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We investigate sums of products of Cauchy numbers including poly-Cauchy numbers: 𝑇
(𝑘)
𝑚 (𝑛) = ∑𝑖1+⋅⋅⋅+𝑖𝑚=𝑛, 𝑖1 ,...,𝑖𝑚≥0

(
𝑛
𝑖1 ,...,𝑖𝑚 )

𝑐𝑖1
⋅ ⋅ ⋅ 𝑐𝑖𝑚−1

𝑐
(𝑘)

𝑖𝑚
(𝑚 ≥ 1, 𝑛 ≥ 0). A relation among these sums 𝑇

(𝑘)
𝑚 (𝑛) shown in the paper and explicit expressions of sums of two

and three products (the case of 𝑚 = 2 and that of 𝑚 = 3 described in the paper) are given. We also study the other three types of
sums of products related to the Cauchy numbers of both kinds and the poly-Cauchy numbers of both kinds.

1. Introduction

The Cauchy numbers (of the first kind) 𝑐𝑛 are defined by the
integral of the falling factorial:

𝑐𝑛 = ∫

1

0

𝑥 (𝑥 − 1) ⋅ ⋅ ⋅ (𝑥 − 𝑛 + 1) 𝑑𝑥 = 𝑛! ∫

1

0

(
𝑥

𝑛
) 𝑑𝑥 (1)

(see [1, Chapter VII]). The numbers 𝑐𝑛/𝑛! are sometimes
called the Bernoulli numbers of the second kind (see e.g., [2,
3]). Such numbers have been studied by several authors [4–
8] because they are related to various special combinatorial
numbers, including Stirling numbers of both kinds, Bernoulli
numbers, and harmonic numbers. It is interesting to see that
the Cauchy numbers of the first kind 𝑐𝑛 have the similar
properties and expressions to the Bernoulli numbers 𝐵𝑛. For
example, the generating function of the Cauchy numbers
of the first kind 𝑐𝑛 is expressed in terms of the logarithmic
function:

𝑥

ln (1 + 𝑥)
=

∞

∑

𝑛=0

𝑐𝑛

𝑥
𝑛

𝑛!
, (2)

(see [1, 6]), and the generating function of Bernoulli numbers
𝐵𝑛 is expressed in terms of the exponential function:

𝑥

𝑒𝑥 − 1
=

∞

∑

𝑛=0

𝐵𝑛

𝑥
𝑛

𝑛!
, (3)

(see [1]) or

𝑥

1 − 𝑒−𝑥
=

∞

∑

𝑛=0

𝐵𝑛

𝑥
𝑛

𝑛!
(4)

(see [9]). In addition, Cauchy numbers of the first kind 𝑐𝑛 can
be written explicitly as

𝑐𝑛 = (−1)
𝑛
𝑛

∑

𝑚=0

[
𝑛

𝑚
]

(−1)
𝑚

𝑚 + 1
(5)

(see [1, Chapter VII], [6, page 1908]), where [
𝑛
𝑚 ] are the

(unsigned) Stirling numbers of the first kind, arising as
coefficients of the rising factorial

𝑥 (𝑥 + 1) ⋅ ⋅ ⋅ (𝑥 + 𝑛 − 1) =

𝑛

∑

𝑚=0

[
𝑛

𝑚
] 𝑥
𝑚 (6)

(see e.g., [10]). Bernoulli numbers 𝐵𝑛 (in the latter definition)
can be also written explicitly as

𝐵𝑛 = (−1)
𝑛
𝑛

∑

𝑚=0

{
𝑛

𝑚
}

(−1)
𝑚

𝑚!

𝑚 + 1
, (7)

where {
𝑛
𝑚 } are the Stirling numbers of the second kind, deter-

mined by

{
𝑛

𝑚
} =

1

𝑚!

𝑚

∑

𝑗=0

(−1)
𝑗
(

𝑚

𝑗
) (𝑚 − 𝑗)

𝑛
(8)
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(see, e.g., [10]). Recently, Liu et al. [5] established some recur-
rence relations about Cauchy numbers of the first kind as
analogous results about Bernoulli numbers by Agoh and Dil-
cher [11].

In 1997 Kaneko [9] introduced the poly-Bernoulli num-
bers 𝐵

(𝑘)
𝑛 (𝑛 ≥ 0, 𝑘 ≥ 1) by the generating function

Li𝑘 (1 − 𝑒
−𝑥

)

1 − 𝑒−𝑥
=

∞

∑

𝑛=0

𝐵
(𝑘)

𝑛

𝑥
𝑛

𝑛!
, (9)

where

Li𝑘 (𝑧) =

∞

∑

𝑚=0

𝑧
𝑚

𝑚𝑘
(10)

is the 𝑘th polylogarithm function. When 𝑘 = 1, 𝐵
(1)
𝑛 = 𝐵𝑛 is

the classical Bernoulli number with 𝐵
(1)
1 = 1/2. On the other

hand, the author [12] introduced the poly-Cauchy numbers
(of the first kind) 𝑐

(𝑘)
𝑛 as a generalization of the Cauchy

numbers and an analogue of the poly-Bernoulli numbers by
the following:

𝑐
(𝑘)

𝑛 = ∫

1

0

⋅ ⋅ ⋅ ∫

1

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘) (𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘 − 1) ⋅ ⋅ ⋅

(𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘 − 𝑛 + 1) 𝑑𝑥1𝑑𝑥2 ⋅ ⋅ ⋅ 𝑑𝑥𝑘.

(11)

In addition, the generating function of poly-Cauchy numbers
is given by

Lif𝑘 (ln (1 + 𝑥)) =

∞

∑

𝑛=0

𝑐
(𝑘)

𝑛

𝑥
𝑛

𝑛!
, (12)

where

Lif𝑘 (𝑧) :=

∞

∑

𝑚=0

𝑧
𝑚

𝑚!(𝑚 + 1)
𝑘

(13)

is the 𝑘th polylogarithm factorial function, which is also intro-
duced by the author [12, 13]. If 𝑘 = 1, then 𝑐

(1)
𝑛 = 𝑐𝑛 is the

classical Cauchy number.
The following identity on sums of two products of Ber-

noulli numbers is known as Euler’s formula:
𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝐵𝑖𝐵𝑛−𝑖 = −𝑛𝐵𝑛−1 − (𝑛 − 1) 𝐵𝑛 (𝑛 ≥ 0) . (14)

The corresponding formula for Cauchy numbers was discov-
ered in [8]:
𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖𝑐𝑛−𝑖 = − (𝑛 − 1) 𝑐𝑛 − 𝑛 (𝑛 − 2) 𝑐𝑛−1 (𝑛 ≥ 0) . (15)

In this paper, we shall give more analogous results by investi-
gating a general type of sums of products of Cauchy numbers
including poly-Cauchy numbers:

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑚
=𝑛

𝑖
1
,...,𝑖
𝑚
≥0

(
𝑛

𝑖1, . . . , 𝑖𝑚
) 𝑐𝑖
1

⋅ ⋅ ⋅ 𝑐𝑖
𝑚−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

𝑐
(𝑘)

𝑖
𝑚

(𝑚 ≥ 1, 𝑛 ≥ 0) , (16)

whose Bernoulli version is discussed in [14]. A relation
among these sums and explicit expressions of sums of two
and three products are also given.

