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It is shown that the polynomials {L~“~,M’,..,M~(~)}~==O defined by 

N + I 
,~~o.~b..~~(~) = c A, DkL;‘(x) 

k-0 

for certain real coefficients {A,},“:: are orthogonal with respect to the inner 
product 

J(x) g(x) dx + ; M, J”“(O) g”‘(O), 
L =,I 

where a> -1, NE N and M, > 0 for all Y E {0, 1, 2, . . . . N). For these new 
polynomials ~L~Mo.M’..-.MP(~)}nl)=O an orthogonality relation and a second order 
differential equation are derived. Further we obtain a representation as a Iv + z F, + z 
hypergeometric series and a (2N + 3)-terms recurrence relation, which gives rise to 
a Christoffel-Darboux type formula. ? 1990 Academic Press. Inc 

1. INTKODUCTI~N 

In [S, 93 H. L. Krall introduced polynomials which are orthogonal with 
respect to a weight function consisting of a classical weight function 
together with a delta function at the endpoint(s) of the interval of 
orthogonality. These polynomials were described in more detail by 
A. M. Krall in [7]. 

In [6] T. H. Koornwinder studied the more general polynomials 
which are orthogonal on the interval [ - 1, 11 with respect to the weight 
function (1 - x)~ (1 + x)~ + 44.6(x + 1) + N. 6(x - 1). These polynomials 
are generalizations of the classical Jacobi polynomials {PF* B)(x)} ,“= ,,. In 
[ I] H. Bavinck and H. G. Meijer studied further generalizations of these 
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polynomials in the ultraspherical case (c( = p); they computed the polyno- 
mials which are orthogonal with respect to the inner product 

(Ag)= 
r(2a + 1) 

2Zcr+’ .P(a+ 1)’ s 1 (l-X*)“.f(X)g(x)dx 
-, 

+N.Cf’(-l)g’(--l)+f’(l)g’(l)l, 

where CC> -1, M30, and N30. 
As a limit case T. H. Koornwinder found the polynomials (L~“(,Y)}~=~~ 

which are orthogonal on [0, CD) with respect to the weight function 
x”eC” + N. 6(x). These polynomials are generalizations of the classical 
(generalized) Laguerre polynomials {L~‘(x)},~=,. In [S] we listed the 
most important properties of Koornwinder’s generalized Laguerre polyno- 
mials. And in [4] R. Koekoek and H. G. Meijer found further generaliza- 
tions of these polynomials orthogonal with respect to the inner product 

.f(-x) g(x) dx + ~4 .f(O) g(O) + N..t”‘(O) s’(O), 

where a> -1, M>O, and N30. 
Now it is the aim of the present paper to find the polynomials which are 

orthogonal with respect to the inner product 

(f, g> =&.J= -~3e+ .f(x)(g(x) dx + i M,, .f’“‘(O) g’“‘(O), (1.1) 
0 v=O 

where a> -1, NE~V, and M,>O for all VE (0, 1, 2, . . . . N). We define 

We show that the coefficients {Ak}f_id can be chosen in such a way that 
the polynomials {J~~,~~,~‘,.-.,““~(x) )r=, are orthogonal with respect to the 
inner product (1.1). For N = 1 these polynomials reduce to the polynomials 
found in [4] and for N = 0 we have Koornwinder’s generalized Laguerre 
polynomials. 

2. THE CLASSICAL LACUERRE POLYNOMIALS 

First we state some properties of the classical Laguerre polynomials. For 
details the reader is referred to [2, lo]. 
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Let a > - 1. The classical Laguerre polynomials {Lo’},“=, are 
orthogonal on the interval [0, co) with respect to the weight function 
xrepi-. Their orthogonality relation is 

1 
s 

-L 
~. a x. L’“‘( )L’“‘(x) dx = 
IJcc+l) axe mX n .6,,, . 

Further we have 

L?‘(O)= .:a . ( > 
They can be defined by Rodrigues’ formula 

p=I.x -.e..p[e-‘x’~+“]. n I n. 

