{x^{n}}{n!}
$$

where

$$
\operatorname{Li}_{k}(z)=\sum_{m=1}^{\infty} \frac{z^{m}}{m^{k}}
$$

is the k-th polylogarithm function. When $k=1, B_{n}=B_{n}^{(1)}$ is the classical Bernoulli number with $B_{1}^{(1)}=1 / 2$, defined by the generating function

$$
\frac{x e^{x}}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}
$$

An explicit formula for $B_{n}^{(k)}([6$, Theorem 1]) is given by

$$
B_{n}^{(k)}=(-1)^{n} \sum_{m=0}^{n}\left\{\begin{array}{c}
n \tag{1.2}\\
m
\end{array}\right\} \frac{(-1)^{m} m!}{(m+1)^{k}} \quad(n \geq 0, k \geq 1)
$$

where $\left\{\begin{array}{l}n \\ m\end{array}\right\}$ are the Stirling numbers of the second kind, determined by

$$
\left\{\begin{array}{c}
n \\
m
\end{array}\right\}=\frac{1}{m!} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}(m-j)^{n}
$$

(see e.g. [4]).
In this paper, we show some relationships between poly-Cauchy numbers and poly-Bernoulli numbers.

2. Main result

Poly-Bernoulli numbers can be expressed by poly-Cauchy numbers ([7, Theorem 8]).
Theorem 2.1. For $n \geq 1$ we have

$$
B_{n}^{(k)}=\sum_{l=1}^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m-1 \\
l-1
\end{array}\right\} c_{l}^{(k)}
$$

On the other hand,

$$
\begin{aligned}
c_{2}^{(k)} & =\frac{1}{2!} B_{2}^{(k)}+\frac{3}{2} B_{1}^{(k)} \\
& =\frac{1}{2!}\left(B_{2}^{(k)}+3 B_{1}^{(k)}\right), \\
c_{3}^{(k)} & =\frac{1}{3!} B_{3}^{(k)}+2 B_{2}^{(k)}+\frac{23}{6} B_{1}^{(k)} \\
& =\frac{1}{3!}\left(B_{3}^{(k)}+12 B_{2}^{(k)}+23 B_{1}^{(k)}\right), \\
c_{4}^{(k)} & =\frac{1}{4!} B_{4}^{(k)}+\frac{5}{4} B_{3}^{(k)}+\frac{215}{24} B_{2}^{(k)}+\frac{55}{4} B_{1}^{(k)} \\
& =\frac{1}{4!}\left(B_{4}^{(k)}+30 B_{3}^{(k)}+215 B_{2}^{(k)}+330 B_{1}^{(k)}\right), \\
c_{5}^{(k)} & =\frac{1}{5!} B_{5}^{(k)}+\frac{1}{2} B_{4}^{(k)}+\frac{207}{24} B_{3}^{(k)}+\frac{95}{2} B_{2}^{(k)}+\frac{1901}{30} B_{1}^{(k)} \\
& =\frac{1}{5!}\left(B_{5}^{(k)}+60 B_{4}^{(k)}+1035 B_{3}^{(k)}+5700 B_{2}^{(k)}+7604 B_{1}^{(k)}\right), \\
c_{6}^{(k)} & =\frac{1}{6!} B_{6}^{(k)}+\frac{7}{48} B_{5}^{(k)}+\frac{707}{144} B_{4}^{(k)}+\frac{1015}{16} B_{3}^{(k)}+\frac{13279}{45} B_{2}^{(k)}+\frac{4277}{12} B_{1}^{(k)}
\end{aligned}
$$

$$
=\frac{1}{6!}\left(B_{6}^{(k)}+105 B_{5}^{(k)}+3535 B_{4}^{(k)}+45675 B_{3}^{(k)}+212464 B_{2}^{(k)}+256620 B_{1}^{(k)}\right) .
$$

In general, we have the following identity, expressing poly-Cauchy numbers $c_{n}^{(k)}$ by using poly-Bernoulli numbers $B_{n}^{(k)}$.

Theorem 2.2. For $n \geq 1$ we have

$$
c_{n}^{(k)}=(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right] B_{l}^{(k)}
$$

Proof. By (1.1) and (1.2), we have

$$
\begin{aligned}
\text { RHS } & =(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right](-1)^{l} \sum_{i=0}^{l}\left\{\begin{array}{l}
l \\
i
\end{array}\right\} \frac{(-1)^{i} i!}{(i+1)^{k}} \\
& =(-1)^{n} \sum_{m=1}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right] \sum_{l=0}^{n}\left[\begin{array}{c}
m \\
l
\end{array}\right](-1)^{l} \sum_{i=0}^{l}\left\{\begin{array}{l}
l \\
i
\end{array}\right\} \frac{(-1)^{i} i!}{(i+1)^{k}} \\
& =(-1)^{n} \sum_{m=1}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right] \sum_{i=0}^{n} \frac{(-1)^{i} i!}{(i+1)^{k}} \sum_{l=i}^{n}(-1)^{l}\left[\begin{array}{c}
m \\
l
\end{array}\right]\left\{\begin{array}{c}
l \\
i
\end{array}\right\} \\
& =(-1)^{n} \sum_{m=0}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-1)^{m} m!}{(m+1)^{k}}(-1)^{m} \\
& =(-1)^{n} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-1)^{m}}{(m+1)^{k}}=\text { LHS } .
\end{aligned}
$$