2. Main Results

We shall consider the sums of products of Cauchy numbers
including poly-Cauchy numbers. Kamano [14] investigated
the following types of sums of products:

𝑆
(𝑘)

𝑚 (𝑛) := ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑚
=𝑛

𝑖
1
,...,𝑖
𝑚
≥0

(
𝑛

𝑖1, . . . , 𝑖𝑚
) 𝐵𝑖
1

⋅ ⋅ ⋅ 𝐵𝑖
𝑚−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

𝐵
(𝑘)

𝑖
𝑚

(𝑚 ≥ 1, 𝑛 ≥ 0) ,

(17)

where Bernoulli numbers 𝐵𝑛 are defined by the generating
function (3) and poly-Bernoulli numbers 𝐵

(𝑘)
𝑛 are defined by

the generating function (9) and Li𝑘(𝑧) is the 𝑘th polyloga-
rithm function defined in (10). It is shown [14] that
𝑚

∑

𝑙=0

(−1)
𝑚−𝑙

[
𝑚 + 1

𝑙 + 1
] 𝑆
(𝑘−𝑙)

𝑚+1 (𝑛)

=

{{

{{

{

𝑛!

(𝑛 − 𝑚)!

𝑚

∑

𝑙=0

[
𝑚

𝑙
] 𝐵
(𝑘)

𝑛−𝑚+𝑙
, (𝑛 ≥ 𝑚) ,

0, (0 ≤ 𝑛 ≤ 𝑚 − 1) .

(18)

Consider an analogous type of sums of products of Cau-
chy numbers including poly-Cauchy numbers:

𝑇
(𝑘)

𝑚 (𝑛) := ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑚
=𝑛

𝑖
1
,...,𝑖
𝑚
≥0

(
𝑛

𝑖1, . . . , 𝑖𝑚
) 𝑐𝑖
1

⋅ ⋅ ⋅ 𝑐𝑖
𝑚−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

𝑐
(𝑘)

𝑖
𝑚

(𝑚 ≥ 1, 𝑛 ≥ 0) .

(19)

Then we show the following result.

Theorem 1. For an integer 𝑘 and a nonnegative integer 𝑚, one
has
𝑚

∑

𝑙=0

(−1)
𝑚−𝑙

[
𝑚 + 1

𝑙 + 1
] 𝑇
(𝑘−𝑙)

𝑚+1 (𝑛)

=

{{

{{

{

𝑚

∑

𝑙=0

𝑛−𝑚

∑

𝑖=0

𝑛!

𝑖!
(

𝑙

𝑛 − 𝑚 − 𝑖
) {

𝑚

𝑙
} 𝑐
(𝑘)

𝑙+𝑖
(𝑛 ≥ 𝑚) ,

0 (0 ≤ 𝑛 ≤ 𝑚 − 1) .

(20)

Note that the generating function of 𝑇
(𝑘)
𝑚 is given by

(
𝑥

ln (1 + 𝑥)
)

𝑚−1

Lif𝑘 (ln (1 + 𝑥)) =

∞

∑

𝑛=0

𝑇
(𝑘)

𝑚 (𝑛)
𝑥
𝑛

𝑛!
. (21)

Put

𝐺𝑘 (𝑥) := Lif𝑘 (ln (1 + 𝑥)) =

∞

∑

𝑛=0

𝑐
(𝑘)

𝑛

𝑥
𝑛

𝑛!
. (22)

Since

Lif1 (𝑧) =
𝑒
𝑧

− 1

𝑧
, Lif0 (𝑧) = 𝑒

𝑧
,

Lif−1 (𝑧) = (𝑧 + 1) 𝑒
𝑧
,

(23)
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we have

𝐺1 (𝑥) =
𝑥

ln (1 + 𝑥)
, 𝐺0 (𝑥) = 1 + 𝑥,

𝐺−1 (𝑥) = (1 + 𝑥) (ln (1 + 𝑥) + 1) .

(24)

Since

𝑥
𝑚 𝑑
𝑙

𝑑𝑥𝑙
𝐺𝑘 (𝑥) =

∞

∑

𝑖=0

𝑐
(𝑘)

𝑙+𝑖

𝑥
𝑚+𝑖

𝑖!
(𝑚, 𝑙 ≥ 0, 𝑘 ≥ 1) , (25)

the coefficient of 𝑥
𝑛 in

𝑥
𝑚 𝑑
𝑙

𝑑𝑥𝑙
𝐺𝑘 (𝑥) (26)

is equal to

𝑐
(𝑘)

𝑛−𝑚+𝑙

(𝑛 − 𝑚)!
(𝑛 ≥ 𝑚) ,

0 (0 ≤ 𝑛 ≤ 𝑚 − 1) .

(27)

We need the following lemma in order to prove
Theorem 1.

Lemma 2. For an integer 𝑘 and a positive integer 𝑚, one has

(

𝑚

∑

𝑖=1

{
𝑚

𝑖
}

1

(1 + 𝑥)
𝑚−𝑖

𝑑
𝑖

𝑑𝑥𝑖
) 𝐺𝑘 (𝑥)

=
1

(1 + 𝑥)
𝑚

(ln (1 + 𝑥))
𝑚

𝑚

∑

𝑙=0

(−1)
𝑚−𝑙

[
𝑚 + 1

𝑙 + 1
] 𝐺𝑘−𝑙 (𝑥) .

(28)

Proof of Lemma 2. Since

𝑑

𝑑𝑥
Lif𝑘 (𝑥) =

1

𝑥

∞

∑

𝑚=0

𝑚𝑥
𝑚

𝑚!(𝑚 + 1)
𝑘

=
1

𝑥

∞

∑

𝑚=0

(
𝑥
𝑚

𝑚!(𝑚 + 1)
𝑘−1

−
𝑥
𝑚

𝑚!(𝑚 + 1)
𝑘
)

=
Lif𝑘−1 (𝑥) − Lif𝑘 (𝑥)

𝑥
,

(29)

we have
𝑑

𝑑𝑥
𝐺𝑘 (𝑥) =

𝐺𝑘−1 (𝑥) − 𝐺𝑘 (𝑥)

(1 + 𝑥) ln (1 + 𝑥)
. (30)

By induction, we can show that for 𝑚 ≥ 1

𝑑
𝑚

𝑑𝑥𝑚
𝐺𝑘 (𝑥) =

𝑚

∑

𝜈=1

(−1)
𝑚−𝜈

(1 + 𝑥)
𝑚

(log (1 + 𝑥))
𝜈 [

𝑚

𝜈
] 𝑔𝜈+1 (𝑥) ,

(31)

where

𝑔𝜈+1 (𝑥) :=

𝜈

∑

𝑙=0

(−1)
𝜈−𝑙

[
𝜈 + 1

𝑙 + 1
] 𝐺𝑘−𝑙 (𝑥) (𝜈 = 1, 2, . . . , 𝑚) .

