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Abstract. A ^-analogue of a result by Badertscher and Koornwinder [Canad.

J. Math. 44 (1992), 750-773] relating the action of a Hahn polynomial of dif-
ferential operator argument on ultraspherical polynomials to an ultraspherical

polynomial of shifted order and degree is derived. The ^-analogue involves

<7-Hahn polynomials, continuous ^-ultraspherical polynomials, and a shift op-

erator. Another limit as q tends to 1 yields an identity for Jacobi functions.

Combination with another result of Badertscher and Koornwinder gives a curi-

ous formula for Jacobi functions.

1. Introduction

Badertscher and Koornwinder [4] have proved a formula in which a Hahn

polynomial of differential operator argument acts on ultraspherical polynomials.

Explicitly, this formula is (cf. [4, Corollary 6.3])

(1.1)

Qk{\l~ 2~^; X~ l A~U l)Cf(cos6) = {l_{*)k+lh(2i)k(sind)kC£k(cose)

for k, I £ Z+ , 0 < k < I, X £ -jZ+ ■ In (1.1) Cf denotes an ultraspherical
polynomial,

(1.2) c/(coso) = É§7%^(,"2",e'

and Qk is a Hahn polynomial,

/i i\ ni u   m      „ (-k,a + b + k + l,-x     \
(1.3) Qk(x;a,b,N) = iF2\ a+l   -N '   )'

with TV e N, k, x £ {0, ... , N} (cf. the references in [4]). Here we use the
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standard notation

r+lJ
fax,... ,ar+x     \     ^ (ax)k...(ar+x)kzk TT^^n

U.....* 'zJ=S (bi)k...(br)k w   <*>*=n<«+o.

for hypergeometric series.

Badertscher and Koornwinder [4] (see also [13]) prove (1.1) using harmonic

analysis on the sphere SO(d + l)/S0(d). The spherical functions on this ho-

mogeneous space are the ultraspherical polynomials C/rf_1^2(cosö) and the as-

sociated spherical functions are of the form (sin 6)kC¡^l^2+k(cosö), so (1.1)

shows how to obtain the associated spherical functions from the spherical func-
tions in this particular case. The variable 8 denotes the geodesic distance on

the sphere to some fixed point.

The continuous ^-ultraspherical polynomials

(1.4) C,(cos0; ß\q) = Y [ß' q\n\ß% 9}'~*e1«-*»
.  ¿5 {Q\Q)n(q;q)i-n

(cf. Askey and Ismail [1], Askey and Wilson [3, §4], Gasper and Rahman

[7, §7.4]) are ^-analogues of the ultraspherical polynomials (1.2), since

lim?ti C/(x; qx \ q) = Cf(x). The ^-shifted factorials in (1.4) are defined
by

k-l

(1.5) (a;q)k = T[(l-aqi),        (a; q)00= lim(a; q)k.
„ k—»oo

¡=0

Here we follow the notation of the book [7] by Gasper and Rahman. We assume

that q £ (0, 1).
In case ß = qi the continuous <?-ultraspherical polynomials, which are q-

analogues of the Legendre polynomials, have an interpretation as zonal spherical

elements on the quantum 567(2) group (cf. Koornwinder [15]). The continu-

ous ^-ultraspherical polynomials C¡_k(x; q^+k | q) have an interpretation as

associated spherical elements on the quantum 567(2) group (cf. Koelink [9]

and Noumi and Mimachi [17], [18]).
Since the group 56/(2) is a double covering of 50(3), we can use similar

ideas as used in Badertscher and Koornwinder [4] in the quantum 56/(2) group

setting to obtain the following identity for ß = q$ (cf. [10, §10]).

Proposition 1.1. For k, I £ Z+, 0 < k < I, and ß £ q~?z+ we have the fol-
lowing identity for the continuous q-ultraspherical polynomials defined in (1.4):

Qk(q-VE+; ß/q, ß/q, I; q)C,(cosd; ß | q)
(!-6) (ß;q)

k_t o„-2iQ . „\   „ike
(q'-k+x ; q)

k

(ße-2>»;q)kelktiQ-k(cose;ßqk\q).

Here Qk are q-Hahn polynomials defined by

(1.7) Qk(x;a, b,N;q) = 3<p2 (^ ^^ ' * ; Q, o)

and E+ is the operator defined by (E+f)(e'e) = f(el6y/q).
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The notation for basic (or q-) hypergeometric series in (1.7) is taken from

[7, Chapter 1]. The basic hypergeometric series is defined by

fax,...,ar+x \ _ ^ (a\;q)k---(ar+i;q)k    zk

r+x(Pr\bx,...,br   'q'ZJ     ¿¿   (bx;q)k---(br;q)k   (q;q)k'

where the ^-shifted factorial is defined in (1.5).
The tf-Hahn polynomials can be viewed as a special case of the g-Racah

polynomials (cf. Askey and Wilson [2], Gasper and Rahman [7, §7.2]). The
operator E+ is defined by Askey and Wilson (cf. [3, (5.2)]). Note that the
operator E+ is well defined on polynomials.

As stated before, the original approach to (1.6) in case ß = qxl2 is motivated

by the representation theory of the quantum 567(2) group. This approach

shows that in case ß = qx¡2 (1.6) can be generalised in the sense that we can

replace the continuous g-Legendre polynomial by a one-parameter family of

Askey-Wilson polynomials (cf. (2.1)). However, the corresponding right-hand

side of ( 1.6) becomes a sum of two functions instead of one (cf. [ 10, Proposition

10.4]).
It is the purpose of this note to prove (1.6) in full generality by analytic

means. This is done in §2, in which also the limit case q \ 1 of (1.6) to (1.1)

is presented. In §3 we present another limit transition of (1.6) as q \ 1 to

an identity involving Jacobi functions using the (rigorous) limit transition of

the continuous ^-ultraspherical polynomials to the Jacobi functions given by

Koornwinder [14]. A simple combination with another result of Badertscher

and Koornwinder results in a formula relating derivatives of Jacobi functions

with Jacobi functions of shifted degree. For information and references on

Jacobi functions the reader may consult the papers [11], [12] by Koornwinder.

2. Proof of the main result

In order to prove (1.6) we start with the generating function for the Askey-

Wilson polynomials. The Askey-Wilson polynomials (cf. [3]) are defined by

(2.1)
p„(cosd;a, b,c,d\q) = a n(ab; q)n(ac; q)n(ad;q)„

fq~n , abcdq"~x, aeiB, ae~ie \

X4«H ab,ac,ad >q>V

Ismail and Wilson proved the following generating function for the Askey-

Wilson polynomials (cf. [8, (1.9)])

(2.2)
^ Pn(y;a,b,c,d\g)tn fa/z,b/z \      (cz,dz
^0(ab;q)n(dc;q)n(q;q)rm{      ab      ^^t)^x{    cd     •«•'/*

where y = (z + z~x)/2.

In the generating function (2.2) we replace a, b,c,d,z,t by \Jabq , 0,

yjaq/b, q-N/y/a~bq, qx4abq, ty/aq/b for N £ N and x e {0, ... , N}.
For these choices the Askey-Wilson polynomial reduces to a dual <7-Hahn poly-
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nomial (cf. [7, §7.2])

Pn(y) = (abq)-n'2(aq;q)„(q-N;q)„

(2.3) (q~", abqx+x, q~x \
X3P2 „„   „s        'a'a    '        n<N>

\       aq, q N J

and pn(y) = 0 for n > N. A straightforward calculation and an application

of the (/-binomial theorem, x<Po(q~x ; - ; q, z) = (q~xz ; q)x , x 6 Z+ (cf. [7,

(1.3.14)]) shows that (2.2) transforms into the following generating function for

the dual tf-Hahn polynomials

(2.4)

E(aq;q)n(bq;q)N-n       (q " , abqx+x, q x .        \

J     (q;q)n(q;q)N-n   »2 {        aq, q~» ' * ' « J

^r,Q)N.„t. „,    „   (aqx+x,qx-

(q\q)N

(aqx+x,qx~N _..\
(aqt;q)x2tpxyH ^       ;q,tq~x/b\

In (2.4) we specialise a = b — ß/q, t = e 2ld, N = I, x = k and we

multiply by e'le to get

V m (f~H,ß2<fi-x,q-k.. A(^;g)»(A;g)/-»,i«-2,M

n=0
A, 9-' / (q;q)n(q;q)i-n

k     nk-l

(2'5)       = iftf^"2'9^)^^' (^.-///, ; <^-2'V-*/¿
- jM-^1"; «)**/MC,_*(cos0; ßqk I í)

(<?' *+1 ; q)k

for /c 6 {0, ... , N}. The last equality follows from the expression of the

continuous g-ultraspherical polynomial in terms of a 2^1-series (cf. [1, (3.2)],

[3, (4.4)], [7, (7.4.2)]). This argument is perfectly valid for all ß £ C which

are not of the form q" for p £ -\Z+. Since (<T<1/2)/F+ ; q)me^-2n)e =

(q~n ', i)m^'(/_2")e, we can interchange the 3^2-series and the summation in

(2.5) if we replace the upper parameter q~n of the 3^2-series by q~(Xl2)lE+ .

Finally use (1.7) to finish the proof of (1.6).
In order to show that (1.6) tends to (1.1) as q\ 1 we replace ß by qk in

(2.5) and we take the limit q \ 1 . Note that all sums and products are finite so

we can take termwise limits to find

V*  F (~n,2À + k-l,-k     \ (A)„(A)/_„  ¡{i.we

,2.6)      £rH     1.-1     'V »k/-»)!

W* t\      „-2iB\k„ikeri+ki[l-e-I,tt)ke'*°Cffi(cosd).
(l-k + l)k

Now note that (-x2l + ^)ei{l~2n)e =-nel(l-2n)e ,sothat (-{l+jjg)mei{'-2n)e

= (-n)me'(l~2n)e . We can interchange the summation and the 3F2-series on the

left-hand side of (2.6) if we replace -n as upper parameter by -\l + 12jq .

This result can easily be rewritten as (1.1) by use of (1.2) and (1.3).

Equation (2.6) gives another interpretation of the result (1.1) of Koorn-

winder and Badertscher as a generating function for the Hahn polynomial
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Qn(k; X - 1, X - 1,1). Note that the roles of argument and degree are in-

terchanged in the Hahn polynomial.

3. Limit relation for Jacobi functions

In [14] Koornwinder has given a rigorous limit transition of the continuous

^-ultraspherical polynomials to the Jacobi functions. To recall his result we

introduce the notation (cf. [14, (1.5)])

(3.1) Ri(ei6;ß \ q) = ß''}2q\q)lCt(cosd; ß \ q).
(P  , Q)i

Koornwinder's result is (cf. [14, (1.6), but insert -i in front of (l/A)p on the

left-hand side])

(3.2) limRMIXnq-M-^\ qa+{ I q) = î#,a)(0

for p £ C, t £ [0, oo ), a> j . Here q must be chosen so that At/ lnq~x e Z+ .

Note that q can approach 1 as / approaches oo . The right-hand side of (3.2)

denotes a Jacobi function defined by

(3.3) V^%) = 2F1(^ + ^+1 + ^/Q + ^1-^^-sinh2r)

(cf. [11, (2.3)], [12, §2.1]). For a = ß, »(a) > -\ we have the integral
representation

(3.4) <pia'a)(t)=   2i "^Q+1).  (sinh2f)~2a / (cosh2/-cosh2s)a-*í>""¿s
T(a + j)T(a + %) J-t

(cf. [11,(2.21)], [12, §5.3]).
In order to use the limit transition of the continuous ^-ultraspherical poly-

nomials to the Jacobi functions we first rewrite (1.6) (or (2.5)) in terms of the

rescaled continuous ^-ultraspherical polynomial R¡ (cf. (3.1)). This results in

(3.5)

ß,/2(q;q)i v a (a~n ■ ̂ k~l >«'"•<, A iß ; QUß ; g)t-n r,g-2n)e

~m^h     \      t-r4 I (a;q)n(q;q)t-ne

= (ß; q)k(ßW; Q)kßhkqhk{k-,){ße-2le. q)ke*eR     {eie   ßqk , q)_
(ßz ; i)2k

In (3.5) we replace I, ß, ew by 4r/ln^-' , qa+^ , q~L^ as in [14, (2.2)], so

that the right-hand side of (3.5) becomes

(qa+h; q)k(q^^; q)k ^k(k+a+Ux_lu))   2a+Xc_„.
(3.6) (^2a+1 ; 9)2*

x e2'kR_n__k(q-i'1 ; qa+k+* \ q).
In«"1

And because of (3.2) we see that for q ] 1 (3.6) tends to

(3.7) 2-k{a+J^fi)k(sinh2t)ktp{;+k'"+k)(t)

for t>0, a + k>\, p£C.
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To take the limit q î 1 in the left-hand side of (3.5) with the same re-
placements we also replace the summation parameter n by s = t - jlnq~x.

Interchanging the finite summations we obtain in a similar way as in [14, (2.3)-
(2.7)] the expression

(3.8)
^l-q        Tq(2a+l)        (e~ Va+1 ; *)«,

'l^q-xYq(a+x2)Yq(a+x2)    (e~4tq;q)c

-2ta-, v-  (<rfc ; g)P(q2a+k ; g)Pgp
x e

f^(Q\Q)p(9a+^,Q)p{e*';q)p

xl-lnq~x      Y ^-2(,-S)r,q)oo(e-2^q;q)oo      c«u,c2,,-,i. g)

2 tít     (e-2^qa+lï;q)Ue-2«+s)qa+Xî\qU
s=-t

step   1 /2 In q ~ l

for the left-hand side of (3.5). The summation parameter s in (3.8) runs

through the set {-t, -t + ¿lnq~x, ... , -t + r^jln^-1 = t} . In (3.8) we

assume t > 0 in order to avoid (e4t ; q)p = 0, at least for 1 - q small enough.

The summand in the last sum can be estimated by e^^'(l + e4t)k , \s\ < t,

for a > j . As in [14, §2] we can use dominated convergence and the pointwise

convergence of the ^-binomial theorem to the binomial theorem to see that
(3.8) tends to

2i-T(2a+l)   ,„;„u^-2«

(3.9)   r(« + î)r(a+2-)
(sinn 2/)"

x |jcosh2í - cosh25r-i^2F, (   *;*t ^ ; C^ß) ds
2

as q Î 1. Note that we can rewrite (3.9) in operator notation if we introduce

the operator T, which sends p to p + 2i. Upon equating (3.9) and (3.7) we

obtain as the limit result of (1.6) the following proposition.

Proposition 3.1. For p € C, t > 0, a> \ we have

)<P(?'a)
k,k + 2a    T-e 2t\ t

a + \      '2 sinh 2i
(3.10) 5

= 2-k (" + 2 + Lf)k (sinh 2t)*q,£+k'a+k\t)
(a + l)k

where Ttp{¿"'a)(t) = tp^(t) and <p^'a)(t) is a Jacobi function defined by (3.3).

Note that the 2Fx-series in (3.10) is essentially an ultraspherical polynomial
C£. I thank Mizan Rahman for pointing out that (3.10) can be viewed as a

projection formula for Jacobi functions.
Badertscher and Koornwinder not only proved (1.1) in their paper [4], but

also a similar relation involving Jacobi functions and continuous symmetric
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Hahn polynomials instead of ultraspherical polynomials and Hahn polynomi-

als. Explicitly (cf. [4, (6.13)] and use the symmetry (p{^a) = (p(°'a), or the

symmetry in [4, (6.10), (5.4)] in X and -X),

Pk(~;^(a + ^-iX),l-(a+l- + iX))ç>[a'-^(t)

(3.11) ./.,       i     .,,
i (a+j + iX)k    .       k   (o+*,-4)/#v

=     ikt    , n- sinhr*^ 2 (t)
2k(a+l)k

for X £ C, k £ Z+, a e jZ+. Here pk(x; a, b) denotes a continuous sym-
metric Hahn polynomial defined by

., ,_. , ,.      .k  „ f-k, k + 2a + 2b- 1, a- ix
(3.12) pk(x;a,b) = ik3F2{ ^^ ;l

(cf.   references in [4]).   This result is derived using the homogeneous space

SOo(l,d)/SO(d).

Since <P("''Í2\t)^<p{2X'a)(j) (cf. [11,(2.8)], [12, §5.3]), we see that the right-

hand sides of (3.10) and (3.11) are essentially the same functions of /. This

leads to the following curious proposition.

Proposition 3.2. With the notation of (3.3) and (3.12) we have

( I   d        1 , 1 ...       1 , 1 ...\     (a   -l),  ,
M^-tt; ~(a+x-U),x(a+x + zA)W      *\t)

-l  2Fx{     a + \       ' JsMÏï)^ W'

yor r > 0, fc eZ+, leC, ae jZ+ a«ö? F « the operator defined by mapping
(a, -I)    . (a,-A)

Remark. For special values of the parameters continuous symmetric Hahn poly-

nomials of differential operator argument have occurred in the works of Bate-

man in the 1930s. The approach by Bateman was later extended by Pasternack.

The starting point of the researches of Bateman is the identity, in the notation

of this paper,

(3.14) Pn{~; \, ^h—^- = -^-C!/2(tanhi),
v       ' \2dt   2   2) cosht     coshi   "   v ;

where C„    is a Legendre polynomial. The identity (3.14) follows directly from

/l d     l\     1 ,    1    /I     1     .  y
[^-r + ^) —r- = r\—r- (x-xtanhi   .
\2dt     2/rcosh?       coshi V2     2 /

Bateman derived for the polynomial p„(x; 1/2, 1/2) a generating function, or-
thogonality relations, integral representations, a three-term recurrence relation,

difference equations, and other properties using (3.14) as the definition.
Bateman and Pasternack generalised (3.14) in several directions. Pasternack's

generalisation of (3.14) also yields orthogonal polynomials, which fall in the
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class of continuous Hahn polynomials. For references to the original works and

results by Bateman and Pasternack we refer to [5, Chapter V, §3, Chapter VI,

§8], [6, §4.7], and in particular to Nikiforov, Suslov, and Uvarov [16, §3.10.3.3],
where references to related papers from the 1950s by Brafman, Touchard, Car-

litz can also be found. I thank the referee for bringing the work of Bateman

and Pasternack to my attention.
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