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1 Introduction

The Cauchy numbers of the first kind, denoted by cn ([5]), are defined by the
integral of the falling factorial:

cn =

∫ 1

0

x(x− 1) . . . (x− n+ 1)dx .

The generating function of the Cauchy numbers of the first kind cn is given
by

x

ln(1 + x)
=

∞∑
n=0

cn
xn

n!

([23]).
Cauchy numbers are not so famous, though they seem to have similar

properties to those of the Bernoulli numbers. The classical Bernoulli numbers
Bn are defined by the generating function

x

ex − 1
=

∞∑
n=0

Bn
xn

n!

(
B1 = −1

2

)
.

Before the terminology of Cauchy numbers appeared in Comtet’s book
([5]), the concept of the Cauchy numbers was first introduced by Nörlund

([24, pp.146–147]) in 1924. Here, the higher order Bernoulli numbers B
(r)
n

are defined by (
x

ex − 1

)r

=
∞∑

n=0

B(r)
n

xn

n!
(|x| < 2π)
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or (
ln(1 + x)

x

)r

= r

∞∑
n=0

B
(r+n)
n

r + n

xn

n!
(|x| < 1) .

See also [8, p.257,p.259]. Then

B(n)
n =

∫ 1

0

(x− 1)(x− 2) · · · (x− n)dx

or

B
(n)
n+1 = −n

∫ 1

0

x(x− 1) · · · (x− n)dx .

Hence, cn = −B(n−1)
n /(n− 1). Ch. Jordan studied the Bernoulli numbers of

the second kind bn ([13, p.131]), defined by

bn = ψn+1(1) − ψn+1(0) =

∫ 1

0

(
x

n

)
dx .

Hence, bn = cn/n!. In 1961 Carlitz ([4]) introduced the numbers βn, defined
by

x

ln(1 + x)
=

∞∑
n=0

βn
xn

n!

Namely, βn = cn.
Cauchy numbers and Bernoulli numbers are much related to the Stirling

numbers of the first kind and of the second kind. The (unsigned) Stirling
numbers of the first kind

[
n
m

]
arise as coefficients of the rising factorial

x(x+ 1) . . . (x+ n− 1) =
n∑

m=0

[ n
m

]
xm .

The Stirling numbers of the second kind
{

n
m

}
are determined by

{ n

m

}
=

1

m!

m∑
j=0

(−1)j

(
m

j

)
(m− j)n .

There are many identities about the Bernoulli numbers. They are much
related to the (unsigned) Stirling numbers of the first kind

[
n
m

]
and the



Stirling numbers of the second kind
{

n
m

}
. Some of them are

1

n!

n∑
m=0

(−1)m

[
n+ 1

m+ 1

]
Bm =

1

n+ 1
,

Bn = (−1)n

n∑
m=0

{ n

m

} (−1)mm!

m+ 1
.

The corresponding identities of the classical Cauchy numbers are

n∑
m=0

{ n

m

}
cm =

1

n+ 1
,

cn = (−1)n

n∑
m=0

[ n
m

] (−1)m

m+ 1
.

2 Polylogarithms

The k-th polylogarithm function is defined by

Lik(x) =
∞∑

m=1

xm

mk
.

The k-th polylogarithm factorial function is defined by

Lifk(x) =
∞∑

m=0

xm

m!(m+ 1)k
.

For k ≥ 2

x
d

dx
Lik(x) = Lik−1(x) ,

so

Lik(x) =

∫ x

0

Lik−1(t)

t
dt ;

on the other hand,
d

dx
(xLifk(x)) = Lifk−1(x) ,

so

Lifk(x) =
1

x

∫ x

0

Lifk−1(t)dt .



In special, for k = 0, 1 we have

Li0(x) =
x

1 − x
, Li1(x) = − ln(1 − x)

and
Lif0(x) = ex, Lif1(x) = (ex − 1)/x .

For k = −r we have

Li−r(x) =
1

(1 − x)r+1

r∑
j=0

⟨
r

j

⟩
xr−j (r = 0, 1, 2, . . . )

([3]), where ⟨
r

j

⟩
=

j+1∑
l=0

(−1)l

(
r + 1

l

)
(j − l + 1)r

are the Eulerian numbers.
On the other hand, for k = −r we have

Lif−r(x) = ex

r∑
j=0

{
r + 1

j + 1

}
xj (r = 0, 1, 2, . . . ) .

We have the record for the first some values r.