(32)

Thus, by using the inversion relationship
𝑚

∑

𝑗=𝜈

(−1)
𝑗−𝜈

{
𝑚

𝑗
} [

𝑗

𝜈
] = {

1 (𝜈 = 𝑚) ;

0 (𝜈 = 1, 2, . . . , 𝑚 − 1)
(33)

(see e.g., [10, Chapter 6]), the left-hand side of the identity in
the previous lemma is equal to

𝑚

∑

𝑗=1

{
𝑚

𝑗
}

1

(1 + 𝑥)
𝑚−𝑗

𝑗

∑

𝜈=1

(−1)
𝑗−𝜈

(1 + 𝑥)
𝑗
(ln (1 + 𝑥))

𝜈
[

𝑗

𝜈
] 𝑔𝜈+1 (𝑥)

=
1

(1 + 𝑥)
𝑚

𝑚

∑

𝜈=1

𝑔𝜈+1 (𝑥)

(ln (1 + 𝑥))
𝜈

𝑚

∑

𝑗=𝜈

(−1)
𝑗−𝜈

{
𝑚

𝑗
} [

𝑗

𝜈
]

=
𝑔𝑚+1 (𝑥)

(1 + 𝑥)
𝑚

(ln (1 + 𝑥))
𝑚 ,

(34)

which is the right-hand side of the desired identity.

Now, by the generating function (21), the identity (25),
and Lemma 2,
∞

∑

𝑛=0

(

𝑚

∑

𝑙=0

(−1)
𝑚−𝑙

[
𝑚 + 1

𝑙 + 1
] 𝑇
(𝑘−𝑙)

𝑚+1 (𝑛))
𝑥
𝑛

𝑛!

= (
𝑥

ln (1 + 𝑥)
)

𝑚 𝑚

∑

𝑙=0

(−1)
𝑚−𝑙

[
𝑚 + 1

𝑙 + 1
] 𝐺𝑘−𝑙 (𝑥)

= 𝑥
𝑚

(

𝑚

∑

𝑖=1

(1 + 𝑥)
𝑖
{

𝑚

𝑖
}

𝑑
𝑖

𝑑𝑥𝑖
) 𝐺𝑘 (𝑥)

=

𝑚

∑

𝑙=0

(1 + 𝑥)
𝑙
{

𝑚

𝑙
}

∞

∑

𝑖=0

𝑐
(𝑘)

𝑙+𝑖

𝑥
𝑚+𝑖

𝑖!

=

𝑚

∑

𝑙=0

𝑙

∑

𝜅=0

(
𝑙

𝜅
) 𝑥
𝜅

{
𝑚

𝑙
}

∞

∑

𝑖=0

𝑐
(𝑘)

𝑙+𝑖

𝑥
𝑚+𝑖

𝑖!

=

𝑚

∑

𝑙=0

∞

∑

𝑛=0

𝑛

∑

𝑖=0

(
𝑙

𝑛 − 𝑖
) {

𝑚

𝑙
}

𝑐
(𝑘)

𝑙+𝑖

𝑖!
𝑥
𝑚+𝑛

=

∞

∑

𝑛=𝑚

(

𝑚

∑

𝑙=0

𝑛−𝑚

∑

𝑖=0

𝑛!

𝑖!
(

𝑙

𝑛 − 𝑚 − 𝑖
) {

𝑚

𝑙
} 𝑐
(𝑘)

𝑙+𝑖
)

𝑥
𝑛

𝑛!
.

(35)

Note that ( 𝑙𝜈 ) = 0 (𝑙 < 𝜈) and {
𝑚
0 } = 0 (𝑚 ≥ 1). Therefore,

𝑚

∑

𝑙=0

(−1)
𝑚−𝑙

[
𝑚 + 1

𝑙 + 1
] 𝑇
(𝑘−𝑙)

𝑚+1 (𝑛)

=

{{

{{

{

𝑚

∑

𝑙=0

𝑛−𝑚

∑

𝑖=0

𝑛!

𝑖!
(

𝑙

𝑛 − 𝑚 − 𝑖
) {

𝑚

𝑙
} 𝑐
(𝑘)

𝑙+𝑖
(𝑛 ≥ 𝑚) ;

0 (0 ≤ 𝑛 ≤ 𝑚 − 1) .

(36)

If we put 𝑚 = 1 in Theorem 1, we get an analogous for-
mula to Euler’s formula (14) for sums of products of Cauchy
number and a poly-Cauchy number.
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Corollary 3. One has
𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖 (𝑐

(𝑘−1)

𝑛−𝑖 − 𝑐
(𝑘)

𝑛−𝑖) = 𝑛 (𝑛 − 1) 𝑐
(𝑘)

𝑛−1 + 𝑛𝑐
(𝑘)

𝑛 (𝑛 ≥ 0) .

(37)

2.1. Explicit Formula for 𝑇
(𝑘)
2 (𝑛). Theorem 1 gives only rela-

tions among sums of products 𝑇
(𝑘)
𝑚 (𝑛). For 𝑚 = 2, an explicit

formula for

𝑇
(𝑘)

2 (𝑛) =

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖𝑐
(𝑘)

𝑛−𝑖 (38)

is given.

Theorem 4. For 𝑛 ≥ 0 and 𝑘 ≥ 1 one has

𝑇
(0)

2 (𝑛) = 𝑐
(1)

𝑛 (−1)

= (−1)
𝑛
𝑛

∑

𝑖=0

𝑛

∑

𝑚=𝑖

(−1)
𝑚

[
𝑛

𝑚
] (

𝑚

𝑖
)

1

𝑚 − 𝑖 + 1
,

(39)

𝑇
(𝑘)

2 (𝑛) = 𝑐
(1)

𝑛 (−1) − 𝑛

𝑘

∑

𝑗=1

(𝑐
(𝑗)

𝑛 + (𝑛 − 1) 𝑐
(𝑗)

𝑛−1) , (40)

𝑇
(−𝑘)

2 (𝑛) = 𝑐
(1)

𝑛 (−1) + 𝑛

𝑘−1

∑

𝑗=0

(𝑐
(−𝑗)

𝑛 + (𝑛 − 1) 𝑐
(−𝑗)

𝑛−1 ) ,

(41)

where 𝑐
(1)
𝑛 (−1) = 𝑐𝑛 + 𝑛𝑐𝑛−1.

