THE COMBINATORICS OF THE AL-SALAM-CHIHARA q-CHARLIER POLYNOMIALS

DONGSU KIM, DENNIS STANTON, AND JIANG ZENG
Dedicated to Xavier Viennot on the occasion of his sixtieth birthday

Abstract

We describe various aspects of the Al-Salam-Chihara q-Charlier polynomials. These include combinatorial descriptions of the polynomials, the moments, the orthogonality relation and a combinatorial proof of Anshelevich's recent result on the linearization coefficients.

1. Introduction

The classical Charlier polynomials $C_{n}^{a}(x)$ have been studied combinatorially by several authors [5, 8, 14]. Recall [4] that these polynomials are defined by

$$
\begin{equation*}
C_{n}^{a}(x)=\sum_{k=0}^{n}\binom{n}{k}(-a)^{n-k} x(x-1) \cdots(x-(k-1)) \tag{1.1}
\end{equation*}
$$

and satisfy the three term-recurrence relation

$$
\begin{equation*}
C_{n+1}^{a}(x)=(x-a-n) C_{n}^{a}(x)-a n C_{n-1}^{a}(x), \quad n \geq 0, \tag{1.2}
\end{equation*}
$$

where $C_{0}^{a}(x)=1, C_{-1}^{a}(x)=0$.
A q-version $C_{n}^{a}(x ; q)$ of these polynomials was studied in [6]. The three-term recurrence relation was

$$
C_{n+1}^{a}(x ; q)=\left(x-a q^{n}-[n]_{q}\right) C_{n}^{a}(x ; q)-a q^{n-1}[n]_{q} C_{n-1}^{a}(x ; q),
$$

where $[n]_{q}=1+q+\cdots+q^{n-1}, C_{0}^{a}(x ; q)=1, C_{-1}^{a}(x ; q)=0$. The explicit formula analogous to (1.1) is given by

$$
C_{n}^{a}(x ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-a)^{n-k} q^{\binom{n-k}{2}} \prod_{i=0}^{k-1}\left(x-[i]_{q}\right) .
$$

The linearization coefficients for the Charlier polynomials are given by quotients of factorials (see (1.5)). The combinatorial study of the q-analogues $C_{n}^{a}(x ; q)$ in [6] included finding their linearization coefficients, which were given by a double sum, not quotients of factorials, and as a polynomial in q and a did not have positive coefficients (see [6, Theorem 3]).

[^0]Anshelevich [2] has recently considered a q-analogue of the three-term recurrence (1.2) for $C_{n}^{a}(x+a, a)$ and proved that the linearization coefficients of the corresponding polynomials are polynomials of a and q with positive integer coefficients (see Theorem 6).

The aim of this paper is to study the combinatorial aspects of a new q-analogue of Charlier polynomials, which is a re-scaled version of Anshelevich's q-polynomials and turns out to be a special re-scaled version of the Al-Salam-Chihara polynomials. We shall give a combinatorial proof of Anshelevich's result by using the combinatorial interpretations of the polynomials and their moments. It is inspired by the beautiful proofs for other classical orthogonal polynomials in [7, 10].

This paper is organized as follows: in the next two sections we give the definitions and combinatorial interpretations of the new q-Charlier polynomials and their moments, Corollary 3 and Theorem 4. The explicit linearization coefficients are given in $\S 4 \mathrm{in}$ Corollary 8. We then give the killing involution in $\S 5$. We present a variation $\hat{C}_{n}(x \mid q)$ of the polynomials $C_{n}(x, a ; q)$ in $\S 6$, which has the advantage to include the q-Hermite polynomials in [10] as a special case.

