Computer Science Department of The University of Auckland
CITR at Tamaki Campus (http://www.citr.auckland.ac.nz)

CITR-TR-63 July 2000

| nter actions between Number Theory and | mage
Analysis

Reinhard Klettet and Jovisa Zunicz

Abstract

The conceptual design of many procedures used in image analysis starts with models which assume as
an input sets in Euclidean space which we regard as real objects. However, the application finally
requires that the Euclidean (real) objects have to be modelled by digita sets, i.e. they are approximated
by their corresponding digitizations. Also "continuous' operations (for example integrations or
differentiations) are replaced by "discrete” counterparts (for example summations or differences) by
assuming that such a replacement has only a minor impact on the accuracy or efficiency of the
implemented procedure. This paper discusses applications of results in number theory with respect to
error estimations, accuracy evaluations, correctness proofs etc. for image analysis procedures.
Knowledge about digitization errors or approximation errors may help to suggest ways how they can be
kept under required limits. Until now have been only minor impacts of image analysis on developments
in number theory, by defining new problems, or by specifying ways how existing results may be
discussed in the context of image analysis. There might be a more fruitful exchange between both
disciplinesin the future.

1 The University of Auckland, Tamaki Campus, Centre for Image Technology and Robotics, Computer
Vision Unit, Auckland, New Zealand
2 University of Novi Sad, Faculty of Engineering, Trg D. Obradovica 6, 21000 Novi Sad, Y ugoslavia



Interactions between Number Theory
and Image Analysis

Reinhard Klette @ and Jovisa Zunié

@ CITR Tamaki, University of Auckland
Tamaki Campus, Building 731, Auckland, New Zealand

b University of Novi Sad, Faculty of Engineering
Trg D. Obradovica 6
21000 Novi Sad, Yugoslavia

ABSTRACT

The conceptual design of many procedures used in image analysis starts with models which assume as an input sets
in Euclidean space which we regard as real objects. However, the application finally requires that the Euclidean
(real) objects have to be modelled by digital sets, i.e. they are approximated by their corresponding digitizations.
Also “continuous” operations (for example integrations or differentiations) are replaced by “discrete” counterparts
(for example summations or differences) by assuming that such an replacement has only a minor impact on the
accuracy or efficiency of the implemented procedure.

This paper discusses applications of results in number theory with respect to error estimations, accuracy evalua-
tions, correctness proofs etc. for image analysis procedures. Knowledge about digitization errors or approximation
errors may help to suggest ways how they can be kept under required limits.

Until now have been only minor impacts of image analysis on developments in number theory, by defining new
problems, or by specifying ways how existing results may be discussed in the context of image analysis. There might
be a more fruitful exchange between both disciplines in the future.
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1. INTRODUCTION

Number theory is that field in mathematics which studies the properties of natural numbers. “Mathematics is the
queen of sciences - and number theory is the queen of mathematics,” according to Carl Friedrich Gauss.?® Image
analysis deals with objects defined on grid points having natural numbers as its coordinates. What would be more
obvious than assuming that there should be a very strong relationship between both disciplines?

Image analysis often benefits from results based on number theoretical studies. This may be relevant to combina-
torial procedures (e.g. number of linear partitions of rectangular grid arrays, simple constructions of digital convex
n-gons), upper bounds for required memory allocations (e.g. maximum number of vertices of a convex polygon
contained in a rectangular array of grid points), or to accuracy estimates for geometric feature calculations (e.g.
multigrid convergence of digital moments towards the real moments).

Some grid point problems in number theory do have an extensive history such as the relationship between the
estimated size (area, contents) of a planar region by the number of grid points contained in this region. This problem
18, of course, of direct relevance for image analysis.