Proof. Consider
∞

∑

𝑛=0

𝑇
(0)

2 (𝑛)
𝑥
𝑛

𝑛!
=

𝑥

ln (1 + 𝑥)
Lif0 (ln (1 + 𝑥))

=
(1 + 𝑥) 𝑥

ln (1 + 𝑥)
=

∞

∑

𝑛=0

𝑐
(1)

𝑛 (−1)
𝑥
𝑛

𝑛!
,

(42)

where 𝑐
(𝑘)
𝑛 (𝑧) are poly-Cauchy polynomials of the first kind,

defined by the generating function

Lif𝑘 (ln (1 + 𝑥))

(1 + 𝑥)
𝑧 =

∞

∑

𝑛=0

𝑐
(𝑘)

𝑛 (𝑧)
𝑥
𝑛

𝑛!
. (43)

𝑐
(𝑘)
𝑛 (𝑧) are expressed explicitly in terms of the Stirling num-
bers of the first kind [13, Theorem 1]:

𝑐
(𝑘)

𝑛 (𝑧) =

𝑛

∑

𝑚=0

[
𝑛

𝑚
] (−1)

𝑛−𝑚
𝑚

∑

𝑖=0

(
𝑚

𝑖
)

(−𝑧)
𝑖

(𝑚 − 𝑖 + 1)
𝑘
. (44)

Hence, the identity (39) holds because

𝑇
(0)

2 (𝑛) = 𝑐
(1)

𝑛 (−1) =

𝑛

∑

𝑚=0

[
𝑛

𝑚
] (−1)

𝑛−𝑚
𝑚

∑

𝑖=0

(
𝑚

𝑖
)

1

𝑚 − 𝑖 + 1

= (−1)
𝑛
𝑛

∑

𝑖=0

𝑛

∑

𝑚=𝑖

(−1)
𝑚

[
𝑛

𝑚
] (

𝑚

𝑖
)

1

𝑚 − 𝑖 + 1
.

(45)

Next, by (30) and 𝐺0(𝑥) = 1 + 𝑥 we have
𝑘

∑

𝑗=1

𝑑

𝑑𝑥
𝐺𝑗 (𝑥) =

𝑘

∑

𝑗=1

𝐺𝑗−1 (𝑥) − 𝐺𝑗 (𝑥)

(1 + 𝑥) ln (1 + 𝑥)

=
1

ln (1 + 𝑥)
−

𝐺𝑘 (𝑥)

(1 + 𝑥) ln (1 + 𝑥)
.

(46)

Hence,
∞

∑

𝑛=0

𝑇
(𝑘)

2 (𝑛)
𝑥
𝑛

𝑛!
=

𝑥

ln (1 + 𝑥)
𝐺𝑘 (𝑥)

=
𝑥 (1 + 𝑥)

ln (1 + 𝑥)
− 𝑥 (1 + 𝑥)

𝑘

∑

𝑗=1

𝑑

𝑑𝑥
𝐺𝑗 (𝑥)

=

∞

∑

𝑛=0

𝑐
(1)

𝑛 (−1)
𝑥
𝑛

𝑛!
− 𝑥 (1 + 𝑥)

𝑘

∑

𝑗=1

∞

∑

𝑛=0

𝑐
(𝑗)

𝑛+1

𝑥
𝑛

𝑛!

=

∞

∑

𝑛=0

𝑐
(1)

𝑛 (−1)
𝑥
𝑛

𝑛!

−

∞

∑

𝑛=0

𝑘

∑

𝑗=1

(𝑛𝑐
(𝑗)

𝑛 + 𝑛 (𝑛 − 1) 𝑐
(𝑗)

𝑛−1)
𝑥
𝑛

𝑛!
.

(47)

Therefore, we get the identity (40).
Finally, by

𝑑

𝑑𝑥
Lif−𝑘 (𝑥) =

Lif−𝑘−1 (𝑥) − Lif−𝑘 (𝑥)

𝑥
, (48)

we have
𝑘−1

∑

𝑗=0

𝑑

𝑑𝑥
𝐺−𝑗 (𝑥) =

𝑘−1

∑

𝑗=0

𝐺−𝑗−1 (𝑥) − 𝐺−𝑗 (𝑥)

(1 + 𝑥) ln (1 + 𝑥)

=
𝐺−𝑘 (𝑥)

(1 + 𝑥) ln (1 + 𝑥)
−

1

ln (1 + 𝑥)
.

(49)

Hence,
∞

∑

𝑛=0

𝑇
(−𝑘)

2 (𝑛)
𝑥
𝑛

𝑛!
=

𝑥

ln (1 + 𝑥)
𝐺−𝑘 (𝑥)

=
𝑥 (1 + 𝑥)

ln (1 + 𝑥)
+ 𝑥 (1 + 𝑥)

𝑘−1

∑

𝑗=0

𝑑

𝑑𝑥
𝐺−𝑗 (𝑥)

=

∞

∑

𝑛=0

𝑐
(1)

𝑛 (−1)
𝑥
𝑛

𝑛!
+ 𝑥 (1 + 𝑥)

𝑘−1

∑

𝑗=0

∞

∑

𝑛=0

𝑐
(−𝑗)

𝑛+1

𝑥
𝑛

𝑛!

=

∞

∑

𝑛=0

𝑐
(1)

𝑛 (−1)
𝑥
𝑛

𝑛!

+

∞

∑

𝑛=0

𝑘−1

∑

𝑗=0

(𝑛𝑐
(−𝑗)

𝑛 + 𝑛 (𝑛 − 1) 𝑐
(−𝑗)

𝑛−1 )
𝑥
𝑛

𝑛!
.

(50)

Therefore, we get the identity (41).
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Table 1

𝑛 0 1 2 3 4 5 6 7 8 9

𝑐𝑛 1 1/2 −1/6 1/4 −19/30 9/4 −863/84 1375/24 −33953/90 57281/20

𝑐
(1)
𝑛 (−1) 1 3/2 5/6 −1/4 11/30 −11/12 271/84 −117/8 7297/90 −2125/4

Putting 𝑘 = 1 in (40), we have the following identity,
which is also found in [8]. This is also an analogous formula
to Euler’s formula (14).

Corollary 5. One has (see also Table 1)

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖𝑐𝑛−𝑖 = − (𝑛 − 1) 𝑐𝑛 − 𝑛 (𝑛 − 2) 𝑐𝑛−1 (𝑛 ≥ 0) . (51)

Proof. Since

∞

∑

𝑛=0

𝑇
(0)

2 (𝑛)
𝑥
𝑛

𝑛!
=

(1 + 𝑥) 𝑥

ln (1 + 𝑥)
= (1 + 𝑥)

∞

∑

𝑛=0

𝑐𝑛

𝑥
𝑛

𝑛!

=

∞

∑

𝑛=0

(𝑐𝑛 + 𝑛𝑐𝑛−1)
𝑥
𝑛

𝑛!
,

(52)

we have 𝑐
(1)
𝑛 (−1) = 𝑐𝑛 + 𝑛𝑐𝑛−1. Hence,

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖𝑐𝑛−𝑖 = 𝑇

(1)

2 (𝑛)

= 𝑐
(1)

𝑛 (−1) − 𝑛 (𝑐𝑛 + (𝑛 − 1) 𝑐𝑛−1)

= − (𝑛 − 1) 𝑐𝑛 − 𝑛 (𝑛 − 2) 𝑐𝑛−1.

(53)

2.2. Explicit Formulae for 𝑇
(𝑘)
3 (𝑛). For 𝑚 = 3, an explicit

formula for

𝑇
(𝑘)

3 (𝑛) =

𝑛

∑

𝑖=0

𝑛−𝑖

∑

𝑗=0

𝑛!

