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The Early History of the Moment Problem 

TINNE H O F F  KJELDSEN 

Egehegnet 115, DK-2850 Naerum, Denmark 

In the present study it is discussed how the moment problem naturally arose within 
Stieltjes' creation of the analytical theory of continued fractions. Further it is shown how 
the moment problem in the work of Hamburger came to be regarded as an important 
problem in its own right. From then on it moved away from its origin into other fields of 
mathematics--complex function theory and functional analysis--in the work of Nevanlinna 
and M. Riesz respectively. In the end it was made completely independent from continued 
fractions. © 1993 Academic Press, Inc. 

In dieser Arbeit wird dargelegt, wie das Momentproblem in natiirlicher Weise wfihrend 
Stieltjes' Entwicklung der analytischen Theorie der Kettenbriiche entstand. Es wird weitero 
hin gezeigt, wie sich dieses Problem in den Arbeiten von Hamburger als eigenst~indiges 
Problem herauskristallisierte. Von da an 16ste es sich von seinem Ausgangspunkt und kniipfte 
an andere Teilgebiete der Mathematik an, so an die komplexe Funktionentheorie und an 
die Funktionalanalysis in den Arbeiten von Nevanlinna bzw. M. Riesz. Schliesslich wurde 
es vollkommen unabh~ngig vonder  Theorie der KettenbrOche. © 1993 Academic Press, Inc. 

Dans l'article l'auteur explique comment Stieltjes dans sa cr6ation de la th6orie analytique 
des fractions continues est arriv6 h concevoir le probl~me des moments. Elle d6montre par 
la suite comment ce m6me probl~me des moments est devenu important en soi dans les 
travaux de Hamburger. Depuis l'int6r6t pour ce probl~me s'est d6plac6 vers d'autres champs 
des math6matiques tels que la th6orie des fonctions complexes et l'analyse fonctionnelle 
dans les travaux de Nevanlinna and M. Riesz respectivement. Le probl/~me des moments 
est devenu finalement ind6pendent de la th6orie des fractions continues. © 1993 Academic 
Press, Inc. 
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INTRODUCTION 

The purpose of this paper is twofold: First to analyze how the moment problem 
arose in 1894-1895 in the hands of Thomas Jan Stieltjes (1856-1894) as a means 
of studying the analytic behavior of continued fractions, in which connection he 
invented the important Stieltjes integral. Second, to show how the moment prob- 
lem later on became entirely independent of the theory of continued fractions. 

I shall analyze how Grommer in 1914, after a failed attempt by Van Vleck in 
1903, extended Stieltjes' work to a more general class of continued fractions, and 
discuss how Hamburger then in 1920 was able to extend the "Stieltjes moment 
problem," which is only defined on the positive real axis, to the "Hamburger 

19 
0315-0860/93 $5.00 

Copyright © 1993 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



20 TINNE HOFF KJELDSEN HM 20

moment problem," which is defined on the whole real axis. With Hamburger's
work the moment problem came to be regarded as an important problem in its
own right, and from here on it moved further and further away from its origin.
When Hausdorff in 1920 in connection with convergence-preserving matrices hit
on the moment problem on a finite interval (the Hausdorff moment problem) there
was no connection with continued fractions. In 1922 the general "Hamburger
moment problem" moved from continued fractions into the field of complex func
tion theory with the work of Nevanlinna and almost simultaneously M. Riesz
observed the connection between the moment problem and the space of bounded
linear functionals on C([a, bJ).

Let me begin by explaining the moment problem in modern terms [1]:
Suppose J-L is a positive Radon measure. If the number

Cn = Jx n dJ-L(x)

is well defined, it is called the nth moment of J-L. If all the nth moments
exists for n = 0, 1, 2, 3, ... the sequence (cn)n;;>oO is called the moment
sequence of J-L.
The moment problem then consists of the two following main problems:

(1) Given a sequence (cn)n;;>oO of real numbers, determine if there exists
a measure J-L having it as its moment sequence (and find J-L).

(2) Is J-L uniquely determined by this sequence?
If the answer to the second question is yes the moment problem is called
determinate; otherwise the problem is said to be indeterminate.

CHEBYSHEV AND THE METHOD OF MOMENTS

Even though it was Stieltjes who introduced the concept ofthe moment problem,
he was not the first one who dealt with moments. Already in 1874 Chebyshev
(1821-1894) [Chebyshev 1874], inspired by a work ofthe French statistician Irenee
Jules Bienayme (1796-1878) [Bienayme 1853] [2], considered the problem of how
an upper (resp. lower) bound for the value of the integral

b

J f(x) dx
a

over an interval [a, b] can be determined given the values of the integrals

B B BJ f(x) dx, J xf(x) dx, ... ,J xmf(x) dx
A A A

(1)

over a larger interval [A, B]. Here f(x) is an unknown function, which remains
positive between the endpoints of integration. Chebyshev associated the problem
with the expansion of the integral
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f B f(x) dx 
A Z - - X  

in a continued fraction 

~ z + ~ +  

o q z  + f l l  + 
1 ( 2 )  

o t 2 z  + f12 + " " " 

which can be done when the moments  exist, and without proof  he gave the 
inequalities which now bear  his name: 

~(zj+j) ~o(z,_,_______~) < fzi,,f(x) dx <- ~(zl) + . . . +  ¢(z,) 
tot  (Z l+ 1---------~ "~- " " " "~- lllt  (Zn  - 1) - -  to t  (Zl)  tot  (Zn-~--)" 

Here ~(z)/tO(z) is one of  the convergents of  the continued fraction (2), and 

Zl ~ Z2 < " " " < Zl < Z l + l  < " " " < Z n - I  ~ Zn ~ " " " ~ Zm 

are the roots of the equation t0(z) = 0. 
Thus if the first m + 1 moments  of a mass distribution are known over  an 

arbitrary interval [A, B], then the inequalities tell us something about the amount  
of  mass distributed over  a smaller interval [Zl, z2]. This method of  finding an upper 
and lower bound for the integral (I) is related to the moment  problem and can be 
viewed as a precursor  for it, but Chebyshev only worked with a finite number of 
moments and he primarily saw the method as a tool to prove some important limit 
theorems in probability theory [Chebyshev 1887]. 

HOW S TIELTJES  BECAME I N T E R E S T E D  IN C O N T I N U E D  FRACTIONS 

Stieltjes' main paper about continued fractions [Stieltjes 1894-1895], the first 
part of which came out just  before he died in December  1894, is an incredibly 
beautiful piece of mathematics.  It was the first general investigation of the analytic 
theory of continued fractions as part of  complex function theory.  Besides that, it 
introduced several new ideas and concepts such as the Stieltjes integral and the 
moment  problem, and it became famous for its rigorous style. 

