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POLY-CAUCHY NUMBERS

Takao KOMATSU

(Received 7 March 2012)

Abstract. We define the poly-Cauchy numbers by generalizing the Cauchy numbers of the

first kind (the Bernoulli numbers of the second kind when divided by a factorial). We study

their characteristic properties which are analogous to those of the poly-Bernoulli numbers

introduced by Kaneko, and generalize those of the classical Cauchy numbers of the first kind

as well as of the second kind.

1. Introduction

The Cauchy numbers of the first kind cn are introduced by the integral of the falling factorial:

cn =

∫ 1

0

x(x − 1) . . . (x − n + 1) dx = n!

∫ 1

0

(
x

n

)

dx

(see [1, Ch. VII]). The number cn/n! is sometimes referred to as the Bernoulli number of

the second kind. They are not so well known, although they seem to have similar properties

to those of the Bernoulli numbers of the first kind. The classical Bernoulli numbers (or the

Bernoulli numbers of the first kind) Bn (with B1 = 1/2) are defined by the generating function

(see [1, Ch. I] and [3])

x

1 − e−x
=

∞∑

n=0

Bn
xn

n!
.

There are many identities involving the Bernoulli numbers. The Bernoulli numbers are

closely related to the (unsigned) Stirling numbers of the first kind [ n
m

] defined by

x(x + 1) . . . (x + n − 1) =
n∑

m=0

[
n

m

]

xm,

and the Stirling numbers of the second kind { n
m

} determined by

{
n

m

}

=
1

m!

m∑

j=0

(−1)j
(

m

j

)

(m − j)n

(see [2]). Some of such relations are

1

n!

n∑

m=0

(−1)m
[

n + 1

m + 1

]

Bm =
1

n + 1
,

Bn = (−1)n
n∑

m=0

{
n

m

}
(−1)mm!

m + 1
.
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The Bernoulli numbers also are related to the binomial coefficients. Some of the known

identities are

Bn = −
n+1∑

m=1

(−1)m

m

(
n + 1

m

) m∑

j=1

jn,

n∑

m=0

(
n

m

)
(−1)mBm

n − m + 2
=

Bn+1

n + 1
,

m∑

r=0

(−1)r
(

m

r

)

Bn+r =
n∑

s=0

(−1)s
(

n

s

)

Bm+s ,

n∑

m=0

(−1)n+m

(
n + 1

m

)

(n + m + 1)Bn+m = 0 (n ≥ 1),

1

n

n∑

m=1

(
n

m

)

BmBn−m − Bn−1 = −Bn (n ≥ 1).

They are also connected with the Riemann-zeta functions ζ(n) (n even) as

ζ(n) =
(−1)n/2−1Bn(2π)n

2n!
.

In 1997 Kaneko [3] introduced the poly-Bernoulli numbers B
(k)
n by

1

z
Lik(z)

∣
∣
∣
∣
z=1−e−x

=
∞∑

n=0

B(k)
n

xn

n!
,

where

Lik(z) =
∞∑

m=1

zm

mk

is the kth polylogarithm function. When k = 1, B
(1)
n is the classical Bernoulli number with

B
(1)
1 = 1/2. The generating function of the poly-Bernoulli numbers can also be written in

terms of iterated integrals:

ex ·
1

ex − 1

∫ x

0

1

ex − 1

∫ x

0

· · ·
1

ex − 1

∫ x

0
︸ ︷︷ ︸

k−1

x

ex − 1
dx dx . . . dx
︸ ︷︷ ︸

k−1

=
∞∑

n=0

B(k)
n

xn

n!
.

An explicit formula for B
(k)
n is given by

B(k)
n = (−1)n

n∑

m=0

{
n

m

}
(−1)mm!

(m + 1)k
(n ≥ 0, k ≥ 1). (1)

In this paper, we introduce the poly-Cauchy numbers as an analog of the poly-Bernoulli

numbers, generalizing the classical Cauchy numbers.
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2. Poly-Cauchy numbers of the first kind

Let n and k be integers with n ≥ 0 and k ≥ 1 throughout the paper. Define the poly-Cauchy

numbers c
(k)
n as follows.

c(k)
n = n!