𝑖!𝑗! (𝑛 − 𝑖 − 𝑗)!
𝑐𝑖𝑐𝑗𝑐
(𝑘)

𝑛−𝑖−𝑗 (54)

is also given.

Theorem 6. For 𝑛 ≥ 0 and 𝑘 ≥ 1 one has

𝑇
(0)

3 (𝑛) = − (𝑛 − 1) 𝑐𝑛 − 2𝑛 (𝑛 − 2) 𝑐𝑛−1

− 𝑛 (𝑛 − 1) (𝑛 − 3) 𝑐𝑛−2,

(55)

𝑇
(𝑘)

3 (𝑛) = 𝑇
(0)

3 (𝑛) − (1 − 2
−𝑘

) 𝑛 (𝑐𝑛−1 + (𝑛 − 1) 𝑐𝑛−2)

+ 𝑛 (𝑛 − 1)

𝑘

∑

𝑗=1

(1 − 2
𝑗−𝑘−1

)

× ((𝑛 − 2)
2
𝑐
(𝑗)

𝑛−2 + (2𝑛 − 3) 𝑐
(𝑗)

𝑛−1 + 𝑐
(𝑗)

𝑛 ) ,

(56)

𝑇
(−𝑘)

3 (𝑛) = 𝑇
(0)

3 (𝑛) + (2
𝑘

− 1) 𝑛 (𝑐𝑛−1 + (𝑛 − 1) 𝑐𝑛−2)

+ 𝑛 (𝑛 − 1)

𝑘−2

∑

𝑗=0

(2
𝑘−𝑗−1

− 1)

× ((𝑛 − 2)
2
𝑐
(−𝑗)

𝑛−2 + (2𝑛 − 3) 𝑐
(−𝑗)

𝑛−1 + 𝑐
(−𝑗)

𝑛 ) .

(57)

Proof. Consider

∞

∑

𝑛=0

𝑇
(0)

3 (𝑛)
𝑥
𝑛

𝑛!
=

𝑥
2

(1 + 𝑥)

(ln (1 + 𝑥))
2

= (1 + 𝑥)

∞

∑

𝑛=0

𝑇
(1)

2 (𝑛)
𝑥
𝑛

𝑛!

=

∞

∑

𝑛=0

(𝑇
(1)

2 (𝑛) + 𝑛𝑇
(1)

2 (𝑛 − 1))
𝑥
𝑛

𝑛!
.

(58)

Hence, by Corollary 5

𝑇
(0)

3 (𝑛) = 𝑇
(1)

2 (𝑛) + 𝑛𝑇
(1)

2 (𝑛 − 1)

= − (𝑛 − 1) 𝑐𝑛 − 𝑛 (𝑛 − 2) 𝑐𝑛−1

+ 𝑛 (− (𝑛 − 2) 𝑐𝑛−1 − (𝑛 − 1) (𝑛 − 3) 𝑐𝑛−2)

= − (𝑛 − 1) 𝑐𝑛 − 2𝑛 (𝑛 − 2) 𝑐𝑛−1 − 𝑛 (𝑛 − 1) (𝑛 − 3) 𝑐𝑛−2,

(59)

which is the identity (55).
By Lemma 2 with 𝑚 = 2

(
𝑑
2

𝑑𝑥2
+

1

1 + 𝑥

𝑑

𝑑𝑥
) 𝐺𝑘 (𝑥)

=
(2𝐺𝑘 (𝑥) − 𝐺𝑘−1 (𝑥)) − (2𝐺𝑘−1 (𝑥) − 𝐺𝑘−2 (𝑥))

(1 + 𝑥)
2
(ln (1 + 𝑥))

2
.

(60)

Thus,

𝑙

∑

𝑗=1

(
𝑑
2

𝑑𝑥2
+

1

1 + 𝑥

𝑑

𝑑𝑥
) 𝐺𝑗 (𝑥)

=
2𝐺𝑙 (𝑥) − 𝐺𝑙−1 (𝑥)

(1 + 𝑥)
2
(ln (1 + 𝑥))

2
−

2𝐺0 (𝑥) − 𝐺−1 (𝑥)

(1 + 𝑥)
2
(ln (1 + 𝑥))

2
.

(61)
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By multiplying both sides by 2
𝑙−1 and summing over 𝑙 from 1

to 𝑘, we obtain

2
𝑘 𝐺𝑘 (𝑥)

(1 + 𝑥)
2
(ln (1 + 𝑥))

2

=
𝐺0 (𝑥)

(1 + 𝑥)
2
(ln (1 + 𝑥))

2
+ (

𝑘

∑

𝑙=1

2
𝑙−1

)
2𝐺0 (𝑥) − 𝐺−1 (𝑥)

(1 + 𝑥)
2
(ln (1 + 𝑥))

2

+

𝑘

∑

𝑙=1

2
𝑙−1
𝑙

∑

𝑗=1

(
𝑑
2

𝑑𝑥2
+

1

1 + 𝑥

𝑑

𝑑𝑥
) 𝐺𝑗 (𝑥)

=

(2
𝑘+1

− 1) 𝐺0 (𝑥) − (2
𝑘

− 1) 𝐺−1 (𝑥)

(1 + 𝑥)
2
(ln (1 + 𝑥))

2

+

𝑘

∑

𝑗=1

(

𝑘

∑

𝑙=𝑗

2
𝑙−1

) (
𝑑
2

𝑑𝑥2
+

1

1 + 𝑥

𝑑

𝑑𝑥
) 𝐺𝑗 (𝑥) .

(62)

Hence, we have

2
𝑘
(

𝑥

ln (1 + 𝑥)
)

2

𝐺𝑘 (𝑥)

= (2
𝑘+1

− 1)
(1 + 𝑥) 𝑥

2

(ln (1 + 𝑥))
2

− (2
𝑘

− 1)
(1 + 𝑥) 𝑥

2
(ln (1 + 𝑥) + 1)

(ln (1 + 𝑥))
2

+ 𝑥
2
(1 + 𝑥)

2
𝑘

∑

𝑗=1

(2
𝑘

− 2
𝑗−1

) (
𝑑
2

𝑑𝑥2
+

1

1 + 𝑥

𝑑

𝑑𝑥
) 𝐺𝑗 (𝑥) .

(63)

By comparing the coefficients of 𝑥
𝑛
/𝑛! in both sides,

2
𝑘
𝑇
(𝑘)

3 (𝑛) = (2
𝑘+1

− 1) 𝑇
(0)

3 (𝑛) − (2
𝑘

− 1) 𝑛𝑇
(0)

2 (𝑛 − 1)

− (2
𝑘

− 1) 𝑇
(0)

3 (𝑛) +

𝑘

∑

𝑗=1

(2
𝑘

− 2
𝑗−1

)

× (𝑛 (𝑛 − 1) 𝑐
(𝑗)

𝑛 + 2𝑛 (𝑛 − 1) (𝑛 − 2) 𝑐
(𝑗)

𝑛−1

+ 𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛 − 3) 𝑐
(𝑗)

𝑛−2 + 𝑛 (𝑛 − 1) 𝑐
(𝑗)

𝑛−1

+ 𝑛 (𝑛 − 1) (𝑛 − 2) 𝑐
(𝑗)

𝑛−2)

= 2
𝑘
𝑇
(0)

3 (𝑛) − (2
𝑘

− 1) 𝑛𝑇
(0)

2 (𝑛 − 1)

+

𝑘

∑

𝑗=1

(2
𝑘

− 2
𝑗−1

) 𝑛 (𝑛 − 1)

× ((𝑛 − 2)
2
𝑐
(𝑗)

𝑛−2 + (2𝑛 − 3) 𝑐
(𝑗)

𝑛−1 + 𝑐
(𝑗)

𝑛 ) .