Stieltjes' approach to continued fractions probably has its root in his interest 
in divergent series of the form 

C O C 1 C 2 
- + + + • • • ( 3 )  
x 
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After Cauchy (1789-1857) in 1821 [Cauchy 1821] stressed that one cannot talk of 
a sum of a divergent series, mathematicians became more careful in their work 
with such series. However, in many branches of physics and in particular in 
celestial mechanics, divergent series were widely used. Stieltjes' career as a scien- 
tist began in the observatory of Leiden in Holland where he worked as an astrono- 
mer from 1877 to 1883, so he must have been familiar with the use of divergent 
series. But first of all Stieltjes was a mathematician. Indeed in the correspondence 
with Hermite (1822-1901), Stieltjes often complained that it was only in his rare 
leisure time that he could really study mathematics [Hermite 1905, Letter 2, Nov. 
1882]. So from a mathematical point of view it must have been a challenge for 
Stieltjes to figure out why the use of divergent series in so many cases gave the 
right results. In his doctoral thesis from 1886 "Recherches sur quelques s6ries 
semiconvergentes" [Stieltjes 1886] he gave one of the first rigorous approaches 
to divergent series. Simultaneously Poincar6 (1854-1912) published a more general 
treatment on asymptotic series [Poincar6 1886] and in the last two decades of the 
19th century there was a great interest among mathematicians in the theory of 
summability. 

In his doctoral thesis Stieltjes wanted to examine those divergent series of the 
form (3) which arise naturally from the integrals 

fo ' l -~g u f~ sin au  . ~ u cos au  li(a) = du,  j, ~ du,  du 
o l + u  Jo " 

From Euler (1707-1783) [Euler 1748] it was well known that one could transform 
an infinite series into a continued fraction and vice versa. So the jump from 
divergent series of the form (3) to the study of continued fractions was not so big. 

Another aspect of this relationship between definite integrals, infinite series, 
and continued fractions is that it sometimes provides a method to determine the 
value of the integral. Laguerre (1834-1886) was the first who explicitly pointed 
out this fact [Laguerre 1879]. He considered the integral 

1 =  ( ~  e -X  d x ,  
J~ x 

and by using partial integration he obtained the identity 

S e [  x f~ e-X 
x x d x = e - X ' F ( x ) ¥ 1 " 2 " 3 " ' ' n J x x - - U ~ T d x '  

where 

_ 1 1 1 . 2  1 . 2 . 3  1 . 2 . 3 . . . ( n -  1) 
F ( x )  x x 2 -]- x ' ' ' ~  x 4 q_ . . . -t- x n 

If F ( x )  is continued to an infinite series it will diverge for all values of x, but 
Laguerre pointed out that it is possible to transform F ( x )  into a continued fraction 
which is convergent, 
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f ~ e -X  d x  

x X 

e - X  
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1 

1 
x +  1 -  

x + 3 -  
x + 5  

4 
1/4 

x + 7  
9 

I/9 

x + 9 1/16 
16 x + 

23 

and he showed that in the limit the continued fraction is equal to the integral. 
It is very likely that Stieltjes' work with the relationship between definite inte- 

grals and divergent series of the form (3) led him toward the theory of continued 
fractions. Indeed he was fascinated by the fact that one can transform two such 
different analytic forms--a continued fraction and a definite integral--into one 
another and in his famous main work he wanted to generalize this observation. 
[Stieltjes 1894-1895, 497]. 

STIELTJES' THEORY ON CONTINUED FRACTIONS 

Stieltjes' correspondence with Hermite reveals that he began his work on contin- 
ued fractions in 1883. In 1889 he was so deeply involved in the subject that he 
wrote to Hermite "Je pense toujours aux fractions continues" [Hermite 1905, 
Letter 172, March 1889] and a month later "Je suis toujours enti~rement ab~m6 
dans mes fractions continues." [Hermite 1905, Letter 191, April 1889]. By this 
time it was his plan to divide the paper into two parts "l 'une plut6t alg6brique, 
tandis que, dans la seconde je m'occupe de la question de convergence surtout." 
[Hermite 1905, Letter 215, June 1889]. But Stieltjes became more and more inter- 
ested in the analytic part and when the paper finally appeared in 1894-1895 it was 
without an algebraic part. 

At the end of the 1880's Stieltjes expanded various definite integrals into contin- 
ued fractions [Hermite 1905, Letter 178, March 1889]. Most of the continued 
fractions were of the form (or could be transformed to the form) 

1 
a l z  + (4) 

1 
a 2 + 

a3z + . . .  

which is now called a Stieltjes continued fraction. Stieltjes devoted his paper to 
a complete investigation of the question of convergence of these continued frac- 
tions. I will now show how I think this analysis inspired Stieltjes to introduce the 
moment problem. 

1 
S(z )  = a i ~ lI~+, z E C 
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One of his main theorems states that if z ~ C\E_ then the even convergents  

P2n(z) 

Q2n(Z) 

as well as the odd convergents  

P2n + I(Z) 

Q:~+ l(Z) 

of  S(z) will converge toward analytic functions F(z), Fl(z) respectively: 

_ _  P2n + l(Z) P2,(z) _ F(z), l i m - -  - F~(z) z ~ C\E_.  (5) 
lim Q:n(z) Q2~+ l(z) 
n-.--> ~¢ n----~ ~c 

Already in 1892 Stieltjes communicated this general theorem to Hermite  [Hermite 
1905, letter 325, Jan. 1892] but did not give the full proof  of  it. He mentioned that 
for  z E ~+ the theorem was an easy consequence of a result due to Stern 
(1807-1894) [Stern 1847], and he continued with a proof  showing that the theorem 
is true also for z = a + ib, a > 0. But the extension to the whole plane except  
~_ is a rather complicated task, and even though Stieltjes claimed that he had 
known the proof  for a long time it seems unlikely that he could have proved this 
result before 1894. As a matter  of  fact two years later (in 1894) he discovered 
what is now called the "St ie l t jes-Vi ta l i"  theorem, which says that iff ,(z),  f:(z), 
• . . is a sequence of holomorphic functions such that ]f~(z) + • • • + fn(z)l, n = 
1,2, 3 . . . . .  is uniformly bounded in a domain S C C, then the uniform convergence 
of the series 

: ¢  

~fk(Z)  (6) 

in some small disc in S is enough to ensure that the series (6) will converge 
uniformly in the whole domain S. This result is exactly what he needed in order  
to prove the above statement (5). The "St ie l t jes-Vi ta l i"  theorem is very strong 
and Stieltjes presented it to Hermite with the following remark 

Gr~tce h mon th~5or~me, j 'en conclus tr~s facilement que la fraction continue [S(z)] est con- 
vergente dans tout le plan, except6 la coupure form6e par la partie n6gative de l'axe r6el. 
C'est lh un perfectionnement notable de ma th6orie que j 'ai  cherch~ depuis bien longtemps. 
[Hermite 1905, Letter 399, Feb. 1894] 

Thus he actually did not find the proof  of his main theorem until the beginning of  
1894, and even then he was not quite sure of  himself and asked Hermite to show 
the proof  to Picard (1856-1941), Hermite ' s  son-in-law, to get his opinion [Hermite 
1905, Le t te r  399, Feb. 1894]. 