Lif0(x) = ex,

Lif−1(x) = (1 + x)ex,

Lif−2(x) = (1 + 3x+ x2)ex,

Lif−3(x) = (1 + 7x+ 6x2 + x3)ex,

Lif−4(x) = (1 + 15x+ 25x2 + 10x3 + x4)ex,

Lif−5(x) = (1 + 31x+ 90x2 + 65x3 + 15x4 + x5)ex.

In 1997 M. Kaneko ([18]) introduced the poly-Bernoulli numbers B
(k)
n by

Lik(1 − e−x)

1 − e−x
=

∞∑
n=0

B(k)
n

xn

n!
.

When k = 1, B
(1)
n is the classical Bernoulli number with B

(1)
1 = 1/2.



Recently, we [19] introduced the poly-Cauchy numbers c
(k)
n by

Lifk(ln(1 + x)) =
∞∑

n=0

c(k)
n

xn

n!
.

When k = 1, c
(1)
n = cn is the classical Cauchy number.

Poly-Cauchy numbers of the first kind c
(k)
n may be defined by

c(k)
n =

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
k

(x1x2 . . . xk)(x1x2 . . . xk − 1)

· · · (x1x2 . . . xk − n+ 1)dx1dx2 . . . dxk .

In addition, poly-Cauchy numbers of the second kind ĉ
(k)
n are defined by

ĉ(k)
n =

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
k

(−x1x2 . . . xk)(−x1x2 . . . xk − 1)

· · · (−x1x2 . . . xk − n+ 1)dx1dx2 . . . dxk .

The generating function of the poly-Bernoulli numbers are written in
terms of iterated integrals:

ex

ex − 1

∫ x

0

1

ex − 1
· · ·

∫ x

0

1

ex − 1︸ ︷︷ ︸
k−1

×x dx . . . dx︸ ︷︷ ︸
k−1

=
∞∑

n=0

B(k)
n

xn

n!
.

An explicit formula for B
(k)
n is given by

B(k)
n = (−1)n

n∑
m=0

{ n

m

} (−1)mm!

(m+ 1)k
(n ≥ 0, k ≥ 1) . (1)

The generating function of the poly-Cauchy numbers can be also written
in the form of iterated integrals:

1

ln(1 + x)

∫ x

0

1

(1 + x) ln(1 + x)
. . .

∫ x

0

1

(1 + x) ln(1 + x)︸ ︷︷ ︸
k−1

×x dx . . . dx︸ ︷︷ ︸
k−1

=
∞∑

n=0

c(k)
n

xn

n!
.



An explicit formula for c
(k)
n is given by

c(k)
n = (−1)n

n∑
m=0

[ n
m

] (−1)m

(m+ 1)k
. (2)

There are some relations between poly-Cauchy numbers and poly-Bernoulli
numbers.

Theorem 1. For n ≥ 1 we have

B(k)
n =

n∑
l=1

n∑
m=1

m!
{ n

m

} {
m− 1

l − 1

}
c
(k)
l ,

c(k)
n =

n∑
l=1

n∑
m=1

(−1)n−m

m!

[ n
m

] [m
l

]
B

(k)
l .

3 Duality theorem

It is known that the duality theorem holds for poly-Bernoulli numbers ([18]).
Namely,

B(−k)
n = B

(−n)
k (n, k ≥ 0) .

It is due to the symmetric formula:

∞∑
n=0

∞∑
k=0

B(−k)
n

xn

n!

yk

k!
=

ex+y

ex + ey − ex+y
.

It follows that

B(−k)
n =

n∑
m=0

(−1)m+nm!
{ n

m

}
(m+ 1)k ,

B(−k)
n =

k∑
j=0

(j!)2

{
n+ 1

j + 1

}{
k + 1

j + 1

}
.

However, the duality theorem does not hold for poly-Cauchy numbers. In
fact, we have



Proposition 1.

∞∑
n=0

∞∑
k=0

c(−k)
n

xn

n!

yk

k!
= ey(1 + x)ey

,

∞∑
n=0

∞∑
k=0

ĉ(−k)
n

xn

n!

yk

k!
=

ey

(1 + x)ey .

By using Proposition 1 we have explicit expressions of the poly-Cauchy
numbers with negative indices.

Theorem 2 ([16]).

c(−k)
n =

k∑
j=0

(−1)n+jj!

([
n

j

]
− n

[
n− 1

j

]){
k + 1

j + 1

}
,

ĉ(−k)
n =

k∑
j=0

(−1)nj!

[
n+ 1

j + 1

]{
k + 1

j + 1

}
.

Moreover, using Theorem 2 with (2) we have the following congruence
results.