(64)

Dividing both sides by 2
𝑘, we have the identity (56).

Finally, since

𝑙−2

∑

𝑗=0

(
𝑑
2

𝑑𝑥2
+

1

1 + 𝑥

𝑑

𝑑𝑥
) 𝐺−𝑗 (𝑥)

=

𝑙−2

∑

𝑗=0

(2𝐺−𝑗 (𝑥) − 𝐺−𝑗−1) − (2𝐺−𝑗−1 (𝑥) − 𝐺−𝑗−2)

(1 + 𝑥)
2
(ln (1 + 𝑥))

2

=

𝑙−2

∑

𝑗=0

(
2𝐺0 (𝑥) − 𝐺−1

(1 + 𝑥)
2
(ln (1 + 𝑥))

2
−

2𝐺−𝑙+1 (𝑥) − 𝐺−𝑙

(1 + 𝑥)
2
(ln (1 + 𝑥))

2
) ,

(65)

we obtain

2
−𝑘 𝐺−𝑘 (𝑥)

(1 + 𝑥)
2
(ln (1 + 𝑥))

2

=

(1 − 2
−𝑘

) 𝐺−1 (𝑥) − (1 − 2
−𝑘+1

) 𝐺0 (𝑥)

(1 + 𝑥)
2
(ln (1 + 𝑥))

2

+

𝑘−2

∑

𝑗=0

(

𝑘

∑

𝑙=𝑗+2

2
−𝑙

) (
𝑑
2

𝑑𝑥2
+

1

1 + 𝑥

𝑑

𝑑𝑥
) 𝐺−𝑗 (𝑥) .

(66)

Hence, we have

2
−𝑘

(
𝑥

ln (1 + 𝑥)
)

2

𝐺−𝑘 (𝑥)

= (1 − 2
−𝑘

)
(1 + 𝑥) 𝑥

2

ln (1 + 𝑥)
+ 2
−𝑘 (1 + 𝑥) 𝑥

2

(ln (1 + 𝑥))
2

+ 𝑥
2
(1 + 𝑥)

2
𝑘−2

∑

𝑗=0

(2
−𝑗−1

− 2
−𝑘

)

× (
𝑑
2

𝑑𝑥2
+

1

1 + 𝑥

𝑑

𝑑𝑥
) 𝐺−𝑗 (𝑥) ,

(67)

yielding the identity (57).

2.3. Poly-Cauchy Numbers of the Second Kind. Similarly,
define �̂�

(𝑘)

𝑚 (𝑛) by

�̂�
(𝑘)

𝑚 (𝑛) := ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑚
=𝑛

𝑖
1
,...,𝑖
𝑚
≥0

(
𝑛

𝑖1, . . . , 𝑖𝑚
) 𝑐𝑖
1

⋅ ⋅ ⋅ 𝑐𝑖
𝑚−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

𝑐
(𝑘)

𝑖
𝑚

(𝑚 ≥ 1, 𝑛 ≥ 0) ,

(68)

where 𝑐
(𝑘)
𝑛 is poly-Cauchy number of the second kind [12],

whose generating function is given by

Lif𝑘 (− ln (1 + 𝑥)) =

∞

∑

𝑛=0

𝑐
(𝑘)

𝑛

𝑥
𝑛

𝑛!
. (69)
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Table 2

𝑛 0 1 2 3 4 5 6 7

𝑐𝑛 1 −1/2 5/6 −9/4 251/30 −475/12 19087/84 −36799/24

𝑐
(1)
𝑛 (−1) 1 −3/2 23/6 −55/4 1901/30 −4277/12 198721/84 −144747/8

𝑐
(𝑘)
𝑛 can be also defined by

𝑐
(𝑘)

𝑛 = ∫

1

0

⋅ ⋅ ⋅ ∫

1

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(−𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘) (−𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘 − 1) ⋅ ⋅ ⋅

(−𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘 − 𝑛 + 1) 𝑑𝑥1𝑑𝑥2 ⋅ ⋅ ⋅ 𝑑𝑥𝑘

(70)

(see [12]). In this sense, 𝑐
(𝑘)
𝑛 is called poly-Cauchy number of

the first kind. When 𝑘 = 1, 𝑐𝑛 = 𝑐
(1)
𝑛 is the classical Cauchy

number of the second kind, whose generating function is
given by

𝑥

(1 + 𝑥) ln (1 + 𝑥)
=

∞

∑

𝑛=0

𝑐𝑛

𝑥
𝑛

𝑛!
. (71)

By using the corresponding lemma to Lemma 2, where
𝐺𝑘(𝑥) is replaced by 𝐺𝑘(𝑥) = Lif𝑘(− ln(1 + 𝑥)), we can obtain
the following result.

Theorem 7. For an integer 𝑘 and a nonnegative integer 𝑚, one
has
𝑚

∑

𝑙=0

(−1)
𝑚−𝑙

[
𝑚 + 1

𝑙 + 1
] �̂�
(𝑘−1)

𝑚+1 (𝑛)

=

{{{{{{

{{{{{{

{

(−1)
𝑛−𝑚
𝑚−1

∑

𝑙=0

𝑛−𝑚

∑

𝑖=0

(−1)
𝑖 𝑛!

𝑖!
(

𝑛 − 𝑙 − 𝑖 − 1

𝑛 − 𝑚 − 𝑖
) {

𝑚

𝑙
} 𝑐
(𝑘)

𝑙+𝑖

+
𝑛!

(𝑛 − 𝑚)!
𝑐
(𝑘)
𝑛 (𝑛 ≥ 𝑚) ;

0 (0 ≤ 𝑛 ≤ 𝑚 − 1) .

(72)

Putting 𝑚 = 1 in Theorem 7, one has the following.