How and when did Stieltjes encounter  moments in this connection? Well, in 
the very  same letter from 1892, where he announced the main theorem, he also 
told Hermite  that he had found the analytic form of  the limit functions F(z), Fl(z). 
Indeed he claimed that one can always find two positive functions f (u) ,  fl(u),  
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u E ~ such that 

fo  f (u )  du and Ft(z ) = (~ f i(u)  F(z) = z + u Jo z + udU" (7) 

This, as we shall see later, is not always true. To the question of how one actually 
finds these two posit ive functions f (u) ,  fi(u) Stieltjes just  said at that t ime that he 
had to think more  about  it but they appear  as the limits of  certain discontinuous 
functions.  So even though he didn ' t  quite know at this t ime how to prove  it, there 
was no doubt  in his mind t h a t f a n d f i  could be constructed.  Stieltjes then noticed 
that in the case where  the series E an of  the coefficients of  S(z) converges ,  f i  
f a n d - - h e r e  comes  the remarkable  t h ing - - even  though they are different the 
following identity holds: 

~c 

oUk( f (u )  - fl(u)) du = 0 for all k = 0, 1 (8) 

In relation to the m om en t  problem this is a very important  consequence,  because  
it shows t ha t f (u )  andf l (u)  are not determined by their moments .  I think that this 
d iscovery made by Stieltjes was the main reason for the emergence of  the moment  
problem. 

To see why (8) is true despite the fact that f i (u)  ~ f ( u )  we have to know a little 
more about  continued fractions: 

The nth convergent  

P.(z)  

Q.(z) 

of  S(z) can be developed into a power  series of  the form 

P.(Z) C(o n) c~j.) (n) C(,) 1) n C(. ) 
Qn(z) = --Z - z - - r  + c2__Z_ _ Z 3 . . . + ( _ _  1 ) ( n - I )  n - I  _{_ ( _ _  -{- " " " (9) 

Z n Z--~ 

which converge for [zl big enough and where ct0 n), • • • , ~n--¢n) are positive. I f  

en+m(Z) 
Qn+m(Z) 

is a convergent  of  S(z) different f rom 

P.(z)  

Qn(Z) , 

then for all m > 0 we have that 

c(n) = r(n+m) for ~, = O, 1 2, n - 1. 

This determines a sequence of  posit ive coefficients 

C O , C I ,  C 2 ~  C 3 ,  • . . 

(here we have set cv = c~ ) for v = O, 1 . . . . .  n - 1), and the power  series 
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C O C 1 C2 

z - z ~ + z --x . . . .  (10) 

is the power  series that corresponds to S(z). 
Now because of  (5), S(z), F(z), and Fl(z) will have the same formal power series 

expansion. But this means that 

1 f ( u )  d u  - 1 1 ~ Z -~ uf(u) du + u2f(u) du . . . .  

is equal to (10), and therefore we necessarily have 

/ -  zc  

= [ u"f(u) du. Cn 
JO 

Similarly 

c, = u%(u)  du, 

and therefore,  as Stieltjes observed,  

fo Uk(f(u) - f j(u)) du = 0 for all k --- 0. 

L'existence de ces fonctions ~(u) qui, sans ~3tre nulles, sont telles que 

~o ~ uk~(u) du = 0 (k = 0, 1,2, 3 . . . .  ) 

me paralt tr~.s remarquable. [Hermite 1905, Letter 325, Jan. 1892]. 

I find it very likely that this observation was the point of departure for his study 
of  the moment  problem. 

Actually in this letter from 1892 we can see that Stieltjes had a good sense of  
what later became the essential part of his pape r - - t he  convergence of  

P2n(z) and P2, + l(z) 
Q2,(z) Q2, + l(z) 

in the whole plane except  the semiaxis E and the analytic form of the limits of  
the convergents  of  S(z). But there was still much for Stieltjes to do in order  
to make the proofs rigorous. The Stieltjes-Vitali theorem, as we have already 
discussed, was one part of  this; another  part was that in order  to find the analytic 
forms of  F(z) and F~(z) it was - - a s  we shall see la te r - -necessary  for Stieltjes to 
extend the notion of  a definite integral. 

As mentioned above Stieltjes had here encountered an example of  an indeterminate 
moment  problem. Stieltjes did not write about moments in the letter, but remarked: 
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The Case Where  E a n < oo 

Half  a year later, still in 1892 [Hermite 1905, Let ter  349, Oct. 1892], Stieltjes 
discovered that when the coefficients a n of  the Stieltjes continued fraction S(z) 
form a convergent  series the limits of  the convergents of  the continued fraction 
S(z) turn out to be analytic functions representable by a sum of  simple fractions. 
Indeed if 

~ c  

~ an < OC, 
1 

the following four limits exist, 

lim Pzn(z) = p(z) 

lim Q2n(z) = q(z) 

lim P2,+ l(Z) = pj(z) 

lim Q2n+l(z) = ql(z), 

and the limit functions p, q, p~, and ql are holomorphic in C. He was also able 
to show that one can write 

q ( z ) = c ' (  I + ~ - T ) (  I + ~-~2)( 1 + ~ 3 ) "  " " 

and that the zeros o f p  and q are real and separate from each other  in the following 
way: 

0 < m 1 < 11 < m2 < l: < m 3 < . . . .  m i r o o t o f q ( z ) ,  - l i r o o t o f p ( z )  

(i.e., the zeros of  q(z) stay apart from each other; they do not accumulate at any 
point). Therefore  it is possible to develop the fraction 

in simple fractions 

p(z) 
q(z) 

A similar result holds for 

p(z) 
q(z) 

M1 M2 M3 
- - - - -  + - -  + - - +  "" . m k E ~  +. (11) 

Z + ml Z + m2 Z + m 3 

p,(z) 
ql(z) " 
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This is a very  beautiful piece of  mathematics,  and Hermite who was thrilled by 
this discovery,  wrote back to Stieltjes two days later: 

Vous ~.tes un merveiUeux grom~.tre, les recherches nouvelles sur les fractions continues 
algrbriques que vous me communiquez sont un module d'invention et d'616gance; ni Gauss, 
ni Jacobi ne m'ont  jamais caus6 plus de plaisir. [Hermite 1905, letter 350, Oct. 1892] 

As we saw above Stieltjes had earlier in the year claimed that the limits of  the 
convergents  of  S(z) could be written in the form (7), but as we can see now this 
is obviously not true in the case where E a n < oc because the sum 

z + m  i 

in (11) cannot  be written as a Riemann integral. 