Theorem 3. For any positive integer k, c
(−k)
n ≡ c

(−k−4)
n (mod 10) and ĉ

(−k)
n ≡

ĉ
(−k−4)
n (mod 10). In special, when n = 1, for k ≥ 1, c

(−k−4)
1 ≡ c

(−k)
1

(mod 30) and ĉ
(−k−4)
1 ≡ ĉ

(−k)
1 (mod 30).

Theorem 4. For k ≥ 1 we have

c(−k)
n ≡

{
0 (mod 2) if n = 1 or n ≥ 4;

1 (mod 2) if n = 2, 3 ,

ĉ(−k)
n ≡

{
0 (mod 2) if n = 1 or n ≥ 4;

1 (mod 2) if n = 2, 3 .



4 Sums of products

Sums of products of Bernoulli numbers∑
i1+···+im=n
i1,...,im≥0

n!

i1! · · · im!
Bi1 · · ·Bim (m ≥ 1, n ≥ 0)

have been considered by many authors (see, e.g. [1, 2, 6]). When m = 2, one
has the famous Euler’s identity:

n∑
i=0

(
n

i

)
BiBn−i = −nBn−1 − (n− 1)Bn (n ≥ 1) . (3)

Kamano ([14]) considered the sums of products of Bernoulli numbers, includ-
ing poly-Bernoulli numbers

S(k)
m (n) :=

∑
i1+···+im=n
i1,...,im≥0

n!

i1! · · · im!
Bi1 · · ·Bim−1B

(k)
im

(m ≥ 1, n ≥ 0) .

Then, S
(k)
m (n) satisfies the following relation:

Proposition 2.

m∑
l=0

(−1)m−l

[
m+ 1

l + 1

]
S

(k−l)
m+1 (n)

=


n!

(n−m)!

m∑
r=0

[m
r

]
B

(k)
n−m+r (n ≥ m),

0 (0 ≤ n ≤ m− 1) .

Kamano also showed the explicit formulae S
(k)
m (n) for m = 2, 3. For

example, when m = 2 we have

Proposition 3. For k ≥ 1 and n ≥ 0,

S
(0)
2 (n) = B(1)

n ,

S
(k)
2 (n) = B(1)

n − n

k∑
j=1

B(j)
n ,

S
(−k)
2 (n) = B(1)

n + n

k−1∑
j=0

B(−j)
n .



It seemed to be difficult to give an explicit formula for S
(k)
m (n) for m ≥ 4,

but recently a general formula for all m ≥ 1 is given.

Theorem 5 ([20]). For m ≥ 1, n ≥ 0 and k ≥ 1, we have

S
(0)
m+1(n) = S(1)

m (n),

S
(k)
m+1(n) =

m−1∑
r=0

(−1)rr!

(
n

r

) r∑
i=0

(
r

i

)
(−1)i

(i+ 1)k
S

(0)
m+1−r(n− r)

+ (−1)m

(
n

m

) ∑
j1+···+jm≤k−1

j1,...,jm≥0

1

2j2 · · ·mjm

m∑
ν=1

[
m

ν

]
B

(1+j1)
n−m+ν ,

S
(−k)
m+1(n)

=
m−1∑
r=0

(−1)rr!

(
n

r

) r∑
i=0

(
r

i

)
(−1)i(i+ 1)kS

(0)
m+1−r(n− r)

+

(
n

m

) ∑
j1+···+jm≤k
j1,...,jm≥1

2j2 · · ·mjm

m∑
ν=1

[
m

ν

]
B

(1−j1)
n−m+ν .

Sums of products of Cauchy numbers∑
i1+···+im=n
i1,...,im≥0

n!

i1! · · · im!
ci1 · · · cim (m ≥ 1, n ≥ 0)

were studied by Zhao ([25]). Consider the sums of products of Cauchy num-
bers, including poly-Cauchy numbers

T (k)
m (n) :=

∑
i1+···+im=n
i1,...,im≥0

n!

i1! · · · im!
ci1 · · · cim−1c

(k)
im

(m ≥ 1, n ≥ 0) .

Then, T
(k)
m (n) satisfies the following relation:

Proposition 4 ([22]).

m∑
l=0

(−1)m−l

[
m+ 1

l + 1

]
T

(k−l)
m+1 (n)

=


m∑

l=0

n−m∑
i=0

n!

i!

(
l

n−m− i

) {m
l

}
c
(k)
l+i (n ≥ m);

0 (0 ≤ n ≤ m− 1) .



When m = 2, we have the following explicit formulae.

Proposition 5 ([22]). For n ≥ 0 and k ≥ 1 we have

T
(0)
2 (n) = cn + ncn−1 ,

T
(k)
2 (n) = T

(0)
2 (n) − n

k∑
j=1

(c(j)n + (n− 1)c
(j)
n−1) ,

T
(−k)
2 (n) = T

(0)
2 (n) + n

k−1∑
j=0

(c(−j)
n + (n− 1)c

(−j)
n−1 ) .

Putting k = 1 in the second identity, we have

Corollary 1 ([25]).

n∑
i=0

(
n

i

)
cicn−i = −n(n− 2)cn−1 − (n− 1)cn (n ≥ 0) .

This is an analogue of Euler’s identity (3).

In general, we can obtain the following explicit expression of T
(k)
m (n) for any

general m ≥ 2.

Theorem 6. For n ≥ 0 and k > 0 we have

T (0)
m (n) = T

(1)
m−1(n) + nT

(1)
m−1(n− 1) ,

T (k)
m (n) =

m−2∑
r=0

(−1)r

(
n

r

) r∑
i=0

(
r

i

)
(−1)i

(i+ 1)k
T

(0)
m−r(n− r)

+
(−1)m−1n!

(n−m+ 1)!

∑
j1+j2+···+jm−1=k+m−2

j1,j2,...,jm−1≥1

2−j23−j3 . . . (m− 1)−jm−1

j1∑
j=1

m−1∑
κ=0

Pm,κ(n)c
(j)
n−κ ,

T (−k)
m (n) =

m−2∑
r=0

(−1)r

(
n

r

) r∑
i=0

(
r

i

)
(−1)i(i+ 1)kT

(0)
m−r(n− r)

+
n!

(n−m+ 1)!

∑
j1+j2+···+jm−1=k−m+1

j1,j2,...,jm−1≥0

2j23j3 . . . (m− 1)jm−1

j1∑
j=0

m−1∑
κ=0

Pm,κ(n)c
(−j)
n−κ .



where

Pm,κ(n) =
κ∑

t=0

{
m− 1

m− t− 1

}(
m− t− 1

m− κ− 1

)
(n−m+ 1)!

(n−m− κ+ t+ 1)!

(κ = 0, 1, . . . ,m− 2)

and

Pm,m−1(n) =
m−2∑
t=0

{
m− 1

m− t− 1

}
(n−m+ 1)!

(n− 2m+ t+ 2)!

= (n−m+ 1)m−1 .

5 Hypergeometric Bernoulli numbers and hy-

pergeometric Cauchy numbers

Hypergeometric Bernoulli numbers BN,n (N ≥ 1, n ≥ 0) ([7, 9, 10, 11, 12])
are defined by

1

1F1(1;N + 1;x)
=

xN/N !

ex −
∑N−1

n=0 x
n/n!

=
∞∑

n=0

BN,n
xn

n!
,

where 1F1(a; b; z) is the confluent hypergeometric function defined by

1F1(a; b; z) =
∞∑

n=0

(a)n

(b)n

zn

n!

with the Pochhammer symbol (x)n = x(x + 1) . . . (x + n − 1) (n ≥ 1) and
(x)0 = 1. When N = 1, B1,n = Bn are classical Bernoulli numbers.

Hypergeometric Cauchy numbers cN,n (N ≥ 1, n ≥ 0) ([21]) are defined
by

1

2F1(1, N ;N + 1;−x)
=

(−1)N−1xN/N

ln(1 + x) −
∑N−1

n=1 (−1)n−1xn/n
=

∞∑
n=0

cN,n
xn

n!
,

where 2F1(a, b; c; z) is the hypergeometric function defined by

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
.



When N = 1, c1,n = cn are classical Cauchy numbers.
We record of the first few values of cN,n:

cN,0 = 1,

cN,1 =
N

N + 1
,

cN,2 = − 2N

(N + 1)2(N + 2)
,

cN,3 =
6N(N2 +N + 2)

(N + 1)3(N + 2)(N + 3)

cN,4 = −4!N(N5 + 5N4 + 14N3 + 24N2 + 20N + 12)

(N + 1)4(N + 2)2(N + 3)(N + 4)
,

cN,5 =
5!N(N7 + 8N6 + 35N5 + 96N4 + 160N3 + 184N2 + 116N + 48)

(N + 1)5(N + 2)2(N + 3)(N + 4)(N + 5)
.

The sums of products of hypergeometric Bernoulli numbers were studied
by Kamano ([15]) and those of hypergeometric Cauchy numbers are also
studied in [21].
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