Note that $\left[\begin{array}{c}m \\ 0\end{array}\right]=0(m \geq 1)$ and $\left[\begin{array}{c}m \\ l\end{array}\right]=0(l>m)$, and

$$
\sum_{l=i}^{m}(-1)^{m-l}\left[\begin{array}{c}
m \\
l
\end{array}\right]\left\{\begin{array}{l}
l \\
i
\end{array}\right\}= \begin{cases}1 & (i=m) \\
0 & (i \neq m)\end{cases}
$$

3. Poly-Cauchy numbers of the second kind

Poly-Cauchy numbers of the second kind $\hat{c}_{n}^{(k)}$ are defined by

$$
\begin{aligned}
& \hat{c}_{n}^{(k)}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(-x_{1} x_{2} \ldots x_{k}\right)\left(-x_{1} x_{2} \ldots x_{k}-1\right) \\
& \ldots\left(-x_{1} x_{2} \ldots x_{k}-n+1\right) d x_{1} d x_{2} \ldots d x_{k}
\end{aligned}
$$

(see in [7]). If $k=1$, then $\hat{c}_{n}^{(1)}=\hat{c}_{n}$ is the classical Cauchy numbers of the second kind defined by

$$
\hat{c}_{n}=\int_{0}^{k}(-x)(-x-1) \ldots(-x-n+1) d x
$$

(see e.g. $[2,8]$). The generating function of poly-Cauchy numbers of the second kind ([7, Theorem 5]) is given by

$$
\operatorname{Lif}_{k}(-\ln (1+x))=\sum_{n=0}^{\infty} \hat{c}_{n}^{(k)} \frac{x^{n}}{n!}
$$

An explicit formula for $\hat{c}_{n}^{(k)}([7$, Theorem 4]) is given by

$$
\hat{c}_{n}^{(k)}=(-1)^{n} \sum_{m=0}^{n}\left[\begin{array}{l}
n \tag{3.1}\\
m
\end{array}\right] \frac{1}{(m+1)^{k}} \quad(n \geq 0, k \geq 1)
$$

In a similar way, we have a relationship, expressing poly-Cauchy numbers of the second kind $\hat{c}_{n}^{(k)}$ by using poly-Bernoulli numbers $B_{n}^{(k)}$. The proof is similar and omitted.

Theorem 3.1. For $n \geq 1$ we have

$$
\hat{c}_{n}^{(k)}=(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} \frac{1}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right] B_{l}^{(k)} .
$$

In addition, we also obtain the corresponding relationship to Theorem 2.1.
Theorem 3.2. For $n \geq 1$ we have

$$
B_{n}^{(k)}=(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m \\
l
\end{array}\right\} \hat{c}_{l}^{(k)}
$$

Proof. By (1.2) and (3.1), we have

$$
\begin{aligned}
\text { RHS } & =(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m \\
l
\end{array}\right\}(-1)^{l} \sum_{i=0}^{l}\left[\begin{array}{l}
l \\
i
\end{array}\right] \frac{1}{(i+1)^{k}} \\
& =(-1)^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \sum_{l=0}^{n}\left\{\begin{array}{c}
m \\
l
\end{array}\right\}(-1)^{l} \sum_{i=0}^{l}\left[\begin{array}{l}
l \\
i
\end{array}\right] \frac{1}{(i+1)^{k}} \\
& =(-1)^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \sum_{i=0}^{n} \frac{1}{(i+1)^{k}} \sum_{l=i}^{n}(-1)^{l}\left\{\begin{array}{c}
m \\
l
\end{array}\right\}\left[\begin{array}{l}
l \\
i
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{n} \sum_{m=0}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \frac{1}{(m+1)^{k}}(-1)^{m} \\
& =(-1)^{n} \sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \frac{(-1)^{m} m!}{(m+1)^{k}}=\text { LHS }
\end{aligned}
$$

Note that

$$
\sum_{l=i}^{m}(-1)^{m-l}\left\{\begin{array}{c}
m \\
l
\end{array}\right\}\left[\begin{array}{l}
l \\
i
\end{array}\right]= \begin{cases}1 & (i=m) \\
0 & (i \neq m)\end{cases}
$$