∫ 1

0

· · ·

∫ 1

0
︸ ︷︷ ︸

k

(
x1x2 . . . xk

n

)

dx1 dx2 . . . dxk.

The Cauchy numbers cn = c
(1)
n can be expressed in terms of the (unsigned) Stirling numbers

of the first kind [ n
m

]:

c(1)
n = (−1)n

n∑

m=0

[
n

m

]
(−1)m

m + 1

(see [1, Ch. VII] and [4, p. 1908]). The poly-Cauchy numbers c
(k)
n can also be expressed in

terms of the Stirling numbers of the first kind [ n
m

]. This can be considered as an analog of the

identity (1).

THEOREM 1. We have

c(k)
n = (−1)n

n∑

m=0

[
n

m

]
(−1)m

(m + 1)k
(n ≥ 0, k ≥ 1).

Proof. Denote the falling factorial (x)n = x(x − 1) . . . (x − n + 1) (n ≥ 1) with (x)0 = 1.

Then by the identity
(

x

n

)

=
(x)n

n!
=

1

n!

n∑

m=0

[
n

m

]

(−1)n−mxm

(see e.g. [2, Ch. 6]), we have

c(k)
n = n!

∫ 1

0

· · ·

∫ 1

0
︸ ︷︷ ︸

k

(
x1x2 . . . xk

n

)

dx1 dx2 . . . dxk

=

∫ 1

0

· · ·

∫ 1

0
︸ ︷︷ ︸

k

n∑

m=0

[
n

m

]

(−1)n−m(x1x2 . . . xk)
mdx1 dx2 . . . dxk

= (−1)n
n∑

m=0

[
n

m

]
(−1)m

(m + 1)k
. ✷

By using Theorem 1, we obtain

c
(k)
0 = 1,

c
(k)
1 =

1

2k
,

c
(k)
2 = −

1

2k
+

1

3k
,

c
(k)
3 =

2

2k
−

3

3k
+

1

4k
,
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c
(k)
4 = −

6

2k
+

11

3k
−

6

4k
+

1

5k
,

c
(k)
5 =

24

2k
−

50

3k
+

35

4k
−

10

5k
+

1

6k
,

c
(k)
6 = −

120

2k
+

274

3k
−

225

4k
+

85

5k
−

15

6k
+

1

7k
.

We list the poly-Cauchy numbers c
(k)
n for n ≤ 6 and k ≤ 6 in Table 1.

Similarly to the polylogarithm function Lik(z), we define Lifk(z) (k = 1, 2, . . .) by

Lifk(z) :=
∞∑

m=0

zm

m!(m + 1)k

and we call it the kth polylogarithm factorial function. Then, we get a generating function

of the poly-Cauchy numbers. We may define the poly-Cauchy numbers by this generating

function.

THEOREM 2. The generating function of the poly-Cauchy numbers c
(k)
n is given by the

following:

Lifk(ln(1 + x)) =
∞∑

n=0

c(k)
n

xn

n!
.

Proof. Since

(ln(1 + x))m

m!
= (−1)m

∞∑

n=m

[
n

m

]
(−x)n

n!
,

we have by Theorem 1

∞∑

n=0

c(k)
n

xn

n!
=

∞∑

n=0

n∑

m=0

[
n

m

]
(−1)m+n

(m + 1)k

xn

n!

=
∞∑

m=0

(−1)m

(m + 1)k

∞∑

n=m

[
n

m

]
(−x)n

n!

=
∞∑

m=0

(ln(1 + x))m

m!(m + 1)k
= Lifk(ln(1 + x)). ✷

Remark. The poly-Cauchy numbers can be defined also for negative k, if one uses Theorem 2

as the definition, because the series has a meaning as a formal power series even if k is non-

positive.

The generating function of the Cauchy numbers of the first kind cn is also given by

x

ln(1 + x)
=

∞∑

n=0

cn
xn

n!