Further we have a representation as a hypergeometric series 

p(x)= .I” ( > .,F,(-n;cr+l;x) 

and the explicit representation 

. Xk, 

Note that 

x’ + lower order terms. 

They satisfy a linear second order differential equation 

x.y”+(a+l-x).y’+n.y=O 

and a three term recurrence relation 

(n + 1). Lrl 1(x) + (x - 2n - tl- 1). L:‘(x) + (n + a). LrL 1(x) =0 

with Lb”‘(x) = 1 and L’,“‘(x) = CL + 1 -x. 
Further we have a Christoffel-Darboux formula 

(x +. (n fi u). i Ll”‘(;~$‘W 
k=O 

( > k 

= (n + 1). [LPJ ,(y)Lf’(x) - LIpI: ,(x)Ly(y)]. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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In the so-called confluent form it reads 

Finally we mention the simple differentiation formula 6 L:)(X) = 
-L:?,‘)(x) or more generally for k d n 

DkL’“‘(x) = ( - 1 )k . L(xP+.k’(X) ,, nh . 

This gives us for the definition (1.2) 

(2.10) 

min(n, N + 1) 

L ;‘“O,MI-M.~(~) = c (- l)k A, . LjpL_tkk)(x). (2.11) 
k=O 

3. THE COEFFICIENTS { Ak } ,“Td 

Now we try to define the coefficients {Ak}f_+d in such a way that 
the polynomials ~L~Mo’M’....~M~Y(~)}~=O defined by (1.2) or (2.11) are 
orthogonal with respect to the inner product (1.1). 

Let n > 1 and let p denote an arbitrary polynomial of degree 6n - 1. We 
want to determine the coefficients (Ak}f_+d, not all zero, such that 
(P, L z,Mo.MI,...,M1v) =O. Then {L~,Mo’M1.....MN(~)}~=O is a set of orthogonal 
polynomials with respect to the inner product ( 1.1). 

Suppose that the polynomial p can be written as p(x) = xN+ l . q(x) for 
some polynomial q. Then degree [q] < n - N - 2 and n > N + 2. 

In that case we have for k < n 

which equals zero in view of the orthogonality property of the classical 
Laguerre polynomials, since degree [xN+ ’ -k . q(x)] = N + 1 - k + 
degree[q] <n-k- 1. 

Further we have for p(x) = xN+ ’ . q(x): 

p’“‘(0) = 0 for all VE (0, 1, 2, . . . . N). 

So we have (p, L2Mn,M1,...,MN) =0 if p(x) =xNfl .q(x) for some polyno- 
mial q. We conclude: if the coefficients {Ak}cfd are chosen in such a way 
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that (P, 4, a,Mo,M1,---.MN) = 0 for the polynomials p(x) = xm, m = 0, 1, 2, . . . . N 
and m -C n, then ( p, L> Mo, M’,---* MN ) = 0 for every polynomial p with degree 
<n-l. 

Let p(x) = x”’ with m E {0, 1, 2, . . . . N}. Then degree [ p] < n - 1 implies 
n8m+l. And for k6n we have 

x”e -’ .p(x)Lf?~)(x)d~=~~~ x*tmem ‘.Lf?L)(x) dx. 

For m>k we find 

s 
cc cr+m -x x e 

0 
~L~~~~(~)d~=~~~x~+‘e~~~~.x”‘~“.Li:t,fi~(~)d~=O 

since m-k<n-k- 1. 
Now we use (2.4) and the well-known summation formula 

*F1( --PI, b; c; 1) = (c-b),,/(c),, to find 

s 
5 

z+m -.x x e . L:-+;)(x) dx 
0 

=(n~~~‘).~(rn+n+ 1). 

For m -C k 6 n this formula can be found too by 
(2.3) for the classical Laguerre polynomials and 
later on we use (3.1) for m = n. 

Further we have 

(3.1) 

using Rodrigues’ formula 
integration by parts. But 

p’“‘(0) = 
0 for v#m 
m! for v=m. 

Hence, (xm, L;“bMI.....MN(~)) = 0 for m = 0, 1, 2, . . . . N implies, by using 
Wh 

qm + a + 1) minh N+ 1) 

1 (-I)‘.(nn~k’).A,+(-~)~.m!.~~ 
T(a+l) ’ kcm+, 
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for m = 0, 1, 2, . . . . N. For n < N, m should run to n - 1. In that case, 
however, the coefficients { Ak I,“=‘,‘+, in (1.2) are arbitrary. We use this 
freedom asking for 

(3.2) 

for m = 0, 1,2, . . . . N; the number of extra conditions being equal to the 
number of free parameters. With (3.2) we have found a homogeneous 
system of N + 1 equations for the N + 2 coefficients {Ak}Ffd. So there 
exists a nontrivial solution. 

Note that for m = N in (3.2) we obtain 

-~N.~~‘(-l)~.(~-~~,).A, for n3N+l. N+l - 
k=O 

Hence, A,,, =0 for M,=O. 
We choose the coefficients {Ak}f_+d in such a way that (3.2) is valid for 

all n. With this choice we have added some conditions on the coefftcients 
{Ak}kN_fi+ 1 in the case n < N. These conditions imply that A, =0 for 
kE{n+2,n+3,...,N+l} and (n:a).A.+l=M,sAo in the case n<N. 
Thuswe!indtherelation(“~‘).(A,,+,+A.+,+ ...+AN+l)=M,.Aofor 
n 6 N; this implies that the right-hand side of (4.1) has the same form for 
all n. 

From the definition (1.2) it is clear that degree [L>““‘M1,....MN(~)] dn, 
but since ( p, L:- MO. MI,---, M.N ) = 0 for every polynomial p with degree 
d n - 1 we conclude that degree [L:Mo.M1,--Mhl(~)] = n. 

For the coefficient k, of xn in the polynomial L:Mo,M13--‘MH(~) we easily 
find, by using (2.5) 

from (1.2). Hence A,, # 0. 
We remark that the coefficients are uniquely determined except for a multi- 

plicative constant. We choose that constant in such a way that L~~“~o~-~~o(x) = 
L:‘(x). This proves that the polynomials {L ;,Mo,““l,--., M.N(~)} ,“= o defined by 
(1.2) with coefficients {Ak}r_+d satisfying (3.2) are orthogonal with respect 
to (1.1). 



582 ROELOF KOEKOEK 

4. THE SQUARED NORM 

First of all we prove that 

From this we see that 

A,.(Ao+A,+ ..’ +A)-g+,)>O. 

By using (3.3) we easily see that 

(4.2) 

CL 
a,Mo,M1,..., MN, 

C-1)” LU,MO,MI. . . . . MN) =~. 
” n! 

Ao. (x”, LyO.“I.....MqX)). (4.3) 

Now we use definition (2.11) to find, with (3.1), 

for n> N+ 1. Hence with (4.3) and (4.4) we have proved (4.1) in the case 
n>N+ 1. 

In the case n <N we find 

Now we apply (3.2) for m = n to see that 

Hence 

a, MO. MI x..., MN 
(x”, L, (~))=(-l)“-~~(~~:~). i A,+(-l)“.n! 

k=O 

(4.5) 

And with (4.3) and (4.5) we have proved (4.1) and therefore (4.2). 
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So we have obtained the following orthogonality relation 

1 OcI -. 
T(cc+ 1) I x*e- 

J . ,yo.w . . . . . wyX) Lywl..... MJyX) dx 
0 

+ $ &f,. (D”LyO’MI ,..., M”)(O), (,y%.M I..... M”)(O) 

= ( > n+a .Ao.(&+A,+ ‘.. +A,+,)~6,,. 
n 

This can be seen as a generalization of (2.1). 

5. A DIFFERENTIAL EQUATION 

In [4] we found a second order differential equation for our polynomials 
in the case N= 1. The same method can be used in the general case, but 
in [3] J. Koekoek gave a simple proof of the differential equation. We give 
this proof here. 