4. Poly-Cauchy polynomials and poly-Bernoulli polynomials

Poly-Cauchy polynomials of the first kind $c_{n}^{(k)}(z)$ are defined by

$$
\begin{aligned}
& c_{n}^{(k)}(z)=n!\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(x_{1} x_{2} \ldots x_{k}-z\right)\left(x_{1} x_{2} \ldots x_{k}-1-z\right) \\
& \cdots\left(x_{1} x_{2} \ldots x_{k}-(n-1)-z\right) d x_{1} d x_{2} \ldots d x_{k},
\end{aligned}
$$

and are expressed explicitly in terms of Stirling numbers of the first kind ([5, Theorem 1])

$$
c_{n}^{(k)}(z)=\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right](-1)^{n-m} \sum_{i=0}^{m}\binom{m}{i} \frac{(-z)^{i}}{(m-i+1)^{k}} .
$$

Poly-Cauchy polynomials of the second kind $\hat{c}_{n}^{(k)}(z)$ are defined by

$$
\begin{array}{r}
\hat{c}_{n}^{(k)}(z)=n!\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(-x_{1} x_{2} \ldots x_{k}+z\right)\left(-x_{1} x_{2} \ldots x_{k}-1+z\right) \\
\\
\cdots\left(-x_{1} x_{2} \ldots x_{k}-(n-1)+z\right) d x_{1} d x_{2} \ldots d x_{k},
\end{array}
$$

and are expressed explicitly in terms of Stirling numbers of the first kind ([5, Theorem 4].

$$
\hat{c}_{n}^{(k)}(z)=\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right](-1)^{n} \sum_{i=0}^{m}\binom{m}{i} \frac{(-z)^{i}}{(m-i+1)^{k}} .
$$

In 2010, Coppo and Candelpergher [3], 2011 Bayad and Hamahata [1, (1.5)] introduced the poly-Bernoulli polynomials $B_{n}^{(k)}(z)$ given by

$$
\frac{\operatorname{Li}_{k}\left(1-e^{-x}\right)}{1-e^{-x}} e^{-x z}=\sum_{n=0}^{\infty} B_{n}^{(k)}(z) \frac{x^{n}}{n!}
$$

and

$$
\frac{\operatorname{Li}_{k}\left(1-e^{-x}\right)}{1-e^{-x}} e^{x z}=\sum_{n=0}^{\infty} B_{n}^{(k)}(z) \frac{x^{n}}{n!}
$$

respectively, satisfying $B_{n}^{(k)}(0)=B_{n}^{(k)}$.
If we define still different poly-Bernoulli polynomials $B_{n}^{(k)}$ by

$$
B_{n}^{(k)}(z)=(-1)^{n} \sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\}(-1)^{m} m!\sum_{i=0}^{m}\binom{m}{i} \frac{(-z)^{i}}{(m-i+1)^{k}},
$$

satisfying $B_{n}^{(k)}(0)=B_{n}^{(k)}(n \geq 0, k \geq 1)$, then we have relationships between the poly-Bernoulli polynomials and poly-Cauchy polynomials similar to those between the poly-Bernoulli numbers and the poly-Cauchy numbers.

Theorem 4.1. For $n \geq 1$ we have

$$
\begin{aligned}
B_{n}^{(k)}(z) & =\sum_{l=1}^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m-1 \\
l-1
\end{array}\right\} c_{l}^{(k)}(z), \\
& =(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m \\
l
\end{array}\right\} \hat{c}_{l}^{(k)}(z), \\
c_{n}^{(k)}(z) & =(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right] B_{l}^{(k)}(z) \\
\hat{c}_{n}^{(k)}(z) & =(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} \frac{1}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right] B_{l}^{(k)}(z) .
\end{aligned}
$$

References

[1] A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math., Vol. 65 (2011), 15-24.
[2] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
[3] M.-A. Coppo and B. Candelpergher, The Arakawa-Kaneko zeta functions, Ramanujan J., Vol. 22 (2010), 153-162.
[4] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Second Edition, Addison-Wesley, Reading, 1994.
[5] K. Kamano and T. Komatsu, Poly-Cauchy polynomials, (preprint).
[6] M. Kaneko, Poly-Bernoulli numbers, J. Th. Nombres Bordeaux, Vol. 9 (1997), 199206.
[7] T. Komatsu, Poly-Cauchy numbers, Kyushu J. Math., Vol. 67 (2013), (to appear).
[8] D. Merlini, R. Sprugnoli and M. C. Verri, The Cauchy numbers, Discrete Math., Vol. 306 (2006) 1906-1920.

[^0]: *The first author was supported in part by the Grant-in-Aid for Scientific research (C) (No.22540005), the Japan Society for the Promotion of Science. The second author worked on this project during a visit to Hirosaki in January and February of 2012 with a JSPS Fellowship (No.S-11021). This author thanks the Mathematics Department of Hirosaki University for its hospitality and JSPS for support.