We collect here some well-known facts about Charlier polynomials.
The generating function is

$$
\begin{equation*}
\sum_{n=0}^{\infty} C_{n}^{a}(x) \frac{t^{n}}{n!}=e^{-a t}(1+a t)^{x} \tag{1.3}
\end{equation*}
$$

The moment sequence μ_{n} is given by the following formula:

$$
\begin{equation*}
\mu_{n}=\mathcal{L}\left(x^{n}\right)=\sum_{x=0}^{\infty} x^{n} e^{-a} \frac{a^{x}}{x!}=\sum_{k=1}^{n} S(n, k) a^{k}, \tag{1.4}
\end{equation*}
$$

where $S(n, k)$ denotes the Stirling number of the second kind. The orthogonality reads:

$$
\mathcal{L}\left(C_{m}^{a}(x) C_{n}^{a}(x)\right)=\sum_{k=0}^{\infty} C_{m}^{a}(k) C_{n}^{a}(k) \frac{e^{-a} a^{k}}{k!}=n!a^{n} \delta_{m n}
$$

The linearization coefficient $c_{n_{1} n_{2}}^{n_{3}}$ is defined by:

$$
C_{n_{1}}^{a}(x) C_{n_{2}}^{a}(x)=\sum_{n_{3}} c_{n_{1} n_{2}}^{n_{3}} C_{n_{3}}^{a}(x)
$$

By orthogonality we have $c_{n_{1} n_{2}}^{n_{3}}=\mathcal{L}\left(C_{n_{1}}^{a}(x) C_{n_{2}}^{a}(x) C_{n_{3}}^{a}(x)\right) / \mathcal{L}\left(C_{n_{3}}^{a}(x) C_{n_{3}}^{a}(x)\right)$.
For Charlier polynomials it is easy to derive from (1.3) and (1.4) that

$$
\sum_{n_{1}, \ldots, n_{k}=0}^{\infty} \mathcal{L}\left(C_{n_{1}}^{a}(x) \ldots C_{n_{k}}^{a}(x)\right) \frac{t_{1}^{n_{1}}}{n_{1}!} \ldots \frac{t_{k}^{n_{k}}}{n_{k}!}=e^{a\left(e_{2}\left(t_{1}, \ldots, t_{k}\right)+\ldots+e_{k}\left(t_{1}, \ldots, t_{k}\right)\right)}
$$

where e_{i} is the elementary symmetric function of degree i. It follows that

$$
\begin{equation*}
\mathcal{L}\left(C_{n_{1}}^{a}(x) C_{n_{2}}^{a}(x) C_{n_{3}}^{a}(x)\right)=\sum_{l} \frac{n_{1}!n_{2}!n_{3}!a^{l+n_{3}}}{l!\left(n_{3}-n_{1}+l\right)!\left(n_{3}-n_{2}+l\right)!\left(n_{1}+n_{2}-n_{3}-2 l\right)!} . \tag{1.5}
\end{equation*}
$$

In the general case the above generating function implies that $\mathcal{L}\left(C_{n_{1}}^{a}(x) \ldots C_{n_{k}}^{a}(x)\right)(k \geq 1)$ is a polynomial in a with positive integer coefficients; a combinatorial interpretation of this coefficient has been given $[8,14]$.

2. The new q-Charlier polynomials

We define the new q-Charlier polynomials $C_{n}(x, a ; q)$ by

$$
\begin{equation*}
C_{n+1}(x, a ; q)=\left(x-a-[n]_{q}\right) C_{n}(x, a ; q)-a[n]_{q} C_{n-1}(x, a ; q) \tag{2.1}
\end{equation*}
$$

The first values of these polynomials are

$$
\begin{aligned}
& C_{1}(x, a ; q)=x-a, \\
& C_{2}(x, a ; q)=x^{2}-(2 a+1) x+a^{2}, \\
& C_{3}(x, a ; q)=x^{3}-(q+3 a+2) x^{2}+\left(a q+3 a^{2}+2 a+q+1\right) x-a^{3} .
\end{aligned}
$$

The explicit formula which is analogous to (1.1) is

$$
C_{n}(x, a ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.2}\\
k
\end{array}\right]_{q} q^{k(k-n)}(-a)^{n-k} \prod_{i=0}^{k-1}\left(x-[i]_{q}+a\left(q^{-i}-1\right)\right) .
$$