Corollary 8.
𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖 (𝑐

(𝑘−1)

𝑛−𝑖 − 𝑐
(𝑘)

𝑛−𝑖) = 𝑛𝑐
(𝑘)

𝑛 (𝑛 ≥ 0) . (73)

Consider the case 𝑚 = 2. Note that the generating
function of poly-Cauchy polynomial of the second kind
𝑐
(𝑘)
𝑛 (𝑧) [13] is given by

(1 + 𝑥)
𝑧Lif𝑘 (− ln (1 + 𝑥)) =

∞

∑

𝑛=0

𝑐
(𝑘)

𝑛 (𝑧)
𝑥
𝑛

𝑛!
. (74)

𝑐
(𝑘)
𝑛 (𝑧) are expressed explicitly in terms of the Stirling num-
bers of the first kind [13, Theorem 4]

𝑐
(𝑘)

𝑛 (𝑧) =

𝑛

∑

𝑚=0

[
𝑛

𝑚
] (−1)

𝑛
𝑚

∑

𝑖=0

(
𝑚

𝑖
)

(−𝑧)
𝑖

(𝑚 − 𝑖 + 1)
𝑘
. (75)

Hence,

𝑐
(1)

𝑛 (−1) =

𝑛

∑

𝑚=0

[
𝑛

𝑚
] (−1)

𝑛
𝑚

∑

𝑖=0

(
𝑚

𝑖
)

1

𝑚 − 𝑖 + 1

= (−1)
𝑛
𝑛

∑

𝑖=0

𝑛

∑

𝑚=𝑖

[
𝑛

𝑚
] (

𝑚

𝑖
)

1

𝑚 − 𝑖 + 1
.

(76)

On the other hand,
∞

∑

𝑛=0

𝑐
(1)

𝑛 (−1)
𝑥
𝑛

𝑛!

=
𝑥

(1 + 𝑥)
2 ln (1 + 𝑥)

=
1

1 + 𝑥

∞

∑

𝑛=0

𝑐𝑛

𝑥
𝑛

𝑛!

= (

∞

∑

𝜇=0

(−𝑥)
𝜇
) (

∞

∑

𝜈=0

𝑐𝜈

𝑥
𝜈

𝜈!
)

=

∞

∑

𝑛=0

(−1)
𝑛
𝑛

∑

𝑖=0

𝑛!

𝑖!
(−1)
𝑖
𝑐𝑖

𝑥
𝑛

𝑛!
.

(77)

Thus,

𝑐
(1)

𝑛 (−1) = (−1)
𝑛
𝑛

∑

𝑖=0

𝑛!

𝑖!
(−1)
𝑖
𝑐𝑖 (78)

(see Table 2).

Theorem 9. For 𝑛 ≥ 0 and 𝑘 ≥ 1 one has

�̂�
(0)

2 (𝑛) = 𝑐
(1)

𝑛 (−1) , (79)

�̂�
(𝑘)

2 (𝑛) = 𝑐
(1)

𝑛 (−1) − 𝑛

𝑘

∑

𝑗=1

𝑐
(𝑗)

𝑛 , (80)

�̂�
(−𝑘)

2 (𝑛) = 𝑐
(1)

𝑛 (−1) + 𝑛

𝑘−1

∑

𝑗=0

𝑐
(−𝑗)

𝑛 . (81)

Putting 𝑘 = 1 in (80), we have the following identity. This
is also an analogous formula to Euler’s formula (14).

Corollary 10. One has
𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖𝑐𝑛−𝑖 = 𝑐

(1)

𝑛 (−1) − 𝑛𝑐𝑛 (𝑛 ≥ 0) . (82)

If 𝑚 = 3, then �̂�
(𝑘)

3 can be expressed as follows.
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Theorem 11. For 𝑛 ≥ 0 and 𝑘 ≥ 1 one has

�̂�
(0)

3 (𝑛) = (−1)
𝑛
𝑛

∑

𝑙=0

(−1)
𝑙 𝑛!

𝑙!
�̂�
(1)

2 (𝑙)

= (−1)
𝑛
𝑛

∑

𝑙=0

(−1)
𝑙 𝑛!

𝑙!
(𝑐
(1)

𝑙
(−1) − 𝑙𝑐𝑙) ,

�̂�
(𝑘)

3 (𝑛) = �̂�
(0)

3 (𝑛) + (1 − 2
−𝑘

) 𝑛𝑐
(1)

𝑛−1 (−2)

+ 𝑛 (𝑛 − 1)

𝑘

∑

𝑗=1

(1 − 2
𝑗−𝑘−1

)

× (𝑐
(𝑗)

𝑛 + (−1)
𝑛

(𝑛 − 2)!

𝑛−2

∑

𝑙=0

(−1)
𝑙
𝑐
(𝑗)

𝑙+1

𝑙!
) ,

�̂�
(−𝑘)

3 (𝑛) = �̂�
(0)

3 (𝑛) − (2
𝑘

− 1) 𝑛𝑐
(1)

𝑛−1 (−2)

+ 𝑛 (𝑛 − 1)

𝑘−2

∑

𝑗=0

(2
𝑘−𝑗−1

− 1)

× (𝑐
(−𝑗)

𝑛 + (−1)
𝑛

(𝑛 − 2)!

𝑛−2

∑

𝑙=0

(−1)
𝑙
𝑐
(−𝑗)

𝑙+1

𝑙!
) .

(83)

Remark 12. Note that

𝑛𝑐
(1)

𝑛−1 (−2) = (−1)
𝑛−1

𝑛!

𝑛−1

∑

𝑙=0

(𝑛 − 𝑙) (−1)
𝑙 𝑐𝑙

𝑙!
. (84)

2.4. Two Kinds of Poly-Cauchy Numbers. Define 𝑈
(𝑘)
𝑚 (𝑛) by

𝑈
(𝑘)

𝑚 (𝑛) := ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑚
=𝑛

𝑖
1
,...,𝑖
𝑚
≥0

(
𝑛

𝑖1, . . . , 𝑖𝑚
) 𝑐𝑖
1

⋅ ⋅ ⋅ 𝑐𝑖
𝑚−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

𝑐
(𝑘)

𝑖
𝑚

(𝑚 ≥ 1, 𝑛 ≥ 0) .

(85)

Then we obtain the following.

Theorem 13. For an integer 𝑘 and a nonnegative integer 𝑚,
one has

𝑚

∑

𝑙=0

(−1)
𝑚−𝑙

[
𝑚 + 1

𝑙 + 1
] 𝑈
(𝑘−𝑙)

𝑚+1 (𝑛)

=

{{

{{

{

𝑚

∑

𝑙=0

𝑛−𝑚

∑

𝑖=0

𝑛!

𝑖!
(

𝑙

𝑛 − 𝑚 − 𝑖
) {

𝑚

𝑙
} 𝑐
(𝑘)

𝑙+𝑖
(𝑛 ≥ 𝑚) ;

0 (0 ≤ 𝑛 ≤ 𝑚 − 1) .

(86)

Putting 𝑚 = 1 in Theorem 13, we have the following.

Corollary 14.
𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖 (𝑐

(𝑘−1)

𝑛−𝑖 − 𝑐
(𝑘)

𝑛−𝑖) = 𝑛 ((𝑛 − 1) 𝑐
(𝑘)

𝑛−1 + 𝑐
(𝑘)

𝑛 ) (𝑛 ≥ 0) .

(87)

If 𝑚 = 2, then 𝑈
(𝑘)
2 can be expressed explicitly.