We prove the following 

THEOREM. The polynomials { L~~Mo’MI,-.,M~v(~) ) ,“= O satisfy a second order 
differential equation of the form 

x .P2(x) .Y”(X) -pi(x) .Y’(x) + n .P&) .Y(x) = 0, (5.1) 

where {p,(x)}: =O are polynomials with 

p2(x)=Ao.(Ao+A1+ ... +AN+,)~xNfl+lowerorderterms 

pl(x)=Ao~(Ao+A,+ . ..A.+,).xN+2+lowerorderterms (5.2) 

po(x)=A,.(A,+A,+ ... +AN+,).xN+‘+lowerorderterms. 

Proof We start with the differential equation (2.6) for the classical 
Laguerre polynomials 

X.~L~'(x)+(ll+1-X~.~L~)(X)+n.LI:)(*)=O. (5.3) 

Differentiation of (5.3) leads to 

~.D~+~Lr)(x)+(cc+k+ 1 -x).Dk+‘L~)(x)+(n-k).DkL~)(x)=O 

(5.4) 
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for k E N. By using k = N - 1 in (5.4) we find 

where 

bk(x) = Ldk ‘x, k=O, 1,2, . . . . N-2 

b,--,(x)=A,_, .x-((n-N+l).A,+, 

b,(x)=A,.x-(a+N-x).A,+,. 

Then we use k = N - 2 in (5.4) to obtain 

where 
bk*(X) = x ‘h,(X), k = 0, 1, 2, . . . . N - 3 

b:-.,(x)=x~h.-,(x)-(n-N+2)~b,(x) 

h$~,(x)=x.h,_,(x)-(a+N-l-x).h,(x). 

Repeating this process we finally obtain, by using k = 0 in (5.4), 

XN. Lyo,“‘-yX) = qo(x) . L?‘(x) + q,(x) .-$ L?‘(x) (5.5) 

for some polynomials q. and q, with 

qo(x) = A,. xN + lower order terms 
q,(x)=(A,+A,+ I.. +A,+,).x”‘+lowerorderterms. 

(5.6) 

Differentiation of (5.5) gives 

= sb(x)f p(x) + [qdx) + q{(x)] .$ p(x) + q,(x) .$ L$yx). 

Now we multiply by x and use (5.3) and (5.5) to find 

d XN+ 1 __ L”,Mo,MI ,... .MN 
dx n 

(x) = To(X). L?‘(x) + rl(x). -$ L?‘(x), (5.7) 
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where 

i 

PO(X)=X-qb(x}-N.qo(x)-n.q,(-~) 

r,(x)=x.q,,(x)+x.q;(x)+(x---N-l).q,(x). 
(5.8) 

It follows from (5.6) and (5.8) that 

I 

ro(x)= -n.(A,+A,+ ... +A,+,).x”+lowerorderterms 

r,(x)=(A,+A,+A,+ ... +AN+,).xN+‘+lowerorderterms. 
(5.9) 

In the same way we obtain from (5.7) by using (5.3) 

X 
N+2 d2 L 

‘ii? 
:,Mo3MI, .-.““(x) = SJX) . L?‘(x) + s,(x) .-$ L!:‘(x), (5.10) 

where 

i 

so(x) =x ‘r;(x) - (N+ 1). r,-,(x) --n .r,(x) 

s,(x)=x.r,Jx)+x.r’,(x)+(x-z-NN2).r,(x). 
(5.11) 

And with (5.9) and (5.11) we have 

so(x)= -n.(Ao+A,+A,+ W.~ +AN+,).xN+l+lowerorderterms 

s,(x)=(A,+A,+A,+ ... +AN+I).xN+2+lowerorderterms. 
(5.12) 

Now we eliminate the derivative of the classical Laguerre polynomial from 
(5.5) and (5.7) to find 

Cqdx)r,(x) - q,(-~)rdx)l Cf’(x) 

Since L:‘(O) = (“LX) we conclude that 

qO(x)rl(x) - q,(xb-dx) = xN .P2b) 

for some polynomial pz. 