This is a re-scaled version of the Al-Salam-Chihara polynomials $Q_{n}(x, \alpha, \beta ; q)[12, \mathrm{p}$. 80-81]:

$$
C_{n}(x, a ; q)=\left(\frac{a}{1-q}\right)^{n / 2} Q_{n}\left(\frac{1}{2} \sqrt{\frac{1-q}{a}}\left(x-a-\frac{1}{1-q}\right), \frac{-1}{\sqrt{a(1-q)}}, 0 ; q\right)
$$

Since the generating function of the Al-Salam-Chihara polynomials is known, we derive that

$$
\sum_{n=0}^{\infty} C_{n}(x, a ; q) \frac{t^{n}}{n!{ }_{q}}=\frac{(-t ; q)_{\infty}}{\left(\sqrt{a(1-q)} t e^{i \theta}, \sqrt{a(1-q)} t e^{-i \theta} ; q\right)_{\infty}}
$$

where $n!_{q}=[n]_{q}[n-1]_{q} \ldots[2]_{q}[1]_{q}$ and

$$
\cos \theta=\frac{1}{2} \sqrt{\frac{1-q}{a}}\left(x-a-\frac{1}{1-q}\right) .
$$

We can give a combinatorial interpretation for the q-Charlier polynomials from a result due to Simion and Stanton [13].

Consider a subset B of $[n]$ and a permutation σ on $[n] \backslash B$. Then σ consists of fixed points and cycles of length >1 :

$$
C=\left(k_{0}, k_{1}, k_{2}, \ldots, k_{s}\right), \quad \text { where } k_{s}>\max \left\{k_{0}, k_{1}, \cdots k_{s-1}\right\} .
$$

For any $k \in[n] \backslash B$, let $w(k)=0$ if k is the maximum of its cycle, otherwise $k=k_{j}$ is on a cycle C as above, then
$w(k)=k-1-\left|\left\{i: j<i<s, k_{i}<k_{j}\right\}\right|-\sum_{\text {cycles } Q, \max (Q)>k_{s}}$ (\# of points on Q less than k).

Let $w(B, \sigma)=\sum_{k \in[n] \backslash B} w(k)$ and let $\operatorname{cyc}(\sigma)$ be the number of cycles of σ.
Example 1. Let $n=9, B=\{2,9\}$ and $\sigma=(6)(47)(3518)$ (in cycle notation with maximum at last). Then we have $\operatorname{cyc}(\sigma)=3$ and

$$
w(B, \sigma)=(3-1-1)+(5-1-1)+(1-1)+(4-1-2)=5 .
$$

Theorem 1. We have

$$
C_{n}(x, a ; q)=\sum_{(B, \sigma)}(-1)^{n-\operatorname{cyc}(\sigma)} a^{|B|} x^{\operatorname{cyc}(\sigma)} q^{w(B, \sigma)} .
$$

where $B \subset[n]$ and σ is a permutation on $[n] \backslash B$.
Proof. This is the $r=1, s=0, t=q, u=1$ special case of the quadrabasic Laguerre polynomials [13, p.313].

We now assume that each permutation π of $[n]$ is represented as a product of disjoint cycles, $\pi=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$, where the cycles are written in the descending order of their maxima and each σ_{i} has its maximum at the first position. A pair $(i, j), i>j$, is called a Charlier-inversion in $\pi=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ if i is not a maxima of any cycles of π and i appears to the left of j in π. For instance, $(6,2),(6,4),(6,5),(6,1),(6,3),(2,1),(4,1)$ and $(4,3)$ are all Charlier-inversions in $\pi=(862)(74)(513)$. Let $\operatorname{Cinv}(\pi)$ denote the number of Charlier-inversions in π.

Definition 2. (Charlier-labeling of permutations) A Charlier-labeling of a permutation $\pi=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ is a labeling of integers and cycles in π satisfying the following rules:

- Each integer in π is labeled -1 .
- Each cycle of length 1 is labeled either $-x$ or a.
- Each cycle of length >1 is labeled $-x$.

