Poly-Cauchy numbers and poly-Bernoulli numbers

Takao Komatsu ${ }^{1}$
Graduate School of Science and Technology
Hirosaki University

1 Introduction

The Cauchy numbers of the first kind, denoted by $c_{n}([5])$, are defined by the integral of the falling factorial:

$$
c_{n}=\int_{0}^{1} x(x-1) \ldots(x-n+1) d x .
$$

The generating function of the Cauchy numbers of the first kind c_{n} is given by

$$
\frac{x}{\ln (1+x)}=\sum_{n=0}^{\infty} c_{n} \frac{x^{n}}{n!}
$$

([23]).
Cauchy numbers are not so famous, though they seem to have similar properties to those of the Bernoulli numbers. The classical Bernoulli numbers B_{n} are defined by the generating function

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!} \quad\left(B_{1}=-\frac{1}{2}\right) .
$$

Before the terminology of Cauchy numbers appeared in Comtet's book ([5]), the concept of the Cauchy numbers was first introduced by Nörlund ([24, pp.146-147]) in 1924. Here, the higher order Bernoulli numbers $B_{n}^{(r)}$ are defined by

$$
\left(\frac{x}{e^{x}-1}\right)^{r}=\sum_{n=0}^{\infty} B_{n}^{(r)} \frac{x^{n}}{n!} \quad(|x|<2 \pi)
$$

[^0]or
$$
\left(\frac{\ln (1+x)}{x}\right)^{r}=r \sum_{n=0}^{\infty} \frac{B_{n}^{(r+n)}}{r+n} \frac{x^{n}}{n!} \quad(|x|<1) .
$$

See also [8, p.257,p.259]. Then

$$
B_{n}^{(n)}=\int_{0}^{1}(x-1)(x-2) \cdots(x-n) d x
$$

or

$$
B_{n+1}^{(n)}=-n \int_{0}^{1} x(x-1) \cdots(x-n) d x .
$$

Hence, $c_{n}=-B_{n}^{(n-1)} /(n-1)$. Ch. Jordan studied the Bernoulli numbers of the second kind $b_{n}([13, \mathrm{p} .131])$, defined by

$$
b_{n}=\psi_{n+1}(1)-\psi_{n+1}(0)=\int_{0}^{1}\binom{x}{n} d x .
$$

Hence, $b_{n}=c_{n} / n$!. In 1961 Carlitz ([4]) introduced the numbers β_{n}, defined by

$$
\frac{x}{\ln (1+x)}=\sum_{n=0}^{\infty} \beta_{n} \frac{x^{n}}{n!}
$$

Namely, $\beta_{n}=c_{n}$.
Cauchy numbers and Bernoulli numbers are much related to the Stirling numbers of the first kind and of the second kind. The (unsigned) Stirling numbers of the first kind $\left[\begin{array}{c}n \\ m\end{array}\right]$ arise as coefficients of the rising factorial

$$
x(x+1) \ldots(x+n-1)=\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] x^{m} .
$$

The Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ m\end{array}\right\}$ are determined by

$$
\left\{\begin{array}{c}
n \\
m
\end{array}\right\}=\frac{1}{m!} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}(m-j)^{n}
$$

There are many identities about the Bernoulli numbers. They are much related to the (unsigned) Stirling numbers of the first kind $\left[\begin{array}{c}n \\ m\end{array}\right]$ and the

Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ m\end{array}\right\}$. Some of them are

$$
\begin{aligned}
& \frac{1}{n!} \sum_{m=0}^{n}(-1)^{m}\left[\begin{array}{c}
n+1 \\
m+1
\end{array}\right] B_{m}=\frac{1}{n+1}, \\
& B_{n}=(-1)^{n} \sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \frac{(-1)^{m} m!}{m+1} .
\end{aligned}
$$

The corresponding identities of the classical Cauchy numbers are

$$
\begin{aligned}
& \sum_{m=0}^{n}\left\{\begin{array}{l}
n \\
m
\end{array}\right\} c_{m}=\frac{1}{n+1}, \\
& c_{n}=(-1)^{n} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-1)^{m}}{m+1}
\end{aligned}
$$