Theorem 15. For 𝑛 ≥ 0 and 𝑘 ≥ 1 one has

𝑈
(0)

2 (𝑛) = 𝑐𝑛, (88)

𝑈
(𝑘)

2 (𝑛) = 𝑐𝑛 − 𝑛

𝑘

∑

𝑗=1

(𝑐
(𝑗)

𝑛 + (𝑛 − 1) 𝑐
(𝑗)

𝑛−1) , (89)

𝑈
(−𝑘)

2 (𝑛) = 𝑐𝑛 + 𝑛

𝑘−1

∑

𝑗=0

(𝑐
(−𝑗)

𝑛 + (𝑛 − 1) 𝑐
(−𝑗)

𝑛−1 ) . (90)

Putting 𝑘 = 1 in (89), we have the alternative identity (2.3)
in [6, Theorem 2.4] because 𝑐𝑛 = 𝑐𝑛 + 𝑛𝑐𝑛−1 by (2.2) in [6,
Theorem 2.4].

Corollary 16. One has
𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖𝑐𝑛−𝑖 = − (𝑛 − 1) (𝑐𝑛 + 𝑛𝑐𝑛−1) (𝑛 ≥ 1) . (91)

If 𝑚 = 3, then 𝑈
(𝑘)
3 can be expressed as follows.

Theorem 17. For 𝑛 ≥ 0 and 𝑘 ≥ 1 one has

𝑈
(0)

3 (𝑛) = − (𝑛 − 1) (𝑐𝑛 + 𝑛𝑐𝑛−1)

= − (𝑛 − 1) 𝑐𝑛,

(92)

𝑈
(𝑘)

3 (𝑛) = 𝑈
(0)

3 (𝑛) + (1 − 2
−𝑘

) 𝑛𝑐𝑛−1

+ 𝑛 (𝑛 − 1)

𝑘

∑

𝑗=1

(1 − 2
𝑗−𝑘−1

)

× ((𝑛 − 2)
2
𝑐
(𝑗)

𝑛−2 + (2𝑛 − 3) 𝑐
(𝑗)

𝑛−1 + 𝑐
(𝑗)

𝑛 ) ,

(93)

𝑈
(−𝑘)

3 (𝑛) = 𝑈
(0)

3 (𝑛) − (2
𝑘

− 1) 𝑛𝑐𝑛−1

+ 𝑛 (𝑛 − 1)

𝑘−2

∑

𝑗=0

(2
𝑘−𝑗−1

− 1)

× ((𝑛 − 2)
2
𝑐
(−𝑗)

𝑛−2 + (2𝑛 − 3) 𝑐
(−𝑗)

𝑛−1 + 𝑐
(−𝑗)

𝑛 ) .

(94)

Define 𝑉
(𝑘)
𝑚 (𝑛) by

𝑉
(𝑘)

𝑚 (𝑛) := ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑚
=𝑛

𝑖
1
,...,𝑖
𝑚
≥0

(
𝑛

𝑖1, . . . , 𝑖𝑚
) 𝑐𝑖
1

⋅ ⋅ ⋅ 𝑐𝑖
𝑚−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

𝑐
(𝑘)

𝑖
𝑚

(𝑚 ≥ 1, 𝑛 ≥ 0) .

(95)

Then we obtain the following.
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Theorem 18. For an integer 𝑘 and a nonnegative integer 𝑚,
one has

𝑚

∑

𝑙=0

(−1)
𝑚−𝑙

[
𝑚 + 1

𝑙 + 1
] 𝑉
(𝑘−𝑙)

𝑚+1 (𝑛)

=

{{{{{{

{{{{{{

{

(−1)
𝑛−𝑚
𝑚−1

∑

𝑙=0

𝑛−𝑚

∑

𝑖=0

(−1)
𝑖 𝑛!

𝑖!
(

𝑛 − 𝑙 − 𝑖 − 1

𝑛 − 𝑚 − 𝑖
) {

𝑚

𝑙
} 𝑐
(𝑘)

𝑙+𝑖

+
𝑛!

(𝑛 − 𝑚)!
𝑐
(𝑘)
𝑛 (𝑛 ≥ 𝑚) ;

0 (0 ≤ 𝑛 ≤ 𝑚 − 1) .

(96)

Putting 𝑚 = 1 in Theorem 18, we have the following.

Corollary 19.

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖 (𝑐

(𝑘−1)

𝑛−𝑖 − 𝑐
(𝑘)

𝑛−𝑖) = 𝑛𝑐
(𝑘)

𝑛 (𝑛 ≥ 0) . (97)

If 𝑚 = 2, then 𝑉
(𝑘)
2 can be expressed explicitly.

Theorem 20. For 𝑛 ≥ 0 and 𝑘 ≥ 1 one has

𝑉
(0)

2 (𝑛) = 𝑐𝑛, (98)

𝑉
(𝑘)

2 (𝑛) = 𝑐𝑛 − 𝑛

𝑘

∑

𝑗=1

𝑐
(𝑗)

𝑛 , (99)

𝑉
(−𝑘)

2 (𝑛) = 𝑐𝑛 + 𝑛

𝑘−1

∑

𝑗=0

𝑐
(−𝑗)

𝑛 . (100)

Putting 𝑘 = 1 in (99), we have the identity (2.3) in [6,
Theorem 2.4].

Corollary 21. One has

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑐𝑖𝑐𝑛−𝑖 = − (𝑛 − 1) 𝑐𝑛 (𝑛 ≥ 1) . (101)

If 𝑚 = 3, then 𝑉
(𝑘)
3 can be expressed as follows.

Theorem 22. For 𝑛 ≥ 0 and 𝑘 ≥ 1 one has

𝑉
(0)

3 (𝑛) = − (𝑛 − 1) 𝑐𝑛,

𝑉
(𝑘)

3 (𝑛) = 𝑉
(0)

3 (𝑛) − (1 − 2
−𝑘

) 𝑛𝑐𝑛−1

+ 𝑛 (𝑛 − 1)

𝑘

∑

𝑗=1

(1 − 2
𝑗−𝑘−1

)

× (𝑐
(𝑗)

𝑛 + (−1)
𝑛

(𝑛 − 2)!

𝑛−2

∑

𝑙=0

(−1)
𝑙
𝑐
(𝑗)

𝑙+1

𝑙!
) ,

𝑉
(−𝑘)

3 (𝑛) = 𝑉
(0)

3 (𝑛) + (2
𝑘

− 1) 𝑛𝑐𝑛−1

+ 𝑛 (𝑛 − 1)

𝑘−2

∑

𝑗=0

(2
𝑘−𝑗−1

− 1)

× (𝑐
(−𝑗)

𝑛 + (−1)
𝑛

(𝑛 − 2)!

𝑛−2

∑

𝑙=0

(−1)
𝑙
𝑐
(−𝑗)

𝑙+1

𝑙!
) .

(102)

3. Further Study

Kamano [14] mentioned that explicit formulae of 𝑆
(𝑘)
𝑚 (𝑛) for

𝑚 ≥ 4 seemed to be complicated to describe. We will give
explicit formulae of𝑇

(𝑘)
𝑚 (𝑛) for any𝑚 ≥ 2 later anywhere else.

In addition, onemay consider the sums of products of (𝑚−𝑘)
Cauchy numbers and 𝑘 poly-Cauchy numbers. It would be an
interesting work to establish the explicit expressions of such
summations.
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