A permutation with a Charlier-labeling is called a Charlier-permutation.
Let τ denote a Charlier-permutation with underlying permutation π. Identify $\operatorname{Cinv}(\tau)$ with $\operatorname{Cinv}(\pi)$. Define the weight of $\tau, w(\tau)$, to be the product of $q^{\operatorname{Cinv}(\tau)}$ and all the labels of integers and of cycles in τ. Since only 1 -cycles are allowed two different choices for a label, if π has f fixed points, there are 2^{f} distinct Charlier-permutations with π as an underlying permutation. We represent each cycle in a permutation as a sequence starting with the maximum, enclosed with a pair of parentheses. The cycles in a Charlierpermutation are represented in the same way except that 1-cycles with label a are enclosed with a pair of brackets.

For each pair (B, σ) in Theorem 1, where $B \subset[n]$ and σ a permutation of $[n] \backslash B$, one can associate a Charlier-permutation τ of $[n]$ as follows: each element of B gives rise a 1-cycle with brackets, each cycle $\left(a_{1} a_{2} \ldots a_{l}\right)$ of σ gives rise a cycle $\left(a_{l} a_{l-1} \ldots a_{1}\right)$ of τ with reverse order and the maximal element at the first position. It is not hard to see that $w(B, \sigma)=\operatorname{Cinv}(\tau)$. For instance, the Charlier-permutation corresponding to the pair (B, σ) in the above example is $\tau=[9](8153)(74)(6)[2]$ with weight

$$
(-1)^{9}(-x)^{3} a^{2} q^{0+3+1+1}=a^{2} q^{5} x^{3}
$$

because there are nine integers of label -1 , three cycles of label $-x$, two cycles of label a, five Charlier-inversions, i.e. $(5,3),(5,4),(5,2),(3,2),(4,2)$.

One can restate Theorem 1 as follows.
Corollary 3. The q-Charlier polynomial $C_{n}(x, a ; q)$ is the generating function of Charlierpermutations of $[n]$:

$$
C_{n}(x, a ; q)=\sum_{\tau} w(\tau)
$$

where τ runs through all permutations of $[n]$.

3. The moments

For the Charlier polynomials $C_{n}^{a}(x)$, the $n^{\text {th }}$ moment μ_{n} is the generating function for set partitions of $\{1,2, \cdots, n\}$ according to the number of blocks (see (1.4)). There is a natural q-analogue for the polynomials $C_{n}^{a}(x ; q)$ [6, Eq. (3.1)], whose $n^{t h}$ moment is

$$
\mu_{n}=\sum_{k=1}^{n} S_{q}(n, k) a^{k}
$$

Note that $S_{q}(n, k)$ is the most natural q-analogue of the Stirling numbers of the second kind, and may also be interpreted as a generating function for set partitions with k blocks according to a q-statistic. It has a remarkably simple expression as a single sum [6, Eq. (3.3)]. In this section we identify an appropriate q-statistic on set partitions which yields the $n^{\text {th }}$ moment μ_{n} for $C_{n}(x, a ; q)$, and give an explicit formula for it.

Recall that if π is a partition of $M=\{1, \ldots, m\}$, then a crossing of π is a quadruple (a, b, c, d) of elements of M such that $a<b<c<d$, the elements a, c are in some block of the partition and b, d are in another block. For two elements e and f of M, with $e<f$, we say that follows e in π if e and f belong to the same block of π, and there is no element g of this block with $e<g<f$. We define a restricted crossing to be a crossing (a, b, c, d) such that c follows a and d follows b. Similarly a nesting is a quadruple (a, b, c, d) of elements of M such that $a<b<c<d$, the elements a, d are in some block of the partition and b, c are in another block. We define a restricted nesting to be a nesting (a, b, c, d) such that d follows a and c follows b. The restricted crossings and nestings have a natural interpretation in the graphic line representation of partitions. This representation consists in drawing the m points on the x-axis in the plane and, if f follows e, joining the point e and f by an arc above the x-axis.