(see [1, Ch. VII]). The generating function of the poly-Cauchy numbers in Theorem 2 can be

written in the form of iterated integrals.
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T
A

B
L

E
1
.
c
(k

)
n

(1
≤

n
,
k

≤
6
).

n

0
1

2
3

4
5

6

c
(1

)
n

1
1
/
2

−
1
/
6

1
/
4

−
1
9
/
3
0

9
/
4

−
8
6
3
/
8
4

c
(2

)
n

1
1
/
4

−
5
/
3
6

1
1
/
4
8

−
1
1
0
3
/
1
8
0
0

1
6
2
7
/
7
2
0

−
3
7
4
4
7
3
/
3
5
2
8
0

c
(3

)
n

1
1
/
8

−
1
9
/
2
1
6

8
9
/
5
7
6

−
4
6
2
6
1
/
1
0
8
0
0
0

2
3
3
2
3
/
1
4
4
0
0

−
1
1
4
8
9
5
7
5
7
/
1
4
8
1
7
6
0
0

c
(4

)
n

1
1
/
1
6

−
6
5
/
1
2
9
6

6
3
5
/
6
9
1
2

−
1
6
9
1
5
0
7
/
6
4
8
0
0
0
0

2
6
0
2
9
0
3
/
2
5
9
2
0
0
0

−
3
0
3
1
6
3
0
6
8
1
3
/
6
2
2
3
3
9
2
0
0
0

c
(5

)
n

1
1
/
3
2

−
2
1
1
/
7
7
7
6

4
2
4
1
/
8
2
9
4
4

−
5
7
4
5
3
7
0
9
/
3
8
8
8
0
0
0
0
0

2
9
8
2
5
9
8
7
/
5
1
8
4
0
0
0
0

−
7
3
6
2
6
8
4
1
3
2
9
1
7
/
2
6
1
3
8
2
4
6
4
0
0
0
0

c
(6

)
n

1
1
/
6
4

−
6
6
5
/
4
6
6
5
6

2
7
2
5
1
/
9
9
5
3
2
8

−
1
8
6
7
6
7
8
8
8
3
/
2
3
3
2
8
0
0
0
0
0
0

2
9
3
3
1
6
2
4
0
7
/
9
3
3
1
2
0
0
0
0
0

−
1
7
0
0
4
4
4
1
8
4
2
9
0
6
5
3
/
1
0
9
7
8
0
6
3
4
8
8
0
0

0
0
0
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COROLLARY 1. For k ≥ 2 we have

1

ln(1 + x)

∫ x

0

1

(1 + x) ln(1 + x)

∫ x

0
· · ·

1

(1 + x) ln(1 + x)

∫ x

0
︸ ︷︷ ︸

k−1

x

(1 + x) ln(1 + x)
dx dx . . . dx
︸ ︷︷ ︸

k−1

=
∞∑

n=0

c
(k)
n

xn

n!
.

Proof. For k ≥ 2 we have

Lifk(z) =
∞∑

m=0

zm

(m + 1)k−1(m + 1)!

=
1

z

∞∑

m=0

zm+1

(m + 1)k−1(m + 1)!

=
1

z

∫ z

0

∞∑

m=0

zm

(m + 1)k−2(m + 1)!
dz

=
1

z

∫ z

0

1

z

∫ z

0

∞∑

m=0

zm

(m + 1)k−3(m + 1)!
dz dz

= · · ·

=
1

z

∫ z

0

1

z

∫ z

0

· · ·
1

z

∫ z

0
︸ ︷︷ ︸

k−1

∞∑

m=0

zm

(m + 1)!
dz dz . . . dz
︸ ︷︷ ︸

k−1

.

For k = 1 we have

∞∑

m=0

zm

(m + 1)!
=

1

z

∞∑

m=0

zm+1

(m + 1)!

=
ez − 1

z
.

Therefore,

Lifk(z) =
1

z

∫ z

0

1

z

∫ z

0

· · ·
1

z

∫ z

0
︸ ︷︷ ︸

k−1

ez − 1

z
dz dz . . . dz
︸ ︷︷ ︸

k−1

.

Putting z = ln(1 + x), we obtain the result. ✷

THEOREM 3. We have
n∑

m=0

{
n

m

}

c(k)
m =

1

(n + 1)k
.