2 Polylogarithms

The k-th polylogarithm function is defined by

$$
\mathrm{Li}_{k}(x)=\sum_{m=1}^{\infty} \frac{x^{m}}{m^{k}}
$$

The k-th polylogarithm factorial function is defined by

$$
\operatorname{Lif}_{k}(x)=\sum_{m=0}^{\infty} \frac{x^{m}}{m!(m+1)^{k}}
$$

For $k \geq 2$

$$
x \frac{d}{d x} \operatorname{Li}_{k}(x)=\operatorname{Li}_{k-1}(x),
$$

so

$$
\operatorname{Li}_{k}(x)=\int_{0}^{x} \frac{\operatorname{Li}_{k-1}(t)}{t} d t
$$

on the other hand,

$$
\frac{d}{d x}\left(x \operatorname{Lif}_{k}(x)\right)=\operatorname{Lif}_{k-1}(x)
$$

so

$$
\operatorname{Lif}_{k}(x)=\frac{1}{x} \int_{0}^{x} \operatorname{Lif}_{k-1}(t) d t
$$

In special, for $k=0,1$ we have

$$
\mathrm{Li}_{0}(x)=\frac{x}{1-x}, \quad \mathrm{Li}_{1}(x)=-\ln (1-x)
$$

and

$$
\operatorname{Lif}_{0}(x)=e^{x}, \quad \operatorname{Lif}_{1}(x)=\left(e^{x}-1\right) / x
$$

For $k=-r$ we have

$$
\operatorname{Li}_{-r}(x)=\frac{1}{(1-x)^{r+1}} \sum_{j=0}^{r}\left\langle\begin{array}{c}
r \\
j
\end{array}\right\rangle x^{r-j} \quad(r=0,1,2, \ldots)
$$

([3]), where

$$
\left\langle\begin{array}{c}
r \\
j
\end{array}\right\rangle=\sum_{l=0}^{j+1}(-1)^{l}\binom{r+1}{l}(j-l+1)^{r}
$$

are the Eulerian numbers.
On the other hand, for $k=-r$ we have

$$
\operatorname{Lif}_{-r}(x)=e^{x} \sum_{j=0}^{r}\left\{\begin{array}{l}
r+1 \\
j+1
\end{array}\right\} x^{j} \quad(r=0,1,2, \ldots)
$$

We have the record for the first some values r.

$$
\begin{aligned}
\operatorname{Lif}_{0}(x) & =e^{x} \\
\operatorname{Lif}_{-1}(x) & =(1+x) e^{x}, \\
\operatorname{Lif}_{-2}(x) & =\left(1+3 x+x^{2}\right) e^{x}, \\
\operatorname{Lif}_{-3}(x) & =\left(1+7 x+6 x^{2}+x^{3}\right) e^{x}, \\
\operatorname{Lif}_{-4}(x) & =\left(1+15 x+25 x^{2}+10 x^{3}+x^{4}\right) e^{x}, \\
\operatorname{Lif}_{-5}(x) & =\left(1+31 x+90 x^{2}+65 x^{3}+15 x^{4}+x^{5}\right) e^{x} .
\end{aligned}
$$

In 1997 M. Kaneko ([18]) introduced the poly-Bernoulli numbers $B_{n}^{(k)}$ by

$$
\frac{\operatorname{Li}_{k}\left(1-e^{-x}\right)}{1-e^{-x}}=\sum_{n=0}^{\infty} B_{n}^{(k)} \frac{x^{n}}{n!}
$$

When $k=1, B_{n}^{(1)}$ is the classical Bernoulli number with $B_{1}^{(1)}=1 / 2$.

Recently, we [19] introduced the poly-Cauchy numbers $c_{n}^{(k)}$ by

$$
\operatorname{Lif}_{k}(\ln (1+x))=\sum_{n=0}^{\infty} c_{n}^{(k)} \frac{x^{n}}{n!}
$$

When $k=1, c_{n}^{(1)}=c_{n}$ is the classical Cauchy number.
Poly-Cauchy numbers of the first kind $c_{n}^{(k)}$ may be defined by

$$
\begin{aligned}
& c_{n}^{(k)}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(x_{1} x_{2} \ldots x_{k}\right)\left(x_{1} x_{2} \ldots x_{k}-1\right) \\
& \cdots\left(x_{1} x_{2} \ldots x_{k}-n+1\right) d x_{1} d x_{2} \ldots d x_{k}
\end{aligned}
$$