For instance, the graph of $\pi=\{1,6,10\}-\{2,3,9\}-\{4,7\}-\{5,8\}$ is the following:

Let $\mathrm{rc}(\pi)$ (resp. $\mathrm{rn}(\pi)$) be the number of restricted crossings (resp. restricted nestings) of a partition π. The number of blocks of π is denoted by $\operatorname{block}(\pi)$. For the above π
we have $\operatorname{block}(\pi)=4, \operatorname{rc}(\pi)=7$ and there are $\operatorname{rn}(\pi)=3$ restricted nestings, namely $(1,2,3,6),(3,4,7,9),(3,5,8,9)$.

We can derive the combinatorial interpretation of the moments from the continued fraction expansion of the ordinary generating functions of partitions with respect to the corresponding statistics (see $[3,11]$) and the three-term recurrence relation (2.1).
Theorem 4. The $n^{\text {th }}$-moment of the q-Charlier polynomials $C_{n}(x, a ; q)$ is

$$
\mu_{n}(a):=\mathcal{L}_{q}\left(x^{n}\right)=\sum_{\pi \in \Pi_{n}} a^{\operatorname{block}(\pi)} q^{\mathrm{rc}(\pi)}=\sum_{\pi \in \Pi_{n}} a^{\operatorname{block}(\pi)} q^{\operatorname{rn}(\pi)},
$$

where Π_{n} denotes the set of partitions of $[n]:=\{1, \ldots, n\}$.
The first values of $\mu_{n}(a)$ are as follows:
$\mu_{1}(a)=a, \quad \mu_{2}(a)=a+a^{2}, \quad \mu_{3}(a)=a+3 a+a^{3}, \quad \mu_{4}(a)=a+(6+q) a^{2}+6 a^{3}+a^{4}$.
It is possible to derive an explicit formula for the moments from the known measure for the Al-Salam-Chihara polynomials and facts about q-Hermite polynomials. We do not give the details of this calculation.

Let $\theta_{0}=1$, and for odd values of $m \geq 1$ let

$$
\theta_{m}=\sum_{k=0}^{\lfloor m / 2\rfloor}\binom{m}{k} \sum_{l=0}^{\lfloor m / 2\rfloor-k} \frac{(-1)^{m-l}(a(1-q))^{k+l}}{(2 \sqrt{a(1-q)})^{m}} \frac{1-q^{m-2 k}}{1-q^{m-2 k-l}}\left[\begin{array}{c}
m-2 k-l \\
l
\end{array}\right]_{q} q^{\binom{l}{2}}
$$

while for even values of $m \geq 1$ let
$\theta_{m}=\sum_{k=0}^{\lfloor m / 2\rfloor-1}\binom{m}{k} \sum_{l=0}^{\lfloor m / 2\rfloor-k} \frac{(-1)^{m-l}(a(1-q))^{k+l}}{(2 \sqrt{a(1-q)})^{m}} \frac{1-q^{m-2 k}}{1-q^{m-2 k-l}}\left[\begin{array}{c}m-2 k-l \\ l\end{array}\right]_{q} q^{\binom{l}{2}}+\frac{1}{2^{m}}\binom{m}{m / 2}$.
Proposition 5. The $n^{\text {th }}$-moment of the q-Charlier polynomials $C_{n}(x, a ; q)$ is given by

$$
\mu_{n}(a)=u^{-n} \sum_{m=0}^{n}\binom{n}{m}(-v)^{n-m} \theta_{m}
$$

where

$$
u=\frac{1}{2} \sqrt{\frac{1-q}{a}} \quad \text { and } \quad v=-\frac{a(1-q)+1}{2 \sqrt{a(1-q)}} .
$$

4. The orthogonality relation and the linearization of products

The orthogonality of the q-Charlier polynomials reads as follows:

$$
\mathcal{L}_{q}\left(C_{n}(x, a ; q) C_{m}(x, a ; q)\right)=n!{ }_{q} a^{n} \delta_{m n} .
$$

In this section we state Anshelevich's linearization result, which generalizes the orthogonality relation, in Theorem 6, and explicitly evaluate the coefficients in Corollary 8.