Let #(n) be the number of different representations of the natural number n by a sum of two squares of integers.
Let r(0) = 1. For example, r(1) = 4 because of 12 +0? = 02+ 12 = (—=1)2 4+ 02 = 0% + (=1)?, r(2) = 4, 7(3) = 0 etc.
Gauss * characterized this function as follows,

R(z)= > r(n)= > 1=m+0(Va), (1)

0<n<e 12+4j2<x

saying that the size of r(n) has an averaged order of w. This theorem allows a geometric interpretation: R(x) is the
number of grid points in or on a circle with midpoint (0,0) and radius \/z. The theorem by Gauss states that the
number of grid points in or on a circle approximates the contents of a circle up to an error in the order of the radius,
what is the same as in the order of the perimeter. The function r(n) is an example of a number-theoretic function, i.e.
defined on all natural numbers and having real or complex values. Another example of a number-theoretic function
is the Fuler function ¢(n) which counts the number of positive integers less than or equal n which are relatively
prime to n. For example, p(1) = 1, ¢(2) = 1, ¢(3) = 2, etc. F. Mertens has shown that??

Y o) = S eat 4+ Ol loga) 2

1<n<x

which is a very useful theorem for analyzing the maximum number of vertices of a convex grid polygon contained in
an n x n-grid.3? These two examples indicate already that image analysis may benefit from knowledge in number
theory.

A further example of a number theoretic function of thinkable relevance for image analysis is the divisor function
i (n) = Ztk ,
t|n

where w(n) = op(n) specifies the number of divisors of n, and ¢(n) = ¢1(n) is the sum of all divisors. The divisor
function may be estimated by??

(’)(xk) fork >1
k+1 !

Zak (n):%xkﬂ—l— O (zlogx), fork=1
n<r + O(x), for0<k<l

using Riemann’s zeta function
oQ
1
C(S):Z:l;’ for s>1.
n=

The divisor function is actually used in [34] for calculating the maximum number of vertices of a convex grid polygon
contained in an n x n-grid.

If (m,n) = 1 means that integers m and n are relatively prime, and w(n) denotes the number of distinct divisors
of n as defined above, then it holds that

S oi=(-a) 3”51”) +0(240)
(m,m)=1

a<n<b

where ¢(n) is the Euler function.

Number theory is a very developed field in mathematics, and grid points are one of the main subjects in this field
since H. Minkowski.?®> However, in general it seems that image analysis researchers prefer to use “classical analysis
tools” which are (usually) weaker in obtaining “sharp” bounds than “number theoretical tools” are.

The authors believe that a good example for demonstrating the strength of number theoretic arguments is our
paper [19] where it is shown that any improvement in Huxley’s result!! (a recent theorem in number theory) leads

*Gauss has not used the O-notation.



to a sharper estimation of errors if real moments are approximated by corresponding discrete moments. This result
is stronger than the related previous ones published in the image analysis literature.

This paper has been written to show that there are already many interactions in place between number theory
and image analysis which go far beyond the “classical” area estimation problem mentioned above. This paper reviews
related work in this field of number-theoretical studies related to image analysis, and, frankly speaking, with a special
emphasis on work done by the authors.

2. DIGITAL STRAIGHT LINE SEGMENTS

A digital curve or arc is normally considered to be an ordered sequence of pixels (or grid points) which may result
from some digitizing procedure applied to a real curve or arc. Of particular interest has been the characterization of
digital straight line segments.*%10,26,27,33,37

The paper [21] considers segments of lines y = o - & + 2 in the first octant, defined by 0 <o <m, 0 < a <1,
0 </ < 1 and the following digitizations of such line segments,

L={(zs,ys) | v =t,ys = |- i+ B], i=0,1,2,...m} .

Obviously these line digitizations are defined to be the set of those grid points which are on or below the line, but
which have an 8-neighbor T which is above the line. In [21] it is shown that the number of such digital line segments
is equal to

%~m3 + O (m*-logm) . (3)
The first grid point in such a digital line segment is (0,0), and the digital line segment consists of exactly m + 1
grid points. There is an obvious “one — to — one” correspondence between the set of digital straight line segments
starting at (0,0) and the set of linear partitions of an m x m orthogonal grid, where a linear partition of a set S is
defined to be any partition of S into sets X and S\ X by a line [ such that the sets X and S\ X belong to different
halfplanes defined by line [. Of course, any digital straight line segment consisting of m + 1 points and beginning at
(0,0) defines exactly one linear partition, but there are also further linear partitions of the m x m grid which do not
correspond to such specific digital straight lines starting at (0, 0).