In addition, poly-Cauchy numbers of the second kind $\hat{c}_{n}^{(k)}$ are defined by

$$
\begin{aligned}
& \hat{c}_{n}^{(k)}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(-x_{1} x_{2} \ldots x_{k}\right)\left(-x_{1} x_{2} \ldots x_{k}-1\right) \\
& \cdots\left(-x_{1} x_{2} \ldots x_{k}-n+1\right) d x_{1} d x_{2} \ldots d x_{k}
\end{aligned}
$$

The generating function of the poly-Bernoulli numbers are written in terms of iterated integrals:

$$
\frac{e^{x}}{e^{x}-1} \underbrace{\int_{0}^{x} \frac{1}{e^{x}-1} \cdots \int_{0}^{x} \frac{1}{e^{x}-1}}_{k-1} \times x \underbrace{d x \ldots d x}_{k-1}=\sum_{n=0}^{\infty} B_{n}^{(k)} \frac{x^{n}}{n!}
$$

An explicit formula for $B_{n}^{(k)}$ is given by

$$
B_{n}^{(k)}=(-1)^{n} \sum_{m=0}^{n}\left\{\begin{array}{l}
n \tag{1}\\
m
\end{array}\right\} \frac{(-1)^{m} m!}{(m+1)^{k}} \quad(n \geq 0, k \geq 1)
$$

The generating function of the poly-Cauchy numbers can be also written in the form of iterated integrals:

$$
\begin{aligned}
\frac{1}{\ln (1+x)} \underbrace{\int_{0}^{x} \frac{1}{(1+x) \ln (1+x)} \cdots \int_{0}^{x} \frac{1}{(1+x) \ln (1+x)}}_{k-1} & \times x \underbrace{d x \ldots d x}_{k-1} \\
& =\sum_{n=0}^{\infty} c_{n}^{(k)} \frac{x^{n}}{n!}
\end{aligned}
$$

An explicit formula for $c_{n}^{(k)}$ is given by

$$
c_{n}^{(k)}=(-1)^{n} \sum_{m=0}^{n}\left[\begin{array}{l}
n \tag{2}\\
m
\end{array}\right] \frac{(-1)^{m}}{(m+1)^{k}} .
$$

There are some relations between poly-Cauchy numbers and poly-Bernoulli numbers.

Theorem 1. For $n \geq 1$ we have

$$
\begin{aligned}
B_{n}^{(k)} & =\sum_{l=1}^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m-1 \\
l-1
\end{array}\right\} c_{l}^{(k)}, \\
c_{n}^{(k)} & =\sum_{l=1}^{n} \sum_{m=1}^{n} \frac{(-1)^{n-m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right] B_{l}^{(k)} .
\end{aligned}
$$

3 Duality theorem

It is known that the duality theorem holds for poly-Bernoulli numbers ([18]). Namely,

$$
B_{n}^{(-k)}=B_{k}^{(-n)} \quad(n, k \geq 0)
$$

It is due to the symmetric formula:

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} B_{n}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=\frac{e^{x+y}}{e^{x}+e^{y}-e^{x+y}}
$$

It follows that

$$
\begin{aligned}
& B_{n}^{(-k)}=\sum_{m=0}^{n}(-1)^{m+n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}(m+1)^{k}, \\
& B_{n}^{(-k)}=\sum_{j=0}^{k}(j!)^{2}\left\{\begin{array}{c}
n+1 \\
j+1
\end{array}\right\}\left\{\begin{array}{c}
k+1 \\
j+1
\end{array}\right\} .
\end{aligned}
$$

However, the duality theorem does not hold for poly-Cauchy numbers. In fact, we have

Proposition 1.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} c_{n}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=e^{y}(1+x)^{e^{y}} \\
& \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \hat{c}_{n}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=\frac{e^{y}}{(1+x)^{e^{y}}}
\end{aligned}
$$

By using Proposition 1 we have explicit expressions of the poly-Cauchy numbers with negative indices.

Theorem 2 ([16]).

$$
\begin{aligned}
& c_{n}^{(-k)}=\sum_{j=0}^{k}(-1)^{n+j} j!\left(\left[\begin{array}{l}
n \\
j
\end{array}\right]-n\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]\right)\left\{\begin{array}{l}
k+1 \\
j+1
\end{array}\right\}, \\
& \hat{c}_{n}^{(-k)}=\sum_{j=0}^{k}(-1)^{n} j!\left[\begin{array}{l}
n+1 \\
j+1
\end{array}\right]\left\{\begin{array}{l}
k+1 \\
j+1
\end{array}\right\} .
\end{aligned}
$$

Moreover, using Theorem 2 with (2) we have the following congruence results.