The Analytic Form of the Limit Functions F(z), Fl(z) 
But what about the case where Y. an diverges? It could not be treated in the 

same neat way as when E an < ~, because one cannot be sure of the behavior  of  
the singularities of  the convergents.  In fact expansions of the form 

Mi 
Z -]-X i 

are generally impossible because the poles of  the convergents may have finite 
limit points; they may even accumulate at each point of R_. So in order  to find 
the analytic form of  F(z) and F~(z) it seemed natural to try to find it as an integral 
expression,  both because of the behavior  of the poles and because it was well 
known that the integral 

fo f(u) du, 
z q - u  

where f(u) >- 0 for u ~ (0, ~) and where 
~ c  

fo ukf(u) du Ck 

existed for all k, could be transformed into a continued fraction of  the form S(z). 
In October  1892 Stieltjes had the solution and wrote to Hermite: 

Dans le second cas, ot~ la serie X an est divergente, le rrsultat est aussi simple, mais pour 
l ' rnoncer  dans tout sa simplicitr, il faut d'abord quelques prrliminaires, il est nrcessaire 
d'61argic un peu la notion de l'intrgrale drfinie . . . .  la fraction continue est convergente (il 
n 'y a pas lieu de distinguer les rrduites d'ordre pair et impair) dans tout le plan, except6 la 
partie nrgative de l 'axe rrel. C'est  la, en grnrral,  une ligne singulirre, et il est impossible de 
continuer la fonction analytique en franchissant cette ligne. Mais ce qui est surtout remarqua- 
ble c 'est  la forme analytique sous forme d'intrgrale drfinie qu'on peut donner ~ cette fonction 
. . . .  [Hermite 1905, Letter 351, Oct. 1892] 

Instead of  then telling Hermite how to deal with the case where the series X an 
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diverges  Stiel t jes  r e tu rned  to the p rev ious ly  d i scussed  case where  E a n < ~ and  
showed  that  also in this case the limits of  the conve rgen t s  can  be expressed  as 
an integral  in his genera l ized  sense• He  defined two decreas ing  func t ions  ~p and  
S01 by 

~o(u) = M I + M 2 + m 3 + • • • + M n + • • • ( 0  < u < m l )  

¢ ( u )  = M2 + M3 + " " " + Mn + . . . (ml  < u < m2) 

¢ ( u )  = M3 + • • • + Mn + • • • (m 2 < u < m3) 

and  

~01(/~/) = N O + N1 + N 2 + • • • + N ,  + • • • 

~ l ( u )  = N l  + N 2 + • • • + N .  + • • • 

~ j ( u )  = N 2 + ' "  • + N . + ' '  • 

(0 < u < n~) 

(n I < u < n z )  

( n  z < u < n3)  

where  - m i are the roots  of  q(z)  and  - n i the roots  o f  ql(z), and  Mi and  N; are the 
n u m e r a t o r s  in the s imple  f ract ional  e x p a n s i o n  

p(Z) = Z Mi  . Pl(Z) Z N i  

q(z) z + m i ql(z)  z + n i 

Stielt jes then  defined 

f f f ( x )  &o (x) = lim {f(~:l)[~o(x0 - ~(a)] 
n = z c  

+ f(~:2)[~(xz) - @(x1) ] 
- ~ -  . . . 

- ~ -  . • • 

+ f(¢,)[~o(b) - ~o(x,_,)]}, 

w h e r e a  = x 0 < x l < . . . < x . _ ~ < x ,  = b is a d i v i s ion  o f  [a, b] and  sCk E [Xk_l,  
xk]. With  this ex t ens ion  of  the R i e m a n n  integral  Stieltjes could  indeed  write 

p(z~ _ f ~  a_~(.)_, p,(z)  _ (~ d~,,( .)  
q(z) Jo z + u '  ql(z)  30 z + u 

To this Stiel t jes r emarked :  

ici intervient la generalisation de l'int6grale d6finie ~ laquelle j'ai fait allusion plus haut; ~(x) 
6tant une fonction qui varie toujours dans le meme sens (mais qui peut ne pas admettre de 
d6rivee et meme avoir de discontinuit6 dans tout intervalle) [Hermite 1905, Letter 351, Oct. 
1892] 
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So Stieltjes was now able to integrate a function with respect to a discontinuous
mass distribution.

As mentioned above

p(z)

q(z)
and

(12)

have the same asymptotic expansion (10), which means that we necessarily have

en = I" un d'P(u) = run d'P,(u),
o 0

so the mass distributions 'P and 'PI will solve the moment problem. But Stieltjes
still did not talk about that, he just stated the relationship (12).

In the second case where L an = x; Stieltjes claimed that the continued fraction
5(z) is convergent and expressible in the form

- I" d'P(u)
o Z + u

and therefore is a holomorphic function in t\IR_. About the nature of 'P(u) he
said:

<i'(u) est une fonction decroissante, mais qui, en general n'admet pas de derivee et qui aura
des discontinuites dans tout intervalle [Hermite 1905, Letter 351, Oct. 1892)

For a modern reader it feels quite natural to extend the integral in the way Stieltjes
did, but in 1892 it may not have been such a natural way of thinking. In any case
Hermite was confused; he did not quite understand what Stieltjes was doing and
asked him if one should not write

p(z) _ I" d 'P(U)
q(z) 0 z + u

instead of

p(z) _ I" d'P(u)
q(z) 0 z + u

and
bJf(x)'P(x) dx

a

instead of

b

J f(x) d'P(x)
a

(see [Hermite 1905, Letter 352, Oct. 1892]).
It is hard to say what Hermite had in mind, but it is clear that he did not

understand what Stieltjes wanted to do, and one can hardly blame him for that.



HM 20 THE MOMENT PROBLEM 31 

Stieltjes did not go into detail and he did not say a word about how to find the 
function ¢(u) in the case where Z an diverge• It is obvious that it cannot  be 
constructed in the same way as in the case where Z a n converge• This case is 
much more complicated and to see how Stieltjes did construct  ~p(u) we have to 
look in his main paper  [Stieltjes 1894-1895, 469 ft.]. The method he used here to 
construct  ¢ (and ~Pl) was independent of  the behavior of  the series E an, so this 
was a general method which could be used in both cases• He introduced the 
correspondence between mass distributions on ~+ and increasing functions of  x. 
Instead of  using decreasing step functions as he did in the letter to Hermite he 
used the simple fraction expansion 

P2n(Z) ~ M I  2m 
- z n) ( 1 3 )  

i = 1  t 

of  the convergents  of  S(z) to construct  a sequence of increasing step functions 
¢.(u), 

¢,,(u) = 0 

~,~(u) = M~ 2"1 

Ml2n) - (2n) 
~n(U) = + M 2 

- (2n) 
O ~  /d < . X  1 

x'~ 2~' <- u < x~ 2") 

(2n) < x~2n) 
X 2 - - t / ~  

~On(U) = M~ 2n) + " " " + "'-n/~d(2n) x(2n )  ~ b/ '~" 
t7 

and then 

P2~(z) f~ 1 
Jo d~p~(u). 

Q~n(z) = z + u 

In order  to construct  the function ~ which " w o r k s "  in the limit, Stieltjes introduced 
the concept  of  limit superior and limit inferior, an idea he borrowed from du Bois- 
Reymond (1831-1889) [Stieltjes 1894-1895, 479]. He then defined 

lim sup~G(u) + lim infer(u) 

¢(u) = 2 

and showed that 

P2n(z) fo  1 lim - -  = d~(u) 
n=~ Q2n(Z) z + u 

and similarly 
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limP2"+l(Z) = [~ 1 d¢l(u), .=~Qz.+l(z) 30 z + u 

where ~o~(u) is defined in the same way as ¢(u), using the simple fraction expansion 
of the odd convergents, and for the same reason as before, the identity (12) is 
valid for ~o and ¢~. When the series E a. diverges the continued fraction S(z) 
converges, and it is not necessary to distinguish between odd and even conver- 
gents. 

It is often believed that Stieltjes introduced his integral in order to solve the 
moment problem, but until this point he had not mentioned the moment problem 
at all; the letter to Hermite in which he wrote about his integral for the first time 
clearly shows that the purpose of the integral was to find the analytic form of 
S(z). Actually Stieltjes' definition of the integral remained within the limits of the 
theory of continued fractions and was hardly noticed in the main stream of integral 
theory until 1909 (see [Hawkins 1970])--14 years after its publication. It was F. 
Riesz (1880-1956) who brought the Stieltjes integral into the main stream and 
turned Lebesgue's (1875-1941) interest toward it, when he in 1909 [Riesz 1909] 
discovered one of his famous theorems--the representation theorem--stating that 
bounded linear functionals A on C([a, hi) can be represented by a Stieltjes integral 

b t "  

a( f )  = J~ f(x) da(x), 

where the definition of the Stieltjes integral is extended to functions a of bounded 
variation on [a, b]. In a foot note to this theorem Riesz [Riesz 1909] remarked 
that Julius K6nig (1849-1914) had already used the Stieltjes integral in a course 
two years before Stieltjes. But he did not publish anything about it until 1897--two 
years after Stieltjes--and it was then only a little note in Hungarian "Mathematikai 
6s Tenn6szettudomhnyi Ertesit6" (see [Riesz 1909]). It had no real influence on 
the development of mathematics, and I still think it is right to attribute the Stieltjes 
integral to Stieltjes. 

Introduction of  the Moment Problem 

Stieltjes never talked about the moment problem in the correspondence with 
Hermite, but in September 1893 [Hermite 1905, Letter 385, Sept. 1893] he returned 
to that astonishing discovery he had made the year before, that the continued 
fractions give rise to functions f(x)  ~ 0 which satisfy the equations 

~c 

f oX ' f  (x) dx = 0 for all n - 0. 

Stieltjes had noticed that if the interval of integration is replaced by a finite interval, 
say [0, a], one cannot have 

~X"f(x) dx = 0 for all n - 0 

without having f(x)  =-- O. He wrote: 
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Je  r6fl6chis  de  t e m p s  en  t e m p s  sur  ces  fonc t ions  p a r a d o x a l e s  ( c ' e s t  a ins i  que  j e  les  d6s igne  

p r o v i s o i r e m e n t )  f ( x )  te l le  que  

fo x n f ( x )  d x  = 0 (n = 0, 1 ,2  . . . .  ). 

[ H e r m i t e  1905, L e t t e r  385, Sept .  1893] 

By this time he had given those functions a special name. This indicates that he 
had become quite interested in this phenomenon and his examination of it led him 
to the moment problem. 

He introduced the moment problem in his main paper in the part where he 
studied the convergence/divergence of S(z) in the case where E an converges 
[Stieltjes 1894-1895, 437-451]. He showed that in this case the continued fraction 
S(z) will diverge. A comparison of the simple fraction expansion (13) of the conver- 
gents P2n/Q2n, P2n+ l/Q2n+l of S(z) and their expansion in power series (9) gives 
that 

(2n) ..(2n)~k 
C k = M i ( .% ! 

i = 1  

Ck = ~ Nlzn+ 1)(xl2n+ l))k 
i = 0  

k =  0 ,1 ,2  . . . . .  2 n -  1 

k = 0, I, 2 . . . . .  2n; X~o 2n+1) = 0. 

(14) 

Going to the limit we have, as we saw above, 

P2n(Z) _ p(Z) = ~ Mi 
lim Q2n(Z) q(z) i= 1 z + mi 

lim m 
P2,,+ l(z) Pm(Z) No x-,~ Ni 

Q2,,+l(z) q,(z) z i=~ z + ni 

• . (2~) limx120), Ni : _  ~,r(2n+l) (2n+l)  = = = h i l t  ~v i , n i = lim X i . where M i lim M i , mi 
The identity (14) also holds in the limit: 

zc 

c i =  ~ Mkm~ ( i = 0 , 1 , 2  . . . .  ) 
k = l  

z¢ 

¢0 = Nk (15) 
k=0  

zc 

ci = ~ Nkn~, (i = 1,2, 3 . . . .  ). 
k = l  

This relationship gave Stieltjes the idea of considering a system (m i, ~i) a s  a mass 
distribution along the positive real axis, where the mass mi is located at the point 
whose distance to the origin is (i.  He defined the kth moment in relation to the 
origin as the sum 
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and then introduced the moment  problem as follows: 

nous appellerons probl~me des moments le probl~me suivant: Trouver une distribution de 
masse positive sur une droite (0, 2) les moments d'ordre k (k = 0,1, 2, 3 . . . .  ) 6rant donn6s 
[Stieltjes 1894-1895, 449] 

So (15) shows that the mass distribution (M~, m~) and (Ni, n~) solve the momen t  
problem corresponding to S(z) in the case where  Z a n < oo. F rom these two 
solutions infinitely many  solutions can be constructed by taking convex  linear 
combinations• 

The Stieltjes integral provides a tool to give a general solution of the momen t  
problem no mat ter  whether  the series Z an converges  or not because  of  the 
relationships 

and 

P2n(Z) = F(z) = fo  1 d~(u) 
lim Qzn(z) z + u 

• P2n+l(Z_.___~) = Fj(Z) = fo  1 &pj(u) 
hmQ2n+l(z) z + u 

z c  

crt = fo xn dso(u) 

~c 

Cn = fO xn d~pl(u) 

(16) 

which show that both  ~ and ~ solve the moment  problem corresponding to S(z). 
I f  E an diverges,  ¢ and so I will be equal and there is no need to distinguish be tween  
odd and even convergents .  I f  Z a n < ~ then S(z) will diverge, ~p ~ ~o I , and the 
mass  distributions character ized by ~ and ~l are the ones given by the sys tems 
(Mi, mi) and (N~, n~). Stieltjes showed that in the first case,  ¢ is the only solution 
to the moment  problem,  and he called the moment  problem determinate  if 
Y, an = ~ and indeterminate if Z an < ~. Stieltjes showed that if the sequence Co, 
c l ,  c2 . . . .  arises as described above  f rom a continued fraction S(z) then the 
determinants  

A r t  

C O C I • . . C n _  1 

C I C 2 " ' '  Cn 

C n - I  Cn • " " C 2 n - 2  

and B n = 

CI C 2 • • . Cn 

C2 C3 " " • C n +  1 

Cn C n + l  " " " C 2 n - I  (17) 

are posit ive for all n @ ~ .  In this case we know that the moment  problem is 
solvable.  By convert ing these arguments  Stieltjes could show that 
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The momen t  problem corresponding to a given sequence  Co, cl ,  c2 . . . .  is solvable if and 
only if A n > 0 and B n > 0 for all natural  numbers  n. 

and this is the complete solution of the moment problem on the positive real 
axis--now called the Stieltjes moment problem. 

He also managed to show that his definition of the determinate moment problem 
is equivalent to ours, namely that 

The momen t  problem is determinate  if and only if it has exactly one solution. 

Conclusion on Stieltjes 

This work by Stieltjes is a very remarkable piece of mathematics. It contains 
several new ideas, which came to him in a strangely awkward way. As a matter 
of fact he had an intuitive understanding of the main results very early and then 
during his work with the proofs of those main theorems he hit on exciting things 
such as the "Stieltjes-Vitali" theorem, the Stieltjes integral, and in a certain way 
also the moment problem. 

Seen in relation to the main purpose of this article the story told so far has 
shown how a new concept in mathematics, "the moment problem," came out of 
Stieltjes' development of the theory of analytic continued fractions. For Stieltjes 
the moment problem was interesting as a tool for determining the convergence/ 
divergence of the continued fraction S(z) which is equivalent to the determi- 
nateness/indeterminateness of the corresponding moment problem. Also his defi- 
nition of determinateness/indeterminateness shows that it was not the moment 
problem as an independent theory that occupied him but the analysis of the 
continued fraction S(z). Only in the last sections of his main paper did Stieltjes 
show an interest in the moment problem as an isolated phenomenon. He character- 
ized some special solutions of the indeterminate moment problem which belongs 
to those called N-extremai solutions due to Rolf Nevanlinna (1895-1980). This 
can be regarded as the first little step toward a theory of its own. Still, as we shall 
see in the following, it took more than 20 years before the moment problem was 
fully emancipated. 

• AFTER STIELTJES 

After Stieltjes there were attempts to extend his theory to other types of 
continued fractions. At this early stage the moment problem was closely 
connected to continued fractions, and the successors' work on Stieltjes' theory 
also tells something about the extension of the Stieltjes moment problem to 
the whole real axis and the difficulties mathematicians had to deal with in 
order to solve that problem. 

In fact, it was not just a triviality to extend Stieltjes' theory. In 1903 the American 
mathematician Edward Burr Van Vleck (1833-1912) tried it without success [Van 
Vleck 1903]. Van Vleck wanted to find the necessary and sufficient conditions for 
the convergence of continued fractions of the same form as Stieltjes', i.e., 



36 T I N N E  H O F F  K J E L D S E N  H M  20 

V(Z) = 

alz + 
1 

a 2 + 
1 

a3z + 
a 4 + 

His restriction on the coefficients a,  was that only the odd or the even coefficients 
had to be positive; the others could be positive as well as negative. 

Van Vleck ran into the problem that he could not be sure that the odd and even 
convergents  of  V(z) will converge.  This fact made the question of convergence 
and divergence of  V(z) much more complicated and Van Vleck only succeeded 
in extending the theory to V(z) in specific cases. This wrongly made him think 
that an extension was impossible: 

No necessary and sufficient test for convergence [of V(z)] has been found, and it seems quite 
probable that no such test is possible. [Van Vleck 1903, 299] 

Van Vleck 's  work was almost a parallel to Stieltjes', and gave no new ways of  
treating the problems, so from a historical point of view Van Vleck's  article is 
not interesting because of its mathematics,  but more because of  its failure to 
extend Stieltjes' theory.  It showed that new methods were needed in order  to 
overcome the difficulties. 

T H E  M E T H O D  OF CHOICE 

The problem was solved 10 years later by J. Grommer  in a paper [Grommer 
1914] the main point of  which was to characterize entire transcendental  functions 
with only real zeroes.  To prove his main result Grommer  used Stieltjes' theory 
of  continued fractions, but he could not just  use it in Stieltjes' form but needed 
an extension to a larger class of  continued fractions: 

kl 

Z + I  I + k2 (18) 

z + 1 2 +  

K(z) = 

k3 

Z + 1 3 +  • 

where z ~ C, k, ~ ~\{0}, and I n E ~. To a series 

c o _ c~ c 2 
z z 2 + ~3 . . . .  Co ~ O, c. E II~ (19) 

corresponds a continued fraction of  the form K(z) if and only if the coefficients 
satisfy the condition that the determinants A, ¢ 0 (17) for all natural numbers n. 
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I f A .  > 0 for all n E N then it is possible to expand the convergents  U.(z)/V.(z)  
of  K(z) in simple fractions 

U.(z) ~ N~ "~ 
- -7 ~ . j ,  - x~") are the roots of  V.(z), N¢"~ > 0 Vv. 

Z + A v --v - - v  v=] 

To each convergent  of  K(z) Grommer  could then like Stieltjes form an increasing 
step function ~,(u) and write 

U.(z) 
f~  1 dg.(u) z E C',~. 

Grommer  now had the same problem as Van Vleck: there was no guarantee that 
the convergents U,(z)/V,(z) of K(z) would converge! 

Grommer  showed that the way out of this problem was to use the "method  of  
choice ."  As a matter  of fact he found that it was always possible to choose a 
subsequence 

Uo,(z) 
V.,(z) 

that will converge uniformly on compact subsets and moreover  its limit can be 
represented analytically by 

lim . . . . . .  u.h(z) f= ,;to(.)f= ax(,)_ f= 
h=~ V,,;(Z) -~Z + u _~z + u _~z + u 

where 

t0(u) = lim sup~.h(u), X(U) = lim inf~.h(u), 

pto(u) + qx(u) 
d)(u) = , p >-O ,q>-O,p  + q > 0 .  

P + q  

Grommers  "me thod  of  cho ice"  is very important in the development  of  the 
moment  problem, because it ensures that if only the determinants A. are positive 
for all n ~ ~ ,  then one can, as we shall see, always find a solution to the moment  
problem extended to the whole real axis. This "method  of  cho ice"  was the tool 
by which Hamburger  in 1920 could develop a general extension of  the Stieltjes 
moment  problem. The very idea of  choice is due to Hilbert: 

Der Gedanke  der Auswahl  tritt  erst  in der  Theorie der unendlich vielen Verfinderlichen von 

Hilbert  auf. [Grommer 1914, 137]. 

T H E  M O M E N T  P R O B L E M  E S T A B L I S H E D  AS A T H E O R Y  

The German mathematician Hans Ludwig Hamburger  (1889-1956) introduced 
the extension of  the moment  problem to the whole real axis in 1919. Hamburger ' s  
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main purpose was to determine the convergence/divergence of continued fractions 
K(z) (18), and S(z) (4) when it exists, corresponding to a given power series of 
the form (19) by looking directly at the sequence (Cn)n> 0 instead of the coefficients 
of the continued fractions [Hamburger 1919]. Hamburger was inspired by his 
countryman Oskar Perron (1880-1975) who in 1913 gave a criterion by which one 
could decide whether the moment problem corresponding to a given continued 
fraction S(z) was determinate or not by operating directly with the cn's [Perron 
1913]. 

In this paper Hamburger showed a stronger version of Perron's result and at 
the end of the paper he extended the result to sequences (Cn)n_~0 that satisfy only 
the condition An > 0 Vn -> 0, where An is defined in (17). Hamburger could apply 
Grommer's method of choice to the corresponding continued fraction K(z). This 
gave him a subsequence of convergents 

Kn(z) 

satisfying 

Kn(z)~ f ~ d¢(u) 
- ~ Z  + I1 

He then claimed that the integrals 

f~ un d~(u) (20) 

existed for all n and equal c n. He did not prove it in this paper but wrote in a 
footnote: 

Der Beweis dieser Behauptung, die unseres Wissens bisher noch nicht ausgesprochen worden 
ist, bietet keine prinzipielle Schwierigkeiten, und soll and andrer Stelle ver6ffentlicht werden. 
[Hamburger 1919, 213] 

On the basis of (20) he then introduced what is now called the Hamburger moment 
problem: 

Die Frage nach einer nirgends abnehmenden Funktion ~(u) mit der Eigenschaft, dass die 
Integrale 

f~ d~o(u) = c, bl n 

sind, wollen wir das Momentproblem im weiteren Sinne nennen. [Hamburger 1919, 214]. 

He also introduced the modern definition of determinateness and indetermi- 
nateness, which does not depend on the corresponding continued fractions. 

The next year, in 1920, Hamburger published the first part of the extensive 
work "Ober  eine Erweiterung des Stieltjesschen Momentproblems" [Hamburger 
1920-1921]. This was the first profound and complete treatment of the moment 
problem. From being primarily a tool for the determination of convergence/diver- 
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gence of  continued fractions it now became established as a theory of  its own. In 
order  to solve the generalized moment  problem and give criteria of  determi- 
na teness / indeterminateness  Hamburge r  used continued fractions, the Stieltjes in- 
tegral theory,  and G r o m m e r ' s  method of choice, so in a certain why he stayed 
on the trail pointed out by Stieltjes. One of his most  important  tools both in the 
construct ion of  a solution to the Hamburger  moment  problem and to prove  a 
criterion of  determinateness  was the so-called generalized convergent  Kn(z; t) of  
the continued fraction K(z): 

Kn(z; t) = 
kl 

z + l ~ +  
z + 1 2 + . . .  

.d r_ k n  - I 

k, 
z + l n _ l +  

z + l n + t  

With this tool he solved the moment  problem completely:  

The moment problem corresponding to a power series (19) has a solution if and only if the 
determinants A,, > 0 (17) for all n ~ [~ [Hamburger 1920-1921, 289]. 

In order  to establish criteria for determinateness  he introduced, inspired by Georg 
Hamel  (1877-1954) [Hamel  1918], another  concept  of  convergence of  K(z), which 
he called complete  convergence.  The continued fraction K(z) converges  com- 
pletely towards  the function f(z) if for every e > 0 and for every  closed bounded 
set B C_ C \ ~  one can find an N ~ N, which only depends upon e and B, such that 

I K . ( z ;  t)  - f ( z ) l  <- 

for all n -> N, all t E ~,  and all z E B. [Hamburger  1920-1921, 289]. He could 
then show that the moment  problem corresponding to a power  series with posit ive 
determinants  A n is determinate  if and only if K(z) converges  completely.  

Hamburge r  was the last one who investigated the moment  problem entirely 
within the theory of  continued fractions, but he did suggest other  possibilities. 
One of them was based on a redefinition of the concept  of  " comple t e  conve rgence"  
which led to a character izat ion of determinateness  building upon certain circle 
considerat ions.  La te r  this became very widespread.  Indeed Nevanl inna used them 
two years  later and today they play an important  role in the theory of  the moment  
problem. But H a m b u r g e r  preferred to work directly with the continued fractions 
instead of the more geometrical  interpretation of complete  convergence  which, 
he said, 

dienen nur dazu, dem Leser eine Anschauung vonder Eigenart dieses Begriffes zu geben 
und werden im Folgenden nicht mehr benutzt werden. Der Leser kann daher ohne Schaden 
for das Verst~tndnis des Folgenden gleich mit der Lekttire des Abschnittes 3 dieses Paragra- 
phen auf Seite 292 fortfahren. [Hamburger 1920-1921, 290] 
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Hamburger  also suggested another  way of dealing with the moment  problem, 
that, as he put it himself: 

Erm6glicht eine andere mehr funktionentheoretische Formulierung des Momentproblems, 
die das selbst~indige Interesse, das dieses Problem beansprucht, besser hervortreten l~isst. 
[Hamburger 1920-1921, 275] 

In fact, he showed that if the integral 

f~ d¢(u) (21) 
1 

f ( z ) =  _~z  + u 

converges uniformly in every  bounded closed subset of C\R and if the function 
/(z) has the asymptotic development  

zc 
Cn 

/3(z) = ~ ( - 1 ) " z , + |  fo rz  = iy, y---~ 
n = 0  

then all the moments  

f ~ u" d~(u) 
~ c  

exist and are equal to cn; conversely,  if all the moments exist, then the function 
(21) is analytic in every  bounded closed subset of C\~  and has the asymptotic  
development/3(z)  for Izl--, ~ in the angles 

8 <-- arg z -< 7r - 8, - ~" + 6 ~ arg z - - 8. (22) 

The next  main contribution to the general theory of the moment problem given 
by Nevanlinna in 1922 used the function-theoretic interpretation of  the moment  
problem, and from then on continued fractions were no longer the main way of 
dealing with the theory.  

T H E  FIRST T R E A T M E N T  OF T H E  M O M E N T  PROBLEM W I T H O U T  
C O N T I N U E D  FRACTIONS 

In 1920 (published 1921) the German mathematician Felix Hausdorff  (1868-1942) 
solved the moment  problem on a bounded interval almost by accident. This is 
called the Hausdorff  moment  problem and consists of finding an increasing function 
X(U) defined on [0, 1] such that 

| 

tz. = fo u" dx(u) n = O, 1,2 . . . . .  

where (/xn)~_~ 0 is a given sequence of  real numbers. 
Hausdorf f  almost stumbled over  the solution of this problem in connect ion with 

a work on summability methods [Hausdorff  1921]. He wanted to examine matrix 
operations 
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Ap = E hp,mam 
m 

between sequences (an), (An), where h = (hp,m)p,m=O,l, 2 .... is a matrix with only a 
finite number of  hp,  m =/= 0 for every  p. He called the matrix h "konvergenzerhal-  
t ende"  (C-matrix in the following) if it would transform convergent  sequences 
(an) into convergent  sequences (An), the limit of  which need not be the same as 
the limit of (an). If a C-matrix could be written as 

h = p - l l L p ,  

where 

I 
I 

/ x =  0 /z 3 P =  I 

0 0 0 .~ 

- 1  0 0 

- 2  1 0 

- 3  3 - 1  

/~ is called a C-sequence. It turned out that for what is called Ceshro (resp. HSlder) 
summability the C-sequences exist and can be represented as 

I 

tz n = a fo un(l - u)'~-I d u  ( a > 0 )  

1 c I / 1 \  ~-1 
= JO /An F(oO \ u /  

which means that they are moment  sequences corresponding to the density func- 
tions a(1 - u) "-1 and 1/F(c0(log I / u )  '~- l ,  respectively. Here Hausdorff  realized 
the connect ion to the moment  problem [Hausdorff  1921, 84] and using Stieltjes' 
theory for continued fractions he solved the Hausdorff  moment  problem. In the 
same breath he mentioned that the problem could be solved in a very simple 
manner,  without extensive algebraic and function-theoretic preparations, and he 
did so, in an article from 1923, "Momentprobleme for ein endliches Intervall"  
[Hausdorff  1923]• This was the first t reatment of moment problems without any 
appearance of  continued fractions at all. 

Hausdorf f  used the newly developed functional analysis to characterize the 
moment  sequences (/Xn)n_> 0 for increasing functions X(U) on [0, 1]. To every polyno- 
mial f (x)  = a 0 + a l x  + • • • + a n x  n he assigned the number 

M f ( x )  = ~o~o + ~1~1 + " " " + anon"  

The Hausdorf f  moment  problem then becomes a matter  of finding an increasing 
function X(U) such that 
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f j  f (x )  dx(x) = M f  

for every polynomialf(x). In modern terminology, Hausdorff had defined a linear 
functional M on the set of polynomials and asked if this could be represented as 
a Stieltjes integral. He was not the only one who used functional analysis in order 
to cope with the moment problem. As we shall see later, Marcel Riesz (1886-1969) 
used it also. 

Hausdorff showed that his moment problem could be solved if and only if 

~m., = /Xm -- (1)  tXm+, + (~) /Z,~+2 . . . .  + (-- 1)"/Xm+~ --> 0 for all m and n. 

We have now seen how the moment problem came out of the theory of continued 
fractions and how 20 years later Hamburger's work established it as a theory of its 
own. Hausdorff's work was the first in which the moment problem was completely 
disconnected from its roots--the continued fractions--and simultaneously the 
same happened for the moment problem on the whole real axis. 

THE GENERAL THEORY OF THE MOMENT PROBLEM FINALLY 
SEPARATES FROM CONTINUED FRACTIONS 

Stieltjes' and Hamburger's moment problems were separated from continued 
fractions in Rolf Nevanlinna' s paper"Asymptotische Entwicklungen beschr~inkter 
Funktionen und das Stieltjessche Momentproblem" [Nevanlinna 1922]. Its title 
indicates that its primary concern was bounded holomorphic functions. He exam- 
ined what conditions a real sequence (Cn)n_> 0 must satisfy in order that there exist 
a function fwh ich  maps the upper half plane hoiomorphically into the lower half 
plane and allows the asymptotic expansion 

Z0 ck f ~  ,= Zk+l Izl--' 

in the angles (22). It turns out that the sequences in question are precisely the 
Hamburger moment sequences. With Nevanlinna the moment problem entered 
into a new area of mathematics, namely complex function theory. He did use a 
few results from the theory of continued fractions, but they were not the tools 
by which he got his main results. Two new things came out of Nevanlinna's work: 
a formula by which one can determine all the solutions to a given indeterminate 
moment problem, and a characterization of what today is called the N-extremal 
solutions, which are very special extreme points in the convex set of solutions. 

In 1923 the moment problem became connected with the theory of functional 
analysis, which was growing rapidly at that time. It was Marcel Riesz who, inspired 
by the work of his brother Frederic Riesz, especially his representation theorem, 
was the first one to solve the Hamburger moment problem with the use of functional 
analysis [Riesz 1923]. He showed that the moment problem corresponding to a 
sequence 
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CO, CI, C2, • . . 

has a nondecreasing solution ¢(t) if and only if the linear functional 

T: { f ( t ) l f  E ~[t]} ~ 

defined by 

T(t n) = c,~ 

is positive. In the proof of this theorem he used what we now call Hahn-Banach 
methods. Actually he used this "Hahn-Banach"  method already in 1918 in a 
lecture given in Stockholm, but he did not write anything about it until this 
paper came out in 1923. Another new important theorem proved by Riesz was a 
characterization of the N-extremal solutions: 

is an N-extremal solution if and only if the polynomials are dense in 
L z ( E ,  ~) .  

With the work of Nevanlinna and Riesz the moment problem freed itself from 
continued fractions and moved into other fields of mathematics--complex function 
theory and functional analysis--and today it no longer bears the marks of its 
origin. 

NOTES 

1. For further information on the theory of the moment problem see for example [Shohat & Tamarkin 
1943; Akhiezer 1965]. 

2. For further information on the work of Chebyshev and Bienaym6 see [Heyde & Seneta 1977]. 
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