(5.13) 

In the same way we obtain from (5.5) and (5.10) 

q,(x)s,(x)-q,(x)s,(x)=XN.P,(x) (5.14) 

for some polynomial p, . And from (5.7) and (5.10) it follows that 

rJx)s,(x) - r,(x)s,(x) = n .xNs ’ .po(x) (5.15) 

409!153/2-19 
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for some polynomial p,,. Here we used the fact that for n = 0 we have 

q&) = A,. XN and Ye(X) = so(x) = 0 

which follows from (5.5), (5.8), and (5.11). 
In view of (5.5), (5.7), and (5.10) the determinant 

xN . ,yMo. MI _..., MN(~) 90(x) q1(x)l 
d XN+l .-L~,Mo.MI ,..., M,v 
dx n 

(x) ro(.x) Tl(X) 

d2 
X N+2 

‘Z 
Ly+‘,..JyX) so(x) sl(x) 

must be zero. The first column can be divided by xN. Hence, we find by 
using (5.13), (5.14), and (5.15) 

o= 

,yl.MI ,..., M,yX) 40(x) q,(x) 
d 

x.-L 
dx 

;“o~M~~-~~MyX) To(X) r,(x) 

d2 
x2.-L 

dx2 
;“o,Ml,.qX) so(x) s,(x) 

=x N+2.P2(X)&~M.,M~ . . . . >MN(~)+/‘,+’ 

+X N+ 1 . n .po(x). ,;Mo.MI.....MN(~). 

This proves (5.1). Now (5.2) follows from (5.13), (5.14), and (5.15) by 
using (5.6), (5.9), and (5.12). This proves the theorem. 

6. REPRESENTATION AS HYPERGEOMETRIC SERIES 

From (1.2) and (2.4) we obtain 

where 

C-n), N+l 

=(ci+l) 
N+m+, ,c, (m-n)k’(m+a+k+l),~k+l.Ak’ 
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From (4.2) it follows that A, + A I + . . + AN + I # 0. So we may write 

C,,=(A,+A,+ ... +‘4&l+1). (-n)nl cm + BoNm + Bl) . . . cm + PN) 
(r+N+2),’ (a+ l)N+l 

for certain pie @, j= 0, 1, 2, . . . . N. Since m + /Ii = /I, (B, + 1 ),/(b,), for 
1, # 0, - 1, -2, . . . we find in that case 

F 
-n, B” + 1, B, + 1, . . . . PN + 1 

‘Nf2 N+2 (6.1) 

For -/I?, E N we must take the analytic continuation of (6.1). 
We remark that (6.1) is a generalization of (2.4). 

7. RECURRENCE RELATION 

All sets of polynomials which are orthogonal with respect to a positive 
weight function satisfy a three term recurrence relation. The classical 
Laguerre polynomials for instance, satisfy (2.7). The polynomials 
{L ywfI/.... MN(X)}~~O in general fail to have this property, but we can 
prove the following 

THEOREM. The polynomials { L~,“O’MI,...,M,v(~)}~==O satisfy a (2N+ 3)- 
terms recurrence relation of the form 

n+N+l 

XN+l .L ~Mo.MI~--.J?v(,~) = C @‘.q.Mo.M ,,.... M,qX). (7.1) 
k=n-N-I 

proof: Since xN + 1 . L:Mo.MI,-.,M,v (x) is a polynomial of degree n + N + 1 
we may write 

n+N+l 

X N+ I . L;..%MI..--.MN(~) = C ~4. ,;Mo.W. --MN(~) (7.2) 
k=O 

forsomecoetIicientsE~~~lR,k=0,1,2 ,..., n+N+l. 
Taking the inner product with L, x~Mo~M’~~~~*M~y(.~) on both sides of (7.2) we 

find by using (1.1) 

(L;Mu,MI . . . . . MN, ,;MoA...-,MN) .E;’ 