Theorem 3. For any positive integer $k, c_{n}^{(-k)} \equiv c_{n}^{(-k-4)}(\bmod 10)$ and $\hat{c}_{n}^{(-k)} \equiv$ $\hat{c}_{n}^{(-k-4)}(\bmod 10)$. In special, when $n=1$, for $k \geq 1, c_{1}^{(-k-4)} \equiv c_{1}^{(-k)}$ $(\bmod 30)$ and $\hat{c}_{1}^{(-k-4)} \equiv \hat{c}_{1}^{(-k)}(\bmod 30)$.

Theorem 4. For $k \geq 1$ we have

$$
\begin{aligned}
c_{n}^{(-k)} \equiv\left\{\begin{array}{lll}
0 & (\bmod 2) & \text { if } n=1 \text { or } n \geq 4 \\
1 & (\bmod 2) & \text { if } n=2,3
\end{array}\right. \\
\hat{c}_{n}^{(-k)} \equiv\left\{\begin{array}{lll}
0 & (\bmod 2) & \text { if } n=1 \text { or } n \geq 4 \\
1 & (\bmod 2) & \text { if } n=2,3
\end{array}\right.
\end{aligned}
$$

4 Sums of products

Sums of products of Bernoulli numbers

$$
\sum_{\substack{i_{1}+\cdots+i_{m}=n \\ i_{1}, \ldots, i_{m} \geq 0}} \frac{n!}{i_{1}!\cdots i_{m}!} B_{i_{1}} \cdots B_{i_{m}} \quad(m \geq 1, n \geq 0)
$$

have been considered by many authors (see, e.g. $[1,2,6]$). When $m=2$, one has the famous Euler's identity:

$$
\begin{equation*}
\sum_{i=0}^{n}\binom{n}{i} B_{i} B_{n-i}=-n B_{n-1}-(n-1) B_{n} \quad(n \geq 1) \tag{3}
\end{equation*}
$$

Kamano ([14]) considered the sums of products of Bernoulli numbers, including poly-Bernoulli numbers

$$
S_{m}^{(k)}(n):=\sum_{\substack{i_{1}+\ldots+i_{m}=n \\ i_{1}, \ldots, i_{m} \geq 0}} \frac{n!}{i_{1}!\cdots i_{m}!} B_{i_{1}} \cdots B_{i_{m-1}} B_{i_{m}}^{(k)} \quad(m \geq 1, n \geq 0)
$$

Then, $S_{m}^{(k)}(n)$ satisfies the following relation:

Proposition 2.

$$
\begin{aligned}
\sum_{l=0}^{m}(-1)^{m-l}\left[\begin{array}{c}
m+1 \\
l+1
\end{array}\right] & S_{m+1}^{(k-l)}(n) \\
& = \begin{cases}\frac{n!}{(n-m)!} \sum_{r=0}^{m}\left[\begin{array}{c}
m \\
r
\end{array}\right] B_{n-m+r}^{(k)} & (n \geq m) \\
0 & (0 \leq n \leq m-1)\end{cases}
\end{aligned}
$$

Kamano also showed the explicit formulae $S_{m}^{(k)}(n)$ for $m=2,3$. For example, when $m=2$ we have
Proposition 3. For $k \geq 1$ and $n \geq 0$,

$$
\begin{aligned}
S_{2}^{(0)}(n) & =B_{n}^{(1)}, \\
S_{2}^{(k)}(n) & =B_{n}^{(1)}-n \sum_{j=1}^{k} B_{n}^{(j)}, \\
S_{2}^{(-k)}(n) & =B_{n}^{(1)}+n \sum_{j=0}^{k-1} B_{n}^{(-j)} .
\end{aligned}
$$