The number of linear partitions of an m x n orthogonal grid is considered in [1]. There it has been shown that
the number of such partitions is equal to

%~m2~n2 + O(m* -n-logn) + O(m-n? loglogn)

where m < n is assumed.

This result can be understood as the “capacity” of a digital picture of size m x n with respect to straight lines,
i.e., it shows what i1s the number of straight lines which can be discriminated by digitizations on an m x n orthogonal

grid.

Both asymptotic formulas, on the number of straight line segments and on the number of linear partitions, can
be derived by using well known formulas for average values of number-theoretical functions and Riemann-Stieltjes
integration, as made available in textbooks such as [3,22,28 29].

Digital curves are normally encoded by a directional code specifying code numbers 0,1,...,7 for all the possible
steps to an 8-neighbor of a given grid point, where these numbers follow a clockwise or counter-clockwise order. The
study of the “periodical pattern” of directional code sequences of digital straight lines 1s one of the oldest problems
in image analysis,® and in number theory it has roots dating back to the Bernoulli brothers.* A complete coverage
of the history and a solution based on continued fractions is given by K. Voss in [34].

tStandard definition in the image processing literature: for a grid point (z,y) it holds that an 8-neighbor is any grid points (7, 7) with
maz{z — 1,y —j} = 1.



Freeman formulated his conjecture about a specific appearance pattern of directional codes in his paper in 1971 as
follows?: there are only two consecutive codes (modulo 8) in the sequence, at least one of them is always isolated (i.e.
the same number does not follow immediately again), and the occurrence of these isolated orientations is somehow
“uniformly distributed”. Rosenfeld?® has specified this further by showing that the run-length of the non-isolated
orientations satisfies these three conditions recursively.

Dorst® proposed spirographs as a tool to study periodic behavior. Rothstein and Weiman?” discussed Farey
sequences for characterizing the periodic pattern of directional codes of straight lines passing through the origin.
The nth Farey sequence consists of all rational numbers ap/a;, with 0 < ag < a1 and ag and a; are relatively prime,
sorted in increasing order. For example, for n = 5 we have the sequence

01112132341

1’574°3°572°573°4’5 1
In [27] it has been discussed that the set of digital line sequences of length n, passing trough the origin, is in one-one
correspondence with the nth Farey sequence. This is actually already a proof for Equ. (3).

If the slope of the straight line is assumed to be a rational number ag/ay, with integers ag > a; > 1, then it can

be represented as a (finite) continued fraction,??2°
ap _ _ 1
a—[qlaQZa"'aQH]— q1+q2+ 1 ] ’
-
qn—l‘l’ﬁ

with integer coefficients ¢; > 0, for 1 < 2 < n. The Euclidean algorithm may be used to derive such continued
fractions:

a a . a
—0:q1+—2 with 0<—2<1,
a a a
a a . a
—1:q2+—3 with 0<—3<1,
az az az
.................. ,
Gy . a
"2 g+ with 0< -2 <1,
Ap—1 Ap—1 Ap—1
Ap—1 .
=gq, with a,41=0.
QAn

Continued fractions have been used in [4,33] to characterize directional code sequences of digitized straight lines.
Related results in number theory'3 have been of use in these studies. We review the related definitions and results
as given by K. Voss in [34].

We consider straight lines passing (w.l.0.g.) through the origin and having a rational slope a/b, with (a,b) = 1.
The characteristic triangle of such a line is given by the vertices (0,0), (a,0), (0,b). The concatenation Ty @ T of
two characteristic triangles T} and T5 is a characteristic triangle defined by the slope a/b with a = % (a1 + az), and
b= % (b1 + b3), and those integer ¢ such that (a,b) = 1.