= (x 
N+l ~Mo.MI . . . . . MN(~), L~Mo,MI ,..., M,+)> 

= cXN+l .L;Mo,MI ,..., MN(~), ,~.Mo,MI,.... MN(~)>. (7.3) 
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In view of the orthogonality property of the polynomials 
{Lymf1>.... MN(x)}~~, we conclude that EE’=O for N+ 1 +m<n- 1 or 
m G n - N- 2. This proves (7.1). Comparing the leading coefftcients on 
both sides of (7.1) we obtain by using (3.3) 

E’“’ 
n+N+l 

=~=(-,)N+l.(n+~,+l)!.A,(~~(~+l)#o. 
k n+N+l 

k 

Here we wrote AJn) instead of A,, since A, depends on n. 
If we define 

n+Cf 

=( 1 
.&~(&+A,+ “. +AN+1) 

n 

then we find for Ef’?,_ , by using (7.3) and (3.3) 

E’“’ k n-N -1 .A, 
n--N-1= ‘4 .k #” 

n-N-1 n 

The (2N+ 3) - terms recurrence relation (7.1) clearly is a generalization of 
(2.7). 

Remark. In (7.1) we take L~Mo-MI~-.~MN(~) =O for k <O. 

8. A CHRISTOFFEL-DARBOUX TYPE FORMULA 

From the recurrence relation (7.1) we easily obtain 

(x N+l -Y “‘+‘).L ;““.“I /.... M,v(~)L;Mo.MI x..., MN(~) 

k+N+I 
= 1 EE’ . [L~““o.“I. ...““(X)L;M~.M~ /... MN(~) 

m=k-N-l 

_ L;Mo.MI.....WV(~,) ~&MI . . . . . MN(~)]. (8.1) 

Now we use (7.3) to see that EE)/A, = Ek”‘)/A,. So it follows from (8.1) by 
using 
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since the first sum at the right-hand side vanishes, that 

(X N+l -Y Nf 1). i /ikl .~W’I x.... MN(~)L;MO.MI ,.... “yy) 

k=O 

= kio y: 1 F . [q%M II...% M,qx)L;Mo.M I..... MV( y) 

-L>MO.Ml,... ““(Y)qJwfI . . . . . Myx)J (8.2) 

This can be seen as a Christoffel-Darboux type formula. Note that (8.2) is 
a generalization of (2.8). We remark that for n 3 N we may write 

,g,, ::g : = k=$ P ‘ y 1,::: :. 

The right-hand side of (8.2) consists of at most $. (N + 1 )(N + 2) 
summands opposed to the single bracketed “term” in the classical 
Christoffel-Darboux formula. And if n <N, there are fewer terms. 

If we divide by x-y and let y tend to x then we obtain the so-called 
confluent form of the ChristoffelLDarboux type formula 

(N+ l).xN. i /ILL. (q.MO.M I..... M,yx))2 
k=O 

= k+;+‘y.[L;-o.M I...., M,~(,)..L~~;M,,, . . M.qx) 
k=O m=r,+l k 

(8.3) 

Note that (8.3) is a generalization of (2.9). 

9. ANOTHER DEFINITION 

Instead of by (1.2) or by (2.11) the polynomials {~~““.“‘,.--,MN(~)}~=o 
can be defined by 

N+l 
,v$“oJ’t.....M~(~) = 1 B, Xk 

k=O 

As before we write by using (2.10) 

min(n, N + I) 
L ;.Mo.M~,---,,+fh.(~) = C (_ 1 )k 

k=O 

DkLj: +“‘(x). (9.1) 

Bk . Xk . Lj,“__+;k’(X). (9.2) 
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By comparing (1.2) and (9.2) we see that 
N+I 

A,= c (-n)k.(-l)k.Bk 
k=O 

and by using (2.2) 

.Ak. 

The definition (9.1) can be proved by using the same method as in 
Section 3. Now we find 

&. y (-l)k.(n;,n;y-(m+k+r+l).Bk 
k-m+1 

+(-l)“.m!.M,; ;ok!-(;l)(n;.“;k).Bk=(l 

for m = 0, 1,2, . . . . N. This is a homogeneous system of N + 1 equations for 
the N + 2 coefficients { Bk} FTC:. Hence there is a nontrivial solution. 
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