Remark. If k = 1, then this identity is the same as that in [4, Theorem 2.3].
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Proof. Using the identity

max{l,n}∑

m=0

(−1)m−n

[
m

l

]{
n

m

}

= δln

(see, e.g., [2, Ch. 6]), where δln is the Kronecker delta defined by

δln =

{

1 (l = n),

0 (l �= n),

we have by Theorem 1

n∑

m=0

{
n

m

}

c(k)
m =

n∑

m=0

{
n

m

}

(−1)m
m∑

l=0

[
m

l

]
(−1)l

(l + 1)k

=
n∑

l=0

(−1)l

(l + 1)k

n∑

m=l

(−1)m
[
m

l

]{
n

m

}

=
n∑

l=0

(−1)l

(l + 1)k
· (−1)nδln

=
(−1)n

(n + 1)k
· (−1)n · 1 =

1

(n + 1)k
. ✷

3. Poly-Cauchy numbers of the second kind

The Cauchy numbers of the second kind ĉn is defined by

ĉn = n!

∫ 1

0

(
−x

n

)

dx

=

∫ 1

0

(−x)(−x − 1) . . . (−x − n + 1) dx = (−1)n
∫ 1

0

〈x〉n dx,

where 〈x〉n = x(x + 1) . . . (x + n − 1) (n ≥ 1) is the rising factorial with 〈x〉0 = 1 (see [1,

Ch. VII]). The numbers cn are called the Cauchy numbers of the first kind, in order to

distinguish them from those of the second kind. Similarly to the poly-Cauchy numbers of

the first kind, we define the poly-Cauchy numbers of the second kind as follows:

ĉ(k)
n = n!

∫ 1

0

· · ·

∫ 1

0
︸ ︷︷ ︸

k

(
−x1x2 . . . xk

n

)

dx1 dx2 . . . dxk.

The Cauchy numbers of the second kind ĉn = ĉ
(1)
n are expressed in terms of the Stirling

numbers of the first kind:

ĉ(1)
n = (−1)n

n∑

m=0

[
n

m

]
1

m + 1

(see [1, Ch. VII] and [4]). The poly-Cauchy numbers of the second kind ĉ
(k)
n can be also

expressed in terms of the Stirling numbers of the first kind.
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THEOREM 4. We have

ĉ(k)
n = (−1)n

n∑

m=0

[
n

m

]
1

(m + 1)k
.

Proof. Note that
(

−x

n

)

= (−1)n
〈x〉n

n!
=

(−1)n

n!

n∑

m=0

[
n

m

]

xm

(see, e.g., [2, Ch. 6]). Hence, we have

ĉ(k)
n = n!

∫ 1

0

· · ·

∫ 1

0
︸ ︷︷ ︸

k

(
−x1x2 . . . xk

n

)

dx1 dx2 . . . dxk

=

∫ 1

0

· · ·

∫ 1

0
︸ ︷︷ ︸

k

(−1)n
n∑

m=0

[
n

m

]

(x1x2 . . . xk)
m dx1 dx2 . . . dxk

= (−1)n
n∑

m=0

[
n

m

]
1

(m + 1)k
. ✷

By using Theorem 4, we obtain

ĉ
(k)
0 = 1,

ĉ
(k)
1 = −

1

2k
,

ĉ
(k)
2 =

1

2k
+

1

3k
,

ĉ
(k)
3 = −

2

2k
−

3

3k
−

1

4k
,

ĉ
(k)
4 =

6

2k
+

11

3k
+

6

4k
+

1

5k
,

ĉ
(k)
5 = −

24

2k
−

50

3k
−

35

4k
−

10

5k
−

1

6k
.

In a similar manner to the results in Theorem 2, Corollary 1 and Theorem 3 regarding

the poly-Cauchy numbers of the first kind c
(k)
n , we can obtain the following corresponding

results about the poly-Cauchy numbers of the second kind ĉ
(k)
n . The proofs are similar and

are omitted.

THEOREM 5. The generating function of the poly-Cauchy numbers ĉ
(k)
n is as follows:

Lifk(−ln(1 + x)) =
∞∑

n=0

ĉ(k)
n

xn

n!
,

where

Lifk(z) =
∞∑

m=0

zm

m!(m + 1)k
.
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The generating function of the Cauchy numbers of the second kind ĉn = ĉ
(1)
n is given by

x

(1 + x) ln(1 + x)
=

∞∑

n=0

ĉ(1)
n

xn

n!

(see [1, Ch. VII] and [4, p. 1910]). The generating function of the poly-Cauchy numbers of

the second kind can be also written in the form of iterated integrals by putting z = −ln(1 + x)

in

Lifk(z) =
1

z

∫ z

0

1

z

∫ z

0

· · ·
1

z

∫ z

0
︸ ︷︷ ︸

k−1

ez − 1

z
dz dz . . . dz
︸ ︷︷ ︸

k−1

.

COROLLARY 2. For k ≥ 2 we have

1

ln(1 + x)

∫ x

0

1

(1 + x) ln(1 + x)

∫ x

0
· · ·

1

(1 + x) ln(1 + x)

∫ x

0
︸ ︷︷ ︸

k−1

x

(1 + x)2 ln(1 + x)
dx dx . . . dx
︸ ︷︷ ︸

k−1

=
∞∑

n=0

ĉ
(k)
n

xn

n!
.

We also have the corresponding identity to that in Theorem 3. If k = 1, the result is

reduced to the second identity in [4, Theorem 2.6]. The proof is similar and is omitted.

THEOREM 6. We have
n∑

m=0

{
n

m

}

ĉ(k)
m =

(−1)n

(n + 1)k
.

4. Relations between two kinds of poly-Cauchy numbers

There are some relations between the poly-Cauchy numbers of the first kind and those of the

second kind.

THEOREM 7. For n ≥ 1 we have

(−1)n
c
(k)
n

n!
=

n∑

m=1

(
n − 1

m − 1

)
ĉ
(k)
m

m!
,

(−1)n
ĉ
(k)
n

n!
=

n∑

m=1

(
n − 1

m − 1

)
c
(k)
m

m!
.

Proof. We shall prove the first identity. The second identity is proved similarly. By using the

identity (see, e.g., [2, Ch. 6])

(−1)l

n!

[
n

l

]

=
n∑

m=l

(−1)m

m!

(
n − 1

m − 1

)[
m

l

]
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and Theorems 1 and 4, we have

n∑

m=1

(
n − 1

m − 1

)
ĉ
(k)
m

m!
=

n∑

m=1

(
n − 1

m − 1

)
(−1)m

m!

m∑

l=1

[
m

l

]
1

(l + 1)k

=
n∑

l=1

1

(l + 1)k

n∑

m=l

(−1)m

m!

(
n − 1

m − 1

)[
m

l

]

=
n∑

l=1

1

(l + 1)k

(−1)l

n!

[
n

l

]

= (−1)n
c
(k)
n

n!
. ✷

Remark. As an alternative proof of the theorem, one can use the generating series. Both

generating series can be transformed to each other by the same substitution −x/(1 + x) for x.

5. A relation with poly-Bernoulli numbers

There is a relation with poly-Bernoulli numbers.

THEOREM 8. For n ≥ 1 we have

B(k)
n =

n∑

l=1

n∑

m=1

m!

{
n

m

}{
m − 1

l − 1

}

c
(k)
l .

Proof. Note that
m∑

l=i

(−1)l
{

m − 1

l − 1

}[
l

i

]

= (−1)m
(

m − 1

i − 1

)

(see, e.g. [2, (6.26)]) and

n∑

m=i

m!

{
n

m

}

(−1)m
(

m − 1

i − 1

)

= (−1)ni!

{
n

i

}

(see, e.g. [2, (6.19), (6.21)]). Then by Theorem 1 we have

n∑

l=1

n∑

m=1

m!

{
n

m

}{
m − 1

l − 1

}

c
(k)
l

=
n∑

l=1

n∑

m=l

m!

{
n

m

}{
m − 1

l − 1

}

(−1)l
l∑

i=0

[
l

i

]
(−1)i

(i + 1)k

=
n∑

i=1

(−1)i

(i + 1)k

n∑

l=i

n∑

m=l

m!

{
n

m

}{
m − 1

l − 1

}

(−1)l
[

l

i

]

=
n∑

i=1

(−1)i

(i + 1)k

n∑

m=i

m!

{
n

m

} m∑

l=i

(−1)l
{

m − 1

l − 1

}[
l

i

]

=
n∑

i=1

(−1)i

(i + 1)k

n∑

m=i

m!

{
n

m

}

(−1)m
(

m − 1

i − 1

)

=
n∑

i=1

(−1)i

(i + 1)k
(−1)ni!

{
n

i

}

= B(k)
n . ✷
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