The numerical value of a continued fraction can also be expressed in the form of multiples of ¢,

LI S q]_w
a ’ T PYHQH‘F(SH

bl

where ay,, On,Yn,0n are defined by the coefficients ¢1,¢s, ..., ¢p—1. For n =1 itis «yd; — F1y1 = —1. For n>1

it holds
Op+1dn+1 + 6n+1 _ Qp ((Jn(Jn+1 + 1) + BHQn+1

q1,92, .-y qn—1, In+1] = = s
[ " n ] Ynt+1qn+1 + Ont1 Tn ((Jn(Jn+1 + 1) + 6ngnt1

and thus
Up4+19n+1 + 6n+1 (an(Jn + ﬁn) Gn+1 + an

Yn+19n+1 + 6n+1 N (PYn(Jn + 6n) In+1+ Yn




This means that the slope Z—‘IJ =1[¢1,92, ---, gn] of a characteristic triangle can be expressed as

(an—lfhl—l + ﬁn—l) Gn + an_1 _ (an—lfhl—l + Bn—l) ((Jn - 1) + an_1 (QH—l + 1) + 671—1

(7n—1Qn—1 + 6n—1) dn + Tn—1 (7n—1Qn—1 + 6n—1) ((Jn - 1) + Tn—1 (QH—I + 1) + 6n—1

Therefore, the characteristic triangle defined by slope ag/a; is equal to the result of a repeated concatenation @ of
one characteristic triangle with slope [q1,¢2, ..., ¢n—1 + 1] and ¢, — 1 triangles with slope [q1, ¢2, ..., ¢gn—1], which may
be expressed by the formula

[qlaQZa aqu] = [qlaQZa ey Gn—1 + 1] & (qu - 1) : [(]1,(]2, ~~~aQH—1] .

This allows to prove Freeman’s conjecture and Rosenfeld’s refined hypothesis as follows:

[Q1aQZa"'aqu] = (QH—I'[qlaQZa"'aQH—2]®[qlaQZa"'aqu—Z'i'1])
@(gn = 1) ((gn-1=1) " [91,92, -, 4 -2l @ [91, 92, .-, G2+ 1]) .

The isolated code number is [¢1, q2, ..., gn—2+ 1], and [¢1, q2, ..., gn—2] is the other (“non-isolated”) code number at
this level of representing a straight line, passing through the origin and having rational slope. The run lengths ¢, _1
and ¢,_1 — 1 differ by 1.

3. GEOMETRIC MOMENTS

Moments and function of moments have been extensively used in the area of image analysis, see; for example,
[18,23,31,38]. For a given planar region S, the (p, ¢)-moment of S is defined by

Mpg = // 2P ydady .
s

Of course, in practice, instead of real m, 4(S) moments we can use only their “discrete version”, so-called discrete
moments. The discrete (p, ¢)-moment of a region S is defined to be

/ip,q(S) = Z gl = Z it gt
(i,/)ED(S) biere integers
where D(S) denotes a set of grid points, a digitalization of S. We assume that D(S) is the Gauss-digitization of S
consisting of all points in S having integer coordinates.

Since a region S can be represented on digital pictures of different resolutions characterized by parameter r
showing the number of pixels per unit, it is convenient to consider a dilation r-.S of S by factor r > 0, defined by

r-S={(r-z,r y)|(z,y) €S}

In general we expect that
1
mpyq(S) ~ rp+‘1+2 : /ip,q(r : S) ’

i.e. that this formula defines a “good approximation” of the real moment my, ,(S) calculated from its digitization
on a grid of a given resolution r, i.e., calculated from its discrete moment p, (7 - S). Of course, we expect that
an increase in grid resolution leads to a decrease in the error in the above approximation. It turns out that the
mentioned error in this approximation can be estimated efficiently by knowing the order of a function f(r) denoting
the following difference,

Fr) = Imoo(r-8) = poo(r -S| = [r* - mo,0(S) = po,o(r - )| -



A classical result is that f(r) = O(r) if there are (nearly) no assumptions about the boundary of S. In [19] it is
shown that f(r) = O(r) implies the following upper bound for the error in the estimation of real moments of an
arbitrary order:

1 1
|mp,q(S) - W '/'Lp,p(r . S)| =0 (—) .

r

But a recent result due to Huxley, enables us to give a sharper error estimate in the case when the boundary of a
convex set S belongs to the C class and does not contain straight line segments, i.e. has positive curvature at all
boundary points. Huxley proved in [11]

THEOREM 3.1. If S is a conver set in the Euclidean plane with a C3 boundary and positive curvature at every point
of the boundary, then it holds that

(1 mo,0(S) = poolr - $)| = O (rF - (logr) ).