It seemed to be difficult to give an explicit formula for $S_{m}^{(k)}(n)$ for $m \geq 4$, but recently a general formula for all $m \geq 1$ is given.
Theorem 5 ([20]). For $m \geq 1, n \geq 0$ and $k \geq 1$, we have

$$
\begin{gathered}
S_{m+1}^{(0)}(n)=S_{m}^{(1)}(n), \\
S_{m+1}^{(k)}(n)=\sum_{r=0}^{m-1}(-1)^{r} r!\binom{n}{r} \sum_{i=0}^{r}\binom{r}{i} \frac{(-1)^{i}}{(i+1)^{k}} S_{m+1-r}^{(0)}(n-r) \\
+(-1)^{m}\binom{n}{m} \sum_{\substack{j_{1}+\ldots+j_{m} \leq k-1 \\
j_{1}, \ldots, j_{m} \geq 0}} \frac{1}{2^{j_{2}} \cdots m^{j_{m}}} \sum_{\nu=1}^{m}\left[\begin{array}{c}
m \\
\nu
\end{array}\right] B_{n-m+\nu}^{\left(1+j_{1}\right)}, \\
S_{m+1}^{(-k)}(n) \\
=\sum_{r=0}^{m-1}(-1)^{r} r!\binom{n}{r} \sum_{i=0}^{r}\binom{r}{i}(-1)^{i}(i+1)^{k} S_{m+1-r}^{(0)}(n-r) \\
+\binom{n}{m} \sum_{\substack{j_{1}+\ldots+j_{m} \leq k \\
j_{1}, \ldots, j_{m} \geq 1}} 2^{j_{2}} \cdots m^{j_{m}} \sum_{\nu=1}^{m}\left[\begin{array}{c}
m \\
\nu
\end{array}\right] B_{n-m+\nu}^{\left(1-j_{1}\right)} .
\end{gathered}
$$

Sums of products of Cauchy numbers

$$
\sum_{\substack{i_{1}+\cdots+i_{m}=n \\ i_{1}, \ldots, i_{m} \geq 0}} \frac{n!}{i_{1}!\cdots i_{m}!} c_{i_{1}} \cdots c_{i_{m}} \quad(m \geq 1, n \geq 0)
$$

were studied by Zhao ([25]). Consider the sums of products of Cauchy numbers, including poly-Cauchy numbers

$$
T_{m}^{(k)}(n):=\sum_{\substack{i_{1}+\cdots+i_{m}=n \\ i_{1}, \ldots, i_{m} \geq 0}} \frac{n!}{i_{1}!\cdots i_{m}!} c_{i_{1}} \cdots c_{i_{m-1}} c_{i_{m}}^{(k)} \quad(m \geq 1, n \geq 0) .
$$

Then, $T_{m}^{(k)}(n)$ satisfies the following relation:
Proposition 4 ([22]).

$$
\begin{aligned}
& \sum_{l=0}^{m}(-1)^{m-l}\left[\begin{array}{c}
m+1 \\
l+1
\end{array}\right] T_{m+1}^{(k-l)}(n) \\
& \qquad= \begin{cases}\sum_{l=0}^{m} \sum_{i=0}^{n-m} \frac{n!}{i!}\binom{l}{n-m-i}\left\{\begin{array}{c}
m \\
l
\end{array}\right\} c_{l+i}^{(k)} & (n \geq m)\end{cases} \\
& 0(0 \leq n \leq m-1)
\end{aligned} .
$$

When $m=2$, we have the following explicit formulae.
Proposition 5 ([22]). For $n \geq 0$ and $k \geq 1$ we have

$$
\begin{aligned}
T_{2}^{(0)}(n) & =c_{n}+n c_{n-1} \\
T_{2}^{(k)}(n) & =T_{2}^{(0)}(n)-n \sum_{j=1}^{k}\left(c_{n}^{(j)}+(n-1) c_{n-1}^{(j)}\right) \\
T_{2}^{(-k)}(n) & =T_{2}^{(0)}(n)+n \sum_{j=0}^{k-1}\left(c_{n}^{(-j)}+(n-1) c_{n-1}^{(-j)}\right) .
\end{aligned}
$$

Putting $k=1$ in the second identity, we have
Corollary 1 ([25]).

$$
\sum_{i=0}^{n}\binom{n}{i} c_{i} c_{n-i}=-n(n-2) c_{n-1}-(n-1) c_{n} \quad(n \geq 0)
$$

This is an analogue of Euler's identity (3).
In general, we can obtain the following explicit expression of $T_{m}^{(k)}(n)$ for any general $m \geq 2$.

Theorem 6. For $n \geq 0$ and $k>0$ we have

$$
\begin{aligned}
& T_{m}^{(0)}(n)=T_{m-1}^{(1)}(n)+n T_{m-1}^{(1)}(n-1), \\
& T_{m}^{(k)}(n)=\sum_{r=0}^{m-2}(-1)^{r}\binom{n}{r} \sum_{i=0}^{r}\binom{r}{i} \frac{(-1)^{i}}{(i+1)^{k}} T_{m-r}^{(0)}(n-r) \\
& +\frac{(-1)^{m-1} n!}{(n-m+1)!} \sum_{\substack{j_{1}+j_{2}+\ldots+j_{m-1}=k+m-2 \\
j_{1}, j_{2}, \ldots, j_{m-1} \geq 1}} 2^{-j_{2}} 3^{-j_{3}} \ldots(m-1)^{-j_{m-1}} \sum_{j=1}^{j_{1}} \sum_{\kappa=0}^{m-1} P_{m, \kappa}(n) c_{n-\kappa}^{(j)}, \\
& T_{m}^{(-k)}(n)=\sum_{r=0}^{m-2}(-1)^{r}\binom{n}{r} \sum_{i=0}^{r}\binom{r}{i}(-1)^{i}(i+1)^{k} T_{m-r}^{(0)}(n-r) \\
& +\frac{n!}{(n-m+1)!} \sum_{\substack{j_{1}+j_{2}+\ldots+j_{m-1}=k-m+1 \\
j_{1}, j_{2}, \ldots, j_{m-1} \geq 0}} 2^{j_{2} 3^{j_{3}} \ldots(m-1)^{j_{m-1}} \sum_{j=0}^{j_{1}} \sum_{\kappa=0}^{m-1} P_{m, \kappa}(n) c_{n-\kappa}^{(-j)} .}
\end{aligned}
$$

where

$$
\begin{array}{r}
P_{m, \kappa}(n)=\sum_{t=0}^{\kappa}\left\{\begin{array}{c}
m-1 \\
m-t-1
\end{array}\right\}\binom{m-t-1}{m-\kappa-1} \frac{(n-m+1)!}{(n-m-\kappa+t+1)!} \\
\quad(\kappa=0,1, \ldots, m-2)
\end{array}
$$

and

$$
\begin{aligned}
P_{m, m-1}(n) & =\sum_{t=0}^{m-2}\left\{\begin{array}{c}
m-1 \\
m-t-1
\end{array}\right\} \frac{(n-m+1)!}{(n-2 m+t+2)!} \\
& =(n-m+1)^{m-1}
\end{aligned}
$$

5 Hypergeometric Bernoulli numbers and hypergeometric Cauchy numbers

Hypergeometric Bernoulli numbers $B_{N, n}(N \geq 1, n \geq 0)([7,9,10,11,12])$ are defined by

$$
\frac{1}{{ }_{1} F_{1}(1 ; N+1 ; x)}=\frac{x^{N} / N!}{e^{x}-\sum_{n=0}^{N-1} x^{n} / n!}=\sum_{n=0}^{\infty} B_{N, n} \frac{x^{n}}{n!},
$$

where ${ }_{1} F_{1}(a ; b ; z)$ is the confluent hypergeometric function defined by

$$
{ }_{1} F_{1}(a ; b ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(b)_{n}} \frac{z^{n}}{n!}
$$

with the Pochhammer symbol $(x)_{n}=x(x+1) \ldots(x+n-1)(n \geq 1)$ and $(x)_{0}=1$. When $N=1, B_{1, n}=B_{n}$ are classical Bernoulli numbers.

Hypergeometric Cauchy numbers $c_{N, n}(N \geq 1, n \geq 0)$ ([21]) are defined by

$$
\frac{1}{{ }_{2} F_{1}(1, N ; N+1 ;-x)}=\frac{(-1)^{N-1} x^{N} / N}{\ln (1+x)-\sum_{n=1}^{N-1}(-1)^{n-1} x^{n} / n}=\sum_{n=0}^{\infty} c_{N, n} \frac{x^{n}}{n!},
$$

where ${ }_{2} F_{1}(a, b ; c ; z)$ is the hypergeometric function defined by

$$
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!} .
$$

When $N=1, c_{1, n}=c_{n}$ are classical Cauchy numbers.
We record of the first few values of $c_{N, n}$:

