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Abstract. Jacobi polynomials are mapped onto the continuous Hahn poly-
nomials by the Fourier transform, and the orthogonality relations for the con-
tinuous Hahn polynomials then follow from the orthogonality relations for the
Jacobi polynomials and the Parseval formula. In a special case this relation
dates back to work by Bateman in 1933 and we follow a part of the histori-
cal development for these polynomials. Some applications of this relation are
given.

1. Introduction and history

In Askey’s scheme of hypergeometric orthogonal polynomials we find the Jacobi
polynomials and the continuous Hahn polynomials; see Askey and Wilson [5, Ap-
pendix] with the correction in [2], Koekoek and Swarttouw [20] or Koornwinder [23,
§5] for information on Askey’s scheme. In the hierarchy of Askey’s scheme of hy-
pergeometric orthogonal polynomials the continuous Hahn polynomials are above
the Jacobi polynomials since they have one extra degree of freedom. In this paper
we consider a way of going up in the Askey scheme from the Jacobi polynomials to
the continuous Hahn polynomials by use of the Fourier transform. This method is
a simple extension of some special cases introduced by Bateman in the 1930’s.

In his 1933 paper [9] Bateman introduced the polynomial Fn satisfying

(1.1) Fn
( d
dx

)
cosh−1 x = cosh−1 xPn(tanhx),

where Pn(x) = P
(0,0)
n (x) is the Legendre polynomial; cf. (2.3) for its definition.

This is possible since d
dx cosh−1 = − cosh−1 tanhx and d

dx tanhx = 1 − tanh2 x.
Bateman derived in [9] various properties for the polynomials Fn, such as generating
functions, explicit expressions as hypergeometric series, the three-term recurrence
relation, difference equations, integral representations, and more; see also [10]. One
year later Bateman proved the orthogonality relations (cf. [11], [10])

(1.2)

∫ ∞
−∞

Fn(ix)Fm(ix)

cosh2(πx/2)
dx = δn,m

4(−1)n

π(2n+ 1)
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888 H. T. KOELINK

by a method using the Fourier transform, which we reproduce for a more general
class of polynomials. The factor (−1)n on the right-hand side of (1.2) does not
matter, since it can be removed by rescaling Fn by a factor in. This factor is
necessary in order to make the polynomial Fn real-valued for imaginary argument.
The orthogonality relation (1.2) is also derived by Hardy [18, §8] as an example
of a general approach to some orthogonal polynomials using the Mellin transform,
which is equivalent to Bateman’s proof of (1.2); see also Remark 3.2(ii).

The Bateman polynomial Fn was generalised by Pasternack [26] in 1939. He
defined the polynomial Fmn by

(1.3) Fmn

( d
dx

)
cosh−m−1 x = cosh−m−1 xPn(tanhx),

for m ∈ C\{−1}, which reduces to Bateman’s polynomial Fn in case m = 0. Here
we use d

dx cosh−1−m x = −(m + 1) cosh−1−m x tanhx. The case m = 1 already
occurs in Bateman’s paper [10, §4]; see also [12].

For the polynomials Fmn Pasternack derived explicit expressions in terms of hy-
pergeometric series, generating functions, the three-term recurrence relation, dif-
ference equations, and integral representations much along the same lines as in [9],
but he does not prove orthogonality relations for Fmn . In particular, Pasternack
proved (cf. [26, (10.2), (10.5)])∫ ∞

−∞

∣∣∣Γ(1

2
(m+ 1 + z)

)∣∣∣4Fmn (iz)Fmp (−iz) dz = C

∫ 1

−1

(1− x2)mPn(x)Pp(x) dx

for some explicit constant C. So if Pasternack would have replaced the Legendre

polynomial Pn in (1.3) by the Gegenbauer polynomial P
(m,m)
n , i.e. the polynomials

orthogonal on [−1, 1] with respect to the weight function (1 − x2)m (cf. (2.2)),
he would have obtained a one-parameter subclass of the two-parameter continuous
symmetric Hahn polynomials introduced by Askey and Wilson [4] in 1982.

Bateman obtained in [12, (3.3)] the orthogonality relations

(1.4)

∫ ∞
−∞

Fmn (ix)F−mp (ix)

cosh(πx) + cos(mπ)
dx = δn,p

2(−1)n

π(2n+ 1)

mπ

sinπm
, −1 < m < 1,

for Pasternack’s polynomials, which reduce to (1.2) for m = 0. The right-hand side
of [12, (3.3)] is not correct. Although explicit expressions for Fmn , and hence for the
leading coefficients of these polynomials, were known to Bateman at that time he
did not rewrite the orthogonality relation (1.4) as the orthogonality relation (1.5)
for the Pasternack polynomials.

In 1956 Touchard [33, §§13, 14] considered orthogonal polynomials associated
with the Bernoulli numbers. He derived a three-term recurrence relation and or-
thogonality relations and determined the value at − 1

2 . In the following paper in
the Canadian Journal of Mathematics Wyman and Moser [36] gave an explicit ex-
pression for these polynomials in terms of a hypergeometric 4F3-series. A year later
Brafman [13] gave another expression for these polynomials and derived generating
functions for these polynomials. But it is Carlitz [14] who noted that the polyno-
mials introduced by Touchard are the same as Bateman’s polynomials Fn defined
by (1.1). In 1959 Carlitz [15] replaced the Bernoulli numbers by certain numbers
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ON JACOBI AND CONTINUOUS HAHN POLYNOMIALS 889

involving the Bernoulli polynomials at a point λ, where the case λ = 0 corresponds
to the Bernoulli numbers; see also Chihara [16, Ch. VI, §8]. Carlitz showed that
the corresponding orthogonal polynomials are Pasternack’s polynomials (1.3), for
which he gave the orthogonality relations (see also [4])∫ ∞

−∞

Fmn (ix)Fmp (ix)

cos(πm) + cosh(πx)
dx

= δn,p
(−1)n

2n+ 1

2

π

(1−m)n
(1 +m)n

mπ

sinπm
, −1 < m < 1,(1.5)

where we use the notation of (2.4). The same remark as for (1.2) applies here. The
case m = 0 of (1.5) is (1.2). From Proposition 3.1 we see that (1.5) also yields
orthogonal polynomials, after a suitable renormalisation, for m ∈ iR. From either
(1.4) or from the fact that the weight function in (1.5) is even in m we see that
Fmn is a multiple of F−mn . By comparing leading coefficients (cf. §2), we obtain
(1 + m)nF

m
n (x) = (1 −m)nF

−m
n (x) (see §2 for the notation). The case m = 1

2 of
(1.5) was given by Hardy [18, §§4–7] in 1940.

Carlitz explicitly calculated the moments corresponding to the orthogonality
measure (1.5) in terms of the Bernoulli polynomials; cf. [15, §6]. This result had
already been obtained by Stieltjes [29, §5] in 1890 by developing

ψ(x + b)− ψ(x+ 1− b),

ψ(x) denoting the logarithmic derivative of the gamma function Γ(x), in powers of
x−1 and in terms of a continued fraction. This means that Stieltjes gave the three-
term recurrence relation for the orthogonal polynomials for which the moments of
the orthogonality measure are given in terms of the Bernoulli polynomials. Stieltjes
included this example in his famous memoir “Recherches sur les fraction continues”,
in which he also gave the corresponding integral representation; cf. [30, §86].

In 1982 Askey and Wilson [4] introduced orthogonal polynomials, which gener-
alise the orthogonal polynomials introduced by Bateman, Pasternack, Touchard,
Hardy, and Carlitz. These polynomials are orthogonal on R with respect to the
measure |Γ(α+ ix)Γ(γ + ix)|2 (α, γ > 0 or ᾱ = γ and <(α) > 0) and are nowadays
known as the symmetric continuous Hahn polynomials. Atakishiyev and Suslov [6,
§3] showed that this is not the end of the story and introduced the continuous Hahn
polynomials which have one extra parameter; see also Askey [2]. These polynomi-
als are orthogonal with respect to the weight function |Γ(α + ix)Γ(γ + ix)|2 with
<(α),<(γ) > 0 and =(α) = −=(γ).

The goal of this paper is to show that Bateman’s approach can be used to prove
the orthogonality relations for the continuous Hahn polynomials by only using the
Jacobi polynomials and the Fourier transform in a similar way as Bateman [11]
did in proving (1.2). The orthogonality relations for the continuous Hahn poly-
nomials are not new, but this paper shows that Bateman, Pasternack, and Hardy
could have found these orthogonality relations if they had pursued their approach
somewhat further. Moreover, this point of view on the relationship between Jacobi
polynomials and continuous Hahn polynomials gives an intrinsic explanation for
the occurrence of the Jacobi polynomials in Atakishiyev and Suslov’s proof [6, §3]
of the orthogonality relation for the continuous Hahn polynomials.
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890 H. T. KOELINK

We do not exactly know why Bateman and Hardy did not proceed to find the
continuous Hahn polynomials as early as the 1930’s and 1940’s. The following
explanation has been communicated to me by Richard Askey, whom I thank for
letting me reproduce his view on this matter here. As to Hardy, we know that he
kept the special functions, when needed, as simple as possible and that he only
used special functions when necessary. So going beyond the Legendre polynomial
was no option to Hardy. Bateman, as most of his contemporaries, thought of
hypergeometric series as a function of the power series variable z, cf. the definition
in §2. But the argument of the Bateman and Pasternack polynomial occurs in
one of the parameters of a hypergeometric series (cf. Remark 2.2(i)), and not in
the power series variable as is the case for e.g. the Jacobi polynomials, and thus
they were not in the line of thought at that time. This also explains why Rice [28]
looked for an appropriate generalisation of the Bateman and Pasternack polynomial
by introducing a variable at the power series spot. However, Rice did not obtain
orthogonal polynomials in this way.

There are more orthogonal systems involving orthogonal polynomials that are
mapped onto each other by the Fourier transform, or by another integral transform
such as the Mellin and Hankel transform. The best known examples of this are

the Hermite functions, i.e. Hermite polynomials multiplied by e−x
2/2, which are

eigenfunctions of the Fourier transform. For more examples we refer to Koornwinder
[22], [23] and to the integral transforms of the Bateman project [17]. It is, however,
important to note that in the derivation presented here we do not use orthogonal
systems, but biorthogonal systems involving Jacobi polynomials. This gives the
possibility to introduce the necessary extra degrees of freedom. Moreover, the result
here is not a special case of Koornwinder’s result in which the Jacobi polynomials
are mapped onto the Wilson polynomials by use of the Jacobi function transform;
cf. [22], [23].

A striking aspect of (1.1) and (1.3) is that the argument of the orthogonal poly-
nomial is a differential operator. Badertscher and Koornwinder [7] (see also [23])
have given group-theoretic interpretations for several identities involving orthogo-
nal polynomials of differential operator argument. In these cases these differential
operators are acting on spherical functions on Riemannian symmetric spaces, which
are usually more complicated special functions than just cosh−1 x. A related paper
in this direction is [21].

The organisation of this paper is as follows. In §2 we derive the Fourier transform
of certain Jacobi polynomials in terms of continuous Hahn polynomials and we
discuss some applications. We also give the extension of (1.1) and (1.3), and we
show how some properties of the continuous Hahn polynomials can be derived from
properties of the Jacobi polynomials. In §3 we prove the orthogonality relation for
the continuous Hahn polynomials from Parseval’s identity for the Fourier transform.

2. Fourier transform on Jacobi polynomials

The gamma function was introduced by Euler in 1729 and is defined by

Γ(z) =

∫ ∞
0

tz−1e−t dt, <(z) > 0.

The fundamental recurrence relation Γ(z + 1) = zΓ(z) follows by integration by
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ON JACOBI AND CONTINUOUS HAHN POLYNOMIALS 891

parts. A closely related integral is the beta integral:

(2.1) B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)

Γ(α + β)
, <(α),<(β) > 0.

The first proof of this result was given by Euler in 1772. More information on
proofs for the beta integral and related integrals and sums as well as references to
the literature can be found in the papers by Askey [3] and Rahman and Suslov [27].

The Jacobi polynomials P
(α,β)
n (x) of degree n in x are the orthogonal polynomials

with respect to the beta measure shifted to the interval [−1, 1]:

(2.2)

∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x) dx

= δn,m
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n! Γ(n+ α+ β + 1)
,

for <(α) > −1, <(β) > −1. The orthogonality relations are usually stated for
α > −1, β > −1, but they remain valid under this more general condition on the
parameters α and β. The weight function is positive if and only if α and β are real.

An explicit expression for the Jacobi polynomial P
(α,β)
n (x) is given by a terminating

hypergeometric series:

(2.3) P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
,

where the terminating hypergeometric series is defined by

p+1Fp

(
−n, a1, . . . , ap
b1, . . . , bp

; z

)
=

n∑
k=0

(−n)k(a1)k . . . (ap)k
(b1)k . . . (bp)k

zk

k!
, n ∈ Z+,

(a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1) =
Γ(a+ k)

Γ(a)
, k ∈ Z+.(2.4)

More information on Jacobi polynomials can be found in Szegő’s book [31, Ch. 4].
Let us calculate a Fourier transform involving Jacobi polynomials. Rewrite the

Fourier transform

(2.5)

∫ ∞
−∞

e−ixz(1− tanhx)α(1 + tanhx)βP (γ,δ)
n (tanhx) dx

=

∫ 1

−1

(1− t)α−1+ 1
2 iz(1 + t)β−1− 1

2 izP (γ,δ)
n (t) dt

= 2α+β−1

∫ 1

0

uα−1+ 1
2 iz(1− u)β−1− 1

2 izP (γ,δ)
n (1− 2u) du

using the substitutions t = tanhx, t = 1− 2u. Use that

dt

dx
= (coshx)−2 = (1− tanhx)(1 + tanhx),

1− tanhx

1 + tanhx
= e−2x.
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892 H. T. KOELINK

Note that x 7→ (1 − tanhx)α(1 + tanhx)βP
(γ,δ)
n (tanhx) ∈ L2(R) ∩ L1(R) for

<(α),<(β) > 0.
In (2.5) we use the explicit series representation (2.3) for the Jacobi polynomial

and the beta integral (2.1) to see that (2.5) equals
(2.6)

2α+β−1 (γ + 1)n
n!

n∑
k=0

(−n)k(n+ γ + δ + 1)k
k! (γ + 1)k

B(α+ k +
1

2
iz, β − 1

2
iz)

= 2α+β−1 (γ + 1)n
n!

B(α +
1

2
iz, β − 1

2
iz)

n∑
k=0

(−n)k(n+ γ + δ + 1)k(α+ 1
2 iz)k

k! (γ + 1)k(α+ β)k

= 2α+β−1 (γ + 1)n
n!

B(α +
1

2
iz, β − 1

2
iz) 3F2

(
−n, n+ γ + δ + 1, α+ 1

2 iz

γ + 1, α+ β
; 1

)
.

The identity obtained in this way can also be found in Erdélyi et al. [17, 16.4(3)].
The 3F2-series in (2.6) is a continuous Hahn polynomial defined by (cf. [2])

pn(x; a, b, c, d)

= in
(a+ c)n(a+ d)n

n!
3F2

(
−n, n+ a+ b+ c+ d− 1, a+ ix

a+ c, a+ d
; 1

)
.

(2.7)

So we have proved the following lemma.

Lemma 2.1. For z ∈ R, <(α),<(β) > 0, and −γ /∈ N we have∫ ∞
−∞

e−ixz(1− tanhx)α(1 + tanhx)βP (γ,δ)
n (tanhx) dx

= 2α+β−1 Γ(α+ 1
2 iz)Γ(β − 1

2 iz)

Γ(α+ β + n)
i−npn(z/2;α, δ − β + 1, γ − α+ 1, β),

where P
(γ,δ)
n (x) is a Jacobi polynomial defined by (2.3) and pn(x; a, b, c, d) is a

continuous Hahn polynomial defined by (2.7).

Remark 2.2. (i) An equivalent way of proving the lemma is by establishing

pn(− i
2

d

dx
;α, δ − β + 1, γ − α+ 1, β){(1− tanhx)α(1 + tanhx)β}

= in(α+ β)n{(1− tanhx)α(1 + tanhx)β}P (γ,δ)
n (tanhx)

(2.8)

and applying the Fourier transform F to it and using F(f ′)(z) = izF(f)(z). Equa-
tion (2.8) can be proved from

(2.9)

d

dx
[(1− tanhx)α(1 + tanhx)β ]

=
(
α+ β + (α− β) tanh x

)
[(1− tanhx)α(1 + tanhx)β ],

(α+
1

2

d

dx
)r[(1− tanhx)α[1 + tanhx)β ]

= 2−r(1− tanhx)r(α+ β)r [(1− tanhx)α(1 + tanhx)β ],

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON JACOBI AND CONTINUOUS HAHN POLYNOMIALS 893

which in turn can be proved by induction with respect to r ∈ Z+. Special cases of
(2.8) are (1.1) for α = β = 1

2 , γ = δ = 0 and (1.3) for α = β = 1
2 (m+ 1), γ = δ = 0

for the Bateman polynomial and its generalisation by Pasternack. So we have

Fmn (x) =
1

in(m+ 1)n
pn
(
− i

2
x;

1

2
(1 +m),

1

2
(1−m),

1

2
(1−m),

1

2
(1 +m)

)
= 3F2

(
−n, n+ 1, 1

2 (1 +m+ x)

1, m+ 1
; 1

)
for the Bateman (m = 0) and Pasternack polynomials defined in (1.1) and (1.3).
The case α = β = 1

4 + i
2λ, γ = δ = − 1

2 of (2.8) was observed by Koornwinder [23,
§2].

(ii) Applying the inverse Fourier transform and taking n = 0 gives the Fourier
transform of z 7→ Γ(α + iz)Γ(β − iz), which is closely related to the orthogonality
measure for the Meixner-Pollaczek polynomials; cf. Askey [3].

Lemma 2.1 can be used to obtain identities for the continuous Hahn polynomials
from identities satisfied by the Jacobi polynomials. As a first example we start
with the following generating functions for the Jacobi polynomials (cf. [20, (1.8.7),
(1.8.6)]):

(1− t)−γ−δ−1
2F1

( 1
2 (γ + δ + 1), 1

2 (γ + δ + 2)

γ + 1
;

2(x− 1)t

(1− t)2

)
=
∞∑
n=0

(γ + δ + 1)n
(γ + 1)n

P (γ,δ)
n (x)tn

and

0F1

(
−

γ + 1
;
(x− 1)t

2

)
0F1

(
−

δ + 1
;

(x+ 1)t

2

)
=
∞∑
n=0

P
(γ,δ)
n (x)tn

(γ + 1)n(δ + 1)n
.

A straightforward manipulation using Lemma 2.1 proves the following generating
functions for the continuous Hahn polynomials. The first of these generating func-
tions is also contained in [20, (1.4.8)]. We get

(1− t)−α−β−γ−δ−1

× 3F2

( 1
2 (α+ β + γ + δ − 1), 1

2 (α+ β + γ + δ), α+ iz

γ + α, α+ β
;
−4t

(1− t)2

)
=
∞∑
n=0

(α+ β + γ + δ − 1)n
(α+ β)n(α+ γ)n

(t/i)npn(z;α, δ, γ, β),

which is the generating function used by Bateman [9, §3] and Pasternack [26, (2.2)],
and

∞∑
n=0

(t/i)npn(z;α, δ, γ, β)

(γ + α)n(δ + β)n(α+ β)n
=
∞∑
p=0

∞∑
k=0

(−t)ptk(α+ iz)p(β − iz)k
p! (γ + α)pk! (δ + β)k(α + β)p+k

.
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The last series can be rewritten as a hypergeometric series in two variables with
arguments x = −t, y = t, cf. Appell and Kampé de Fériet [1, Ch. IX, p. 150, (29)].

As a second example we derive two relations between three continuous Hahn
polynomials from identities for Jacobi polynomials. First use F(f ′)(z) = izF(f)(z),

(2.9) and d
dxP

(γ,δ)(x) = 1
2 (n + γ + δ + 1)P

(γ+1,δ+1)
n−1 (x) (cf. [31, (4.21.7)]), and

straightforward calculations to get after some rewriting

(α+ β + n)izpn(z;α, δ, γ, β) = (α+ β)(α + iz)pn(z;α+ 1, δ, γ − 1, β)

+ i(n+ α+ β + γ + δ − 1)(α+ iz)(β − iz)pn−1(z;α+ 1, δ, γ, β + 1).

Another classical identity for the Jacobi polynomials (cf. [31, (4.5.4)])

(n+ γ + 1)P (γ,δ)
n (x) − (n+ 1)P

(γ,δ)
n+1 (x) =

1

2
(2n+ γ + δ + 2)(1− x)P (γ+1,δ)

n (x)

leads to

(2n+ α+ β + γ + δ)(α+ iz)pn(z;α+ 1, δ, γ, β)

= (α + β + n)(n+ γ + α)pn(z;α, δ, γ, β) + i(n+ 1)pn+1(z;α, δ, γ, β).

It is also possible to use two or more identities for the Jacobi polynomials in order
to obtain identities for continuous Hahn polynomials. As an example we indicate
how the three-term recurrence relation for the continuous Hahn polynomials can
be derived; cf. Pasternack [26, §5]. Let pn (cf. (2.8)) be defined by
(2.10)

pn
( d
dx

)
{(1− tanhx)α(1 + tanhx)β} = {(1− tanhx)α(1 + tanhx)β}P (γ,δ)

n (tanhx).

Differentiate this identity once more to get

d

dx
pn
( d
dx

)
{(1− tanhx)α(1 + tanhx)β} = {(1− tanhx)α(1 + tanhx)β}

×
[
(α+ β + (α− β) tanhx)P (γ,δ)

n (tanhx) + (1− tanh2 x)
dP

(γ,δ)
n

dx
(tanhx)

]
.

In the term in square brackets we use

(1− x2)
dP

(γ,δ)
n

dx
(x) = AnP

(γ,δ)
n+1 (x) +BnP

(γ,δ)
n (x) + CnP

(γ,δ)
n−1 (x)

(cf. Szegő [31, (4.5.5)] for the explicit values of the constants) and the three-term
recurrence relation for the Jacobi polynomials (cf. [31, (4.5.1)]) to get only Jacobi
polynomials of degree n+ 1, n, and n− 1. Recalling (2.10) we find the three-term
recurrence relation for the continuous Hahn polynomials pn. For the explicit values
of the coefficients we refer to [20, (1.4.3)].
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ON JACOBI AND CONTINUOUS HAHN POLYNOMIALS 895

3. Orthogonality for the continuous Hahn polynomials

The set of functions x 7→ (1−tanhx)α(1+tanhx)βP
(2α+1,2β+1)
n is an orthogonal

basis of L2(R), and by Lemma 2.1 it is mapped by the Fourier transform onto the
set of functions z 7→ Γ(α + 1

2 iz)Γ(β − 1
2 iz)pn(1

2z;α, β, α, β). Since the Fourier
transform is isometric, we obtain the orthogonality relations for the continuous
symmetric Hahn polynomials (cf. [4], [22], [23]), but we can do better as follows.

From the Parseval identity 2π
∫
R f(x)ḡ(x)dx =

∫
R
(
Ff
)
(z)
(
Fg
)
(z)dz for the

Fourier transform for f, g ∈ L2(R) we obtain

(3.1)

2π

∫ ∞
−∞

(1− tanhx)α+a(1 + tanhx)β+bP (γ,δ)
n (tanh x)P (c,d)

m (tanhx) dx

= im−n2α+a+β+b−2

∫ ∞
−∞

Γ(α+ 1
2 iz)Γ(β − 1

2 iz)

Γ(α+ β + n)

Γ(a− 1
2 iz)Γ(b+ 1

2 iz)

Γ(a+ b+m)

× pn(z/2;α, δ − β + 1, γ − α+ 1, β)

× pm(z/2; ā, d̄− b̄+ 1, c̄− ā+ 1, b̄) dz

for <(α),<(β),<(a),<(b) > 0. Next we restrict the parameters in the left-hand side
of (3.1) such that we get the orthogonality relations (2.2) for the Jacobi polynomials.
So we take <(α + a) > 0, <(β + b) > 0, which is already satisfied, and γ = c =
α+ a− 1, δ = d = β + b− 1. For these choices we put again t = tanhx to see that
the left-hand side (3.1) equals zero for n 6= m. The square norm follows from (2.2)
and so we get

(3.2)

∫ ∞
−∞

Γ(α+ iz)Γ(β − iz)Γ(a− iz)Γ(b+ iz)

× pn(z;α, b, a, β)pm(z; ā, β̄, ᾱ, b̄) dz

= 2πδn,m
Γ(α+ β + n)Γ(a+ b+ n)Γ(n+ α+ a)Γ(n+ β + b)

n! (2n+ α+ β + a+ b− 1)Γ(n+ α+ β + a+ b− 1)

subject to the conditions <(α),<(β),<(a),<(b) > 0, since γ = c = α + a − 1,
δ = d = β + b − 1. If we replace pm in (3.2) by lc(pm)zm, then (3.2) remains

valid for 0 ≤ m ≤ n. Here lc(pm) denotes the leading coefficient of pm(z; ā, β̄, ᾱ, b̄),
and since this equals the leading coefficient of pn(z;α, b, a, β) (cf. (2.7)), we may

replace pm(z; ā, β̄, ᾱ, b̄) by pm(z;α, b, a, β). So we have proved the orthogonality
relations for the continuous Hahn polynomials stated in the next proposition from
the Parseval identity for the Fourier transform and from the explicit knowledge of
the Fourier transform of the Jacobi polynomial described in Lemma 2.1.

Proposition 3.1. The continuous Hahn polynomials defined in (2.7) satisfy

1

2π

∫ ∞
−∞

Γ(α+ iz)Γ(β − iz)Γ(a− iz)Γ(b+ iz)

× pn(z;α, b, a, β)pm(z;α, b, a, β) dz

= δn,m
Γ(α+ β + n)Γ(a+ b+ n)Γ(n+ α+ a)Γ(n+ β + b)

n! (2n+ α+ β + a+ b− 1)Γ(n+ α+ β + a+ b− 1)
(3.3)

for <(α),<(β),<(a),<(b) > 0.
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Remark 3.2. (i) The weight function is positive for ā = α, b̄ = β, or for α = β̄,
a = b̄, which follows from the invariance of (3.3), interchanging α and b or β and a.

(ii) The case n = m = 0 of (3.3) is Barnes’ first lemma from 1908; see e.g. Bailey
[8, 1.7] or Whittaker and Watson [34, §14.52] for the original proof by Barnes. An
equivalent proof of Barnes’ first lemma as given here can be found in Titchmarsh’s
book [32, (7.8.3)], where the Mellin transform is used instead of the Fourier trans-
form. Proposition 3.1 can be obtained in a similar way using the Mellin transform if
we use the Jacobi polynomials of argument (1−x)/(1+x). We obtain an orthogonal
system on [0,∞). So we start with the Mellin transform∫ ∞

0

xα

(1 + x)α+β
P (γ,δ)
n

(
1− x
1 + x

)
x−iλ−1 dx

=
Γ(α − iλ)Γ(β − iλ)

Γ(α+ β + n)
i−npn(−λ;α, δ − β + 1, γ − α+ 1, β)

(3.4)

and the Parseval formula for the Mellin transform gives Proposition 3.1. See
Hardy [18, §8] for this approach to Bateman’s polynomial Fn. In [24, Prop. 3.1]
Koornwinder shows that the Laguerre polynomials are mapped onto the Meixner-
Pollaczek polynomials by the Mellin transform. The Mellin transform of the un-
derlying measures is given in Titchmarsh [32, (7.8.1)]. This is a limiting case of
(3.4). Replace in (3.4) x by x/δ and β by δξ with <(ξ) > 0, |=(ξ)| < π and let
δ →∞. Similarly we can obtain the analogue of Lemma 2.1 with the Laguerre and
Meixner-Pollaczek polynomials by a suitable limit transition.

(iii) The result (3.3) in this form has been proved first by Askey [2] using Barnes’
first lemma and the Chu-Vandermonde summation formula for a terminating 2F1-
series of unit argument. Before that Atakishiyev and Suslov [6] (see also [25,
§3.10.3.2]) proved (3.3) in the case of a positive weight function. The method
employed by Atakishiyev and Suslov uses Barnes’ first lemma, which is rewrit-
ten in terms of the beta integral so that the orthogonality relations of the Jacobi
polynomials can be used.

(iv) Another proof of Proposition 3.1 using symmetry in the parameters a, b, α,
β was given by Kalnins and Miller [19, §3]. They also gave a proof of Barnes’ first
lemma in this way.

(v) The continuous Hahn polynomials are not on the top shelf of the Askey
scheme of hypergeometric polynomials. The most general hypergeometric orthogo-
nal polynomials with a continuous weight function are the Wilson polynomials (cf.
Wilson [35]), which have four degrees of freedom. The continuous Hahn polyno-
mials can be obtained from the Wilson polynomials by a suitable limit process; cf.
e.g. [20, §2.2].

The orthogonality relations stated in §1 are special cases of (3.3). In particular,
the orthogonality (1.5) for the Pasternack polynomials follows by taking α = β =
1
2 (1 + m), a = b = 1

2 (1 − m). This shows also that we have a positive weight
function for −1 < m < 1 or m ∈ iR, which are equivalent for m and −m. To
see this we have to use the reflection formula Γ(z)Γ(1 − z) = π sin−1(πz) and
some straightforward manipulations on goniometric and hyperbolic functions. It
should also be noted that taking the same values for the parameters in (3.2) gives
Bateman’s (bi)orthogonality relations (1.4).
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