The previous result has the following consequence as proved in [19]:

rit

1 (log r) %2
[myp,q(S) — ptat? Hpg(r-S) =0 (T)

for such a set S as specified in Huxley’s theorem.

We consider the Huxley result as being a very strong mathematical result. It is not known yet whether it specifies
the best possible upper bound or not. But any improvement of this result defining a new function fi(z) having a
smaller order of magnitude than

(@) (r% - (log r)%)
would “automatically” imply an improvement

1
104(5) = i “alr ) =0

f1(7°))

r2

in the studied error estimation due to the proof technique developed in [19]. See also the experiments reported in
[20] which support the hypothesis that an improvement of Huxley’s result is possible. Such experimental studies in
image analysis might be of more general importance for number theoretical studies in the future.

We mention a “standard approach” of expressing functions such as f(r): if fi(r) is going to be expressed in the
form fi(r) = 7%, then, due to the example of y(z) = +/x (note: this curve passes /7] grid points while z € (0,7])
it already follows that o < 1/2 is impossible. So at the moment, there is a gap between /2 and #7/11t< . This
implies: if real moments of a convex set with C° boundary and positive curvature at all of the boundary points are
estimated based on a digitization of this set with resolution r then the precision (’)(r‘15/11+€) is preserved, while the
best (precision) which can be expected is lower bounded by ¢ - r=3/2 where ¢ is some positive constant.

4. ZERNIKE MOMENTS

In the previous section it was stated that Theorem 3.1 gives the best known upper bound for the difference
[moo(r - S) = po,o(r - 5)|

even in the case when S is a circle in a general position. But there is a new (unpublished yet) result, also due
to Huxley,'? which is related to circles whose center is placed at the origin (equivalently, into an arbitrary integer
point).

THEOREM 4.1. Let C be the unit circle given by z° +y?> < 1. Then

1 285

1
G(r) = — - Imoo(r- €)= pnolr - C)] = |m= = - poa(r-C)] = 0 (r ) .



This result has a direct application to the improvement of error estimations (particularly to the improvement of the
so called “geometric error” estimations) in approximating Zernike Moments based on digitized data, see [24].

The use of Zernike moments®® in image analysis was pioneered by Teague.3® Since then, the Zernike moments
have been frequently utilized for a number of image processing and computer vision tasks.

In order to define the Zernike moments, let us introduce a set of complex orthogonal functions with complete
orthogonal basis over the class of square integrable functions defined over the unit disk. Such a set of complex
orthogonal functions is called a set of Zernike functions. The (p, ¢)-order Zernike function is defined as follows,

Vog(x,y) = Ry q(p) .l aarctan(y/e)

where j=+—-1, p=+/22+y? <1, l¢l <p, p—|g|is an even number, R, ,(p) is a polynomial in p of degree
p > 0 containing no power of p lower than |q|.

The orthogonality constraint for the set of functions {V, 4(z,y)} has the special form
« 7
Vig(@,y) - Vo g (@, y)ddy = p+1 “Ppp' Baq
D

where 3, =1 if p=p and 0 otherwise.

The completeness and orthogonality of the set {V}, , (2, y)} allow us to represent any square integrable function f(z, y)
defined on the unit disk in the way of the following series:

fla,y) =33

P p+ 1
=0g=—p

T

“Ap g Vpgle,y), where p—|g¢|is an even number . (4)

Ap 4 18 the Zernike moment of order p with repetition g¢:
Ao = [[ £a0) Vil w)dnd.
D

The important feature of the Zernike moments is their rotational invariance. If f(x,y) is rotated by an angle o then
it 1s shown that the Zernike moments A;;,q of the rotated image is given by

/ _ . —jqa
Ap,q - Apyq €

where j = +/—1 , i.e., the magnitudes of the Zernike moments can be used as rotational invariant features of
functions f. The function f may be an image defined on a rectangle which is assumed to be contained in the unit

disk.

Of course, the above is valid as long as one uses an integrable “image” function f defined on a region D in the
Euclidean plane. In practice, the Zernike moments have to be computed from sampled data. A discrete version of
A, 4 over a grid point set {(z;,y;) : 1 <4,j < n} is given as follows:

Zp,q: Z hp g(@isys) - f@i,y5)

%]
24,2

+y2<1
=3 y]<

where hy, 4(zi,y;) represents an integration of the function V,* (z,y) over a grid square having grid point (z;,y;) as
its center point.

A detailed analysis of the difference .
Apg = Apqg =By + B,

is given in [24]. The above difference (i.e., the error in the calculation of the Zernike moments from discrete data) is

divided into two parts, a so-called “numerical error” denoted by E, , and a “geometric error” denoted by EJ . .



In the same paper [24] the following estimations are given,

4-mmax f(z,y) V()
)< , =
[Epql < p+1 2r

and

™
|Equ| < m~maxf(x,y) VG(2-7)

Y

where V(f) is the total variation of f(x,y). In the previous expression the geometric error is dominant obviously. In
[24] the result G(r) = O~ 5/11) from [15] is used, and consequently |4, , — A, 4| is upper bounded by O(r~1%/%2),

Huxley’s recent result [12] improves this error bound to
O (r—285/416)

Moreover, replacing A, , with A, , into Equ. 4 the authors of [24] gave the following reconstruction formula:

TT(xay) = Z Z

L
=-p

T

'Zp,q Vi glz,y) where p—|¢| is an even integer.

T is the truncation parameter informing us how many moments are taken into account.

If Error(TT) is defined as a natural performance measure in the following way:

Error(Fr) = /D / Fr — fla,y)Pdedy

_ T2 1
Error(fr) =0 (m) + 0 (T)

In order to minimize the above upper bound the authors suggest a choice of T as T™ in the form

it is shown in [24] that

T = ¢.p?/11 where ¢ is some positive constant

which would imply that (’)(r‘5/11) is an upper bound for the accuracy of the proposed reconstruction method.

By applying the Theorem 4.1 following the same approach we obtain

- T 1
Error(fr) =0 (77&85/208) + O (T) .
The above implies that a choice of a smaller number of the used Zernike moments 7 given in the form

T* — . p95/208

leads to an upper error bound of @ (7’95/208).

5. DIGITAL CONVEX POLYGONS

Convex polygons are of fundamental interest in image analysis (calculations of convex hulls, segmentation of complex
shapes into convex polygons etc.). Since in practice we deal with digital pictures of such sets it is straightforward
to consider extrema problems related to such convex sets which can be represented on a digital (binary) picture of
a given size, let say m x m. Especially it might be of interest



e to estimate the maximum number A(m) of vertices of such a convex polygon, and

e to give the estimation of an sufficiently large number B(m) of bits for the encoding (representation) of all digital
convex polygons with respect to the size m of a given squared orthogonal grid.

Also, let C(m) be the number of convex digital polygons contained in a square m x m grid, for integer m > 0. -
The first question has been studied in many papers, see, for example [2,32,34], and a complete answer can be found
in [2]. Precisely, there it has been shown that the maximum number A'(m) of vertices of a digital convex polygon
contained in an m x m orthogonal grid is equal to

12
v4 - 7?

This result states that the minimal number B(m) of bits sufficient for coding of digital convex polygon from an m x m

N(m) = Vm2 + O (Ym -logm) .

grid, has an order of magnitude larger or equal to ms. Precisely, since C(m) > 2V (™) holds trivially, we have
B(m) = log C(m) > log (zN <m>) = N(m) = O(m5) .

On the other hand, a simple coding scheme where any vertex is coded particularly, gives O (m% -log m) as an upper

bound for B(m), because any vertex can be coded by O(logm) bits. So there is a gap between m?/3 and m?*/3 -logm
for estimating B(m). The problem is solved in [14], i.e., it is shown that B(m) = O(m?/3). We give a sketch of the
proof.

First, it is shown that B(m) has the same order of magnitude as

oe (3 11 <ni+i(ii)—1) |

ind; 1<i<m
where the last sum is taken over all ordered m—tuples (n1,na, ..., ny,) in the set

indy = {(n1,na,...,nm) Loy +2-na+...4m-np<m A np>0An2>0A ... A ny >0}

Further, by considering the number-theoretical function
pim)=>"1,
indsg
with
inds = {(n1,na,...,0m):l-ny+2-na+...4m-np=m An >0An>0A ... Any>0},
which is equal to the number of unrestricted partitions of a natural number m, and by using a result in number
theory, describing the asymptotic behavior of p(m), (see, for example [5), p.79],

2-n

T 3

(n) ~ —
Ny — - ¢
P 4.3 -n

it remains to prove whether the maximum summand of the form

log (H (nZ + fl(ll) a 1)) )

inds={n;:1<i<m A 1-ni+2-np+...4m-npm=m A n>0A ... A ny, >0},

with

has m? as the order of magnitude. The last is also proved in [14] implying B(m) = O (m%) .

We conclude this section by observing that an efficient procedure for the encoding of digital convex polygons

contained in an mx-grid by using O (m%) bits 1s not described yet.



6. CONCLUSIONS

This paper might contribute to a discussion about interrelationships between image analysis on one hand, providing
tools for experimental studies on orthogonal grids, and defining problems for such grids, and number theory, providing
proof techniques and basic theorems, and probably interesting new challenges, on the other hand. The paper shows
that there are already some interesting interactions in place, and it is felt that there is more potential for the benefit
of both disciplines.

The paper also shows that interesting interrelations between image analysis and number theory are motivated
by specific analysis tasks in image analysis. Grid points having natural numbers as coordinates are not sufficient to
identify strong interactions. For example, H. Minkowski?® proved the following theorem:

THEOREM 6.1. Assume a convex set in the n-dimensional FEuclidean space £ with the origin as its centroid, and
a contents greater than or equal 2". Then this set contains at least one more grid point (due to symmetry reasons
even at least two more grid points) in its interior or on its boundary. If the contents of this set is greater than 2"
then there are besides the origin at least two more grid points in the interior of this conver set.

This is without any doubt a very fundamental theorem in number theory. However, the authors are not aware of
any interesting application of this theorem in the context of image analysis.

Also, there are very interesting results in number theory about the number of grid points on curves az? + bzy +
cy? +dx + cy+ f = 0 of second order, having integer coefficients a, ..., f, see, for example [22]. In case of the parable
it holds that:

THEOREM 6.2. There are either non or infinitely many grid points on a parable having integer coefficients.
In case of an ellipse 2 + Dy? = p, D # p, it holds that:

THEOREM 6.3. If p is a prime number, then there are either non or, if D > 1, exactly four, or, if D = 1, exactly
etght grid points on this ellipse.

In case of the circle % +4?> = n, n > 1, it holds that:

THEOREM 6.4. There are grid points on this circle if and only if any prime factor of n with a representation 4m+ 3
has an even exponent in the canonic partition of n.

Again, the authors are not aware of applications of such theorems in the context of image analysis.

On the other hand, due to the fact that algorithms in image analysis are running on n x n arrays, or on digital
sets characterized by features such as diameter or width, having natural numbers n as its values, it is straightforward
that the output behavior of such algorithms can be described by a number-theoretic function, defined on all values
of n, n =0,1,2,.... Features of interest might be extrema, accuracy, or computing time. The discussed examples of
straight line segments, moments, or convex hulls are just examples in this wide field of algorithms or mappings of
digital objects into digital objects or features. For example, the study of three-dimensional objects (such as digitized
planes!”) adds not only another dimension to the field of possible problems to be studied.

Of course, such questions often also lead to combinatorial problems, i.e. a mathematical discipline “close”
to number theory but which is not a subdiscipline of number theory. Many interactions may be stated between
image analysis and combinatorics, see, e.g. work reported in [16,34], and a discussion of such interactions between
combinatorics and image analysis might be worth a separate paper.
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