Set $n=n_{1}+n_{2}+\cdots n_{k}$. Denote by

$$
\pi_{n_{1}, n_{2}, \ldots, n_{k}} \in \Pi_{n}
$$

the partition whose blocks are intervals of consecutive integers of lengths $n_{1}, n_{2}, \ldots, n_{k}$. Denote

$$
\Pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\left\{\pi \in \Pi_{n}: \pi \text { has no singleton and } \pi \wedge \pi_{n_{1}, n_{2}, \ldots, n_{k}}=\hat{0}\right\}
$$

the partitions without singleton and inhomogeneous with respect to $\pi_{n_{1}, n_{2}, \ldots, n_{k}}$, that is, the collection of all partitions which do not put together elements of the k distinguished subsets in the same block. Thus $\pi=\{1,6,10\}-\{2,3,9\}-\{4,7\}-\{5,8\} \in \Pi(2,4,4)$.

In 2005 Anshelevich [2] considered the re-scaled version $C_{n}(x+a, a ; q)$ and proved the following

Theorem 6 (Anshelevich). The linearization coefficients of q-Charlier polynomials are the generating functions of the inhomogeneous partitions:

$$
\begin{equation*}
\mathcal{L}_{q}\left(C_{n_{1}}(x, a ; q) \cdots C_{n_{k}}(x, a ; q)\right)=\sum_{\pi \in \Pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)} q^{\operatorname{rc}(\pi)} a^{\operatorname{block}(\pi)} . \tag{4.1}
\end{equation*}
$$

For example, if $k=3$ and $n_{1}=n_{2}=2$ and $n_{3}=1$, then

$$
\Pi(2,2,1)=\{\{(1,3,5)(2,4)\},\{(1,4,5)(2,3)\},\{(2,3,5)(1,4)\},\{(2,4,5)(1,3)\}\}
$$

It is easy to see that the corresponding generating function in (4.1) is

$$
a^{2} q^{2}+a^{2}+a^{2} q+a^{2} q=a^{2}(1+q)^{2} .
$$

If $k=2$, equation (4.1) gives the orthogonality relation. When $k=3$, there is an explicit formula for the generating function in (4.1).

Theorem 7. We have

$$
\sum_{\pi \in \Pi\left(n_{1}, n_{2}, n_{3}\right)} q^{\operatorname{rc}(\pi)} t^{\operatorname{block}(\pi)}=\sum_{l \geq 0} \frac{\left.n_{1}!_{q} n_{2}!_{q} n_{3}!_{q} t^{l+n_{3}} q^{\left(n_{1}+n_{2}-n_{3}-2 l\right.}\right)}{l!_{q}\left(n_{3}-n_{1}+l\right)!_{q}\left(n_{3}-n_{2}+l\right)!_{q}\left(n_{1}+n_{2}-n_{3}-2 l\right)!_{q}} .
$$

Proof. First we verify the $q=1$ case, and then give an argument for the q case.
Let $N_{1}=\left[n_{1}\right], N_{2}=\left[n_{1}+n_{2}\right] \backslash\left[n_{1}\right]$ and $N_{3}=\left[n_{1}+n_{2}+n_{3}\right] \backslash\left[n_{1}+n_{2}\right]$. The type of a subset S of $\left[n_{1}+n_{2}+n_{3}\right]$ is defined to be the triple $\left(\left|S \cap N_{1}\right|,\left|S \cap N_{2}\right|,\left|S \cap N_{3}\right|\right)$.

Consider the inhomogeneous partitions of the colored set $\left[n_{1}+n_{2}+n_{3}\right]$ without singleton. Let a, b, c and d be respectively the numbers of blocks of type : $A=(1,1,1), B=(1,1,0)$, $C=(1,0,1)$ and $D=(0,1,1)$. Then

$$
a+b+c=n_{1}, \quad a+b+d=n_{2}, \quad a+c+d=n_{3} .
$$

Solving the equations and setting $b=l$ we get

$$
a=n_{1}+n_{2}-n_{3}-2 l, \quad c=n_{3}-n_{2}+l, \quad d=n_{3}-n_{1}+l .
$$

The total number of blocks is equal to $a+b+c+d=n_{3}+l$, the power of t in Theorem 7 .
Given an inhomogeneous partition π with a blocks of type A, b blocks of type B, c blocks of type C, and d blocks of type D, the types of elements of $\left[n_{1}\right]$ form a multiset permutation w_{1} of $A^{a} B^{b} C^{c}$. Similarly we may define words w_{2} and w_{3} of lengths n_{2} and n_{3} as multiset permutations of $A^{a} B^{b} D^{d}$ and $A^{a} C^{c} D^{d}$. The number of such words $\left(w_{1}, w_{2}, w_{3}\right)$
is given by a product of three trinomial coefficients. The number of ways to choose edges to connect like types of letters is a factorial, so there is a total of

$$
\begin{aligned}
& \binom{n_{1}}{a, b, c}\binom{n_{2}}{a, b, d}\binom{n_{3}}{a, c, d}(a!)^{2} b!c!d! \\
& =\frac{n_{1}!n_{2}!n_{3}!}{l!\left(n_{3}-n_{1}+l\right)!\left(n_{3}-n_{2}+l\right)!\left(n_{1}+n_{2}-n_{3}-2 l\right)!},
\end{aligned}
$$

inhomogeneous partitions.
We include q in the above argument by keeping track of the possible restricted crossings of π.

If π has words $\left(w_{1}, w_{2}, w_{3}\right)$, then some crossings are guaranteed from the w_{i}, independent of how the edges are attached to the letters.

- any occurrence in w_{1} of B preceding C or A preceding C gives a crossing,
- any occurrence in w_{2} of D preceding B, D preceding A, or A preceding B gives a crossing,
- any occurrence in w_{3} of C preceding A or C preceding D gives a crossing.

The remaining crossings are

- crossings of edges of types $A B A B$ and $B A B A$, where the first two letters are in w_{1} and the last two letters are in w_{2},
- crossings of edges of types $A D A D$ and $D A D A$, where the first two letters are in w_{1} and the last two letters are in w_{3},
- crossings amongst edges of the same type.

Construct π in the following manner. Fix a word w_{2}, the guaranteed crossings in w_{2} are exactly the inversions in w_{2} if the letters are ordered $B A D$, thus the crossing generating function for w_{2} is $[1, \mathrm{p} .41]$

$$
\left[\begin{array}{c}
n_{2} \\
a, b, d
\end{array}\right]_{q} .
$$

Choose c of the positions in $\left[n_{1}\right]$ for the locations of C in w_{1}, the C-inversions in w_{1} give the crossing generating function

$$
\left[\begin{array}{c}
n_{1} \\
c
\end{array}\right]_{q} .
$$

Also choose the c positions in w_{3} for C, the C-inversions in w_{3} contribute

$$
\left[\begin{array}{c}
n_{3} \\
c
\end{array}\right]_{q}
$$

Match these $2 c$ positions with c inhomogeneous edges, the crossing generating function is

$$
c!_{q}
$$

Connect the $a+b$ letters of w_{2} of type A or B to the remaining $a+b$ positions of w_{1} in $(a+b)$! ways. The crossings here have type $A B A B, B A B A$, and the same type $A A$, $B B$. The generating function is

$$
(a+b)!_{q}
$$

Connect the $a+d$ letters of w_{2} of type A or D to the remaining $a+d$ positions of w_{3} in $(a+d)$! ways. The crossings here have type $A D A D, D A D A$, and the same type $A A$, $D D$. The generating function is