$$
\begin{aligned}
& c_{N, 0}=1, \\
& c_{N, 1}=\frac{N}{N+1}, \\
& c_{N, 2}=-\frac{2 N}{(N+1)^{2}(N+2)}, \\
& c_{N, 3}=\frac{6 N\left(N^{2}+N+2\right)}{(N+1)^{3}(N+2)(N+3)} \\
& c_{N, 4}=-\frac{4!N\left(N^{5}+5 N^{4}+14 N^{3}+24 N^{2}+20 N+12\right)}{(N+1)^{4}(N+2)^{2}(N+3)(N+4)}, \\
& c_{N, 5}=\frac{5!N\left(N^{7}+8 N^{6}+35 N^{5}+96 N^{4}+160 N^{3}+184 N^{2}+116 N+48\right)}{(N+1)^{5}(N+2)^{2}(N+3)(N+4)(N+5)} .
\end{aligned}
$$

The sums of products of hypergeometric Bernoulli numbers were studied by Kamano ([15]) and those of hypergeometric Cauchy numbers are also studied in [21].

References

[1] T. Agoh and K. Dilcher, Shortened recurrence relations for Bernoulli numbers, Discrete Math. 309 (2009), 887-898.
[2] T. Agoh and K. Dilcher, Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind, Fibonacci Quart. 48 (2010), 4-12.
[3] A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math. 65 (2011), 15-24.
[4] L. Carlitz, A note on Bernoulli and Euler polynomials of the second kind, Scripta Math. 25 (1961), 323-330.
[5] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
[6] K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory 60 (1996), 23-41.
[7] K. Dilcher, Bernoulli numbers and confluent hypergeometric functions, Number Theory for the Millennium, I (Urbana, IL, 2000), 343-363, A K Peters, Natick, MA, 2002.
[8] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol.3, McGraw-Hill Book Co., Inc., New York, 1955.
[9] A. Hassen and H. D. Nguyen, Hypergeometric Bernoulli polynomials and Appell sequences, Int. J. Number Theory 4 (2008), 767-774.
[10] A. Hassen and H. D. Nguyen, Hypergeometric zeta functions, Int. J. Number Theory 6 (2010), 99-126.
[11] F. T. Howard, A sequence of numbers related to the exponential function, Duke Math. J. 34 (1967), 599-615.
[12] F. T. Howard, Some sequences of rational numbers related to the exponential function, Duke Math. J. 34 (1967), 701-716.
[13] Ch. Jordan, Sur des polynômes analogues aux polynômes de Bernoulli et sur des formules de sommation ana-logues à celle de MacLaurin-Euler, Acta Sci. Math. (Szeged) 4 (1928-29), 130-150.
[14] K. Kamano, Sums of products of Bernoulli numbers, including polyBernoulli numbers, J. Integer Seq. 13 (2010), Article 10.5.2.
[15] K. Kamano, Sums of products of hypergeometric Bernoulli numbers, J. Number Theory 130 (2010), 2259-2271.
[16] K. Kamano and T. Komatsu, Poly-Cauchy polynomials, Mosc. J. Comb. Number Theory 3 (2013), (to appear).
[17] K. Kamano and T. Komatsu, Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials, Ramanujan J. (to appear).
[18] M. Kaneko, Poly-Bernoulli numbers, J. Th. Nombres Bordeaux 9 (1997), 221-228.
[19] T. Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143153.
［20］T．Komatsu，Poly－Cauchy numbers with a q parameter，Ramanujan J． 31 （2013），353－371．
［21］T．Komatsu，Hypergeometric Cauchy numbers，Int．J．Number Theory 9 （2013），545－560．
［22］T．Komatsu，Sums of products of Cauchy numbers，including poly－ Cauchy numbers，J．Discrete Math． 2013 （2013），Article ID 373927， 10 pages；Available at http：／／dx．doi．org／10．1155／2013／373927．
［23］D．Merlini，R．Sprugnoli and M．C．Verri，The Cauchy numbers，Discrete Math． 306 （2006）1906－1920．
［24］N．E．Nörlund，Vorlesungen über Differenzenrechnung，Berlin，Springer， 1924.
［25］F．－Z．Zhao，Sums of products of Cauchy numbers，Discrete Math． 309 （2009），3830－3842．

Graduate School of Science and Technology
Hirosaki University
Hirosaki 036－8561
JAPAN
E－mail address：komatsu＠cc．hirosaki－u．ac．jp

[^0]: ${ }^{1}$ This research was supported in part by the Grant-in-Aid for Scientific research (C) (No.22540005), the Japan Society for the Promotion of Science.