$$
(a+b)!_{q}
$$

Any pair of edges, each of type A, always has one remaining crossing which is not accounted for, this is

$$
q^{\binom{a}{2}}
$$

Multiplying the above corresponding generating functions yields the formula.
Corollary 8. We have the following linearization formula:

$$
\begin{equation*}
C_{n_{1}}(x, a ; q) C_{n_{2}}(x, a ; q)=\sum_{n_{3}} K_{n_{1} n_{2} n_{3}} C_{n_{3}}(x, a ; q), \tag{4.2}
\end{equation*}
$$

where

$$
K_{n_{1} n_{2} n_{3}}=\sum_{l \geq 0} \frac{\left.n_{1}!_{q} n_{2}!_{q} a^{l} q^{\left(n_{1}+n_{2}-n_{3}-2 l\right.}\right)}{l!_{q}\left(n_{3}-n_{1}+l\right)!_{q}\left(n_{3}-n_{2}+l\right)!_{q}\left(n_{1}+n_{2}-n_{3}-2 l\right)!_{q}}
$$

Corollary 8 may also be proven using the Askey-Wilson integral, see [9, p. 422].

5. A Combinatorial Proof of Theorem 6

In this section we prove Theorem 6, using the combinatorial interpretation of the polynomials given in Corollary 3 and the moments given in Theorem 4.
5.1. Generalized Charlier-permutations. We fix $\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right)$, where n_{i} 's are positive integers. Let n denote $n_{1}+n_{2}+\cdots+n_{k}$. For $1 \leq i \leq k$, let N_{i} denote the set of all integers j such that $n_{1}+\cdots+n_{i-1}<j \leq n_{1}+\cdots+n_{i}, n_{0}=0$. Then $[n]=N_{1} \cup \cdots \cup N_{k}$. A generalized Charlier-permutation τ of type \mathbf{n} is a sequence $\left(\tau_{k}, \tau_{k-1}, \ldots, \tau_{1}\right)$ where τ_{i} is a Charlier-permutation of N_{i}. The weight of a generalized Charlier-permutation is the product of the weights of its Charlier-permutations.

The following are examples of generalized Charlier-permutations of type $\mathbf{n}=(2,4,3)$:

$$
\begin{aligned}
& (97)(8)|(65)(43)|(2)(1), \quad(97)(8)|(65)(43)|[2](1), \quad(97)(8)|(64)(53)|(21), \\
& (97)[8]|(64)(53)|(21), \quad(98)[7]|(64)(53)|(21), \quad(98)[7]|(6)(54)(3)|(21) .
\end{aligned}
$$

5.2. Charlier-partitions. Combining generalized Charlier-permutations and moments discussed in the previous sections, we want to interpret

$$
\mathcal{L}_{q}\left(C_{n_{1}}(x, a ; q) \ldots C_{n_{k}}(x, a ; q)\right)
$$

as the weight generating function of some objects. The weight of any generalized Charlierpermutation can be regarded as a monomial in x of degree the number of cycles labeled $-x$. Applying \mathcal{L}_{q} to the monomial is equivalent to considering all possible partitions of such cycles, where cycles are ordered as they appear in the generalized Charlier-permutation. We call the resulting objects Charlier-partitions of \mathbf{n}. A Charlier-partition is represented as (τ, ν), where $\tau=\left(\tau_{k}, \tau_{k-1}, \ldots, \tau_{1}\right)$ is a generalized Charlier-permutation and ν is a partition of cycles labeled $-x$ in τ. We regard each 1-cycle with label a as a block by itself in ν. The weight of (τ, ν) is defined by

$$
w(\tau, \nu)=\left.q^{\operatorname{rc}(\nu)} a^{\operatorname{block}(\nu)} w(\tau)\right|_{x=1} .
$$

Then clearly we have the following identity:

$$
\begin{equation*}
\mathcal{L}_{q}\left(C_{n_{1}}(x, a ; q) \cdots C_{n_{k}}(x, a ; q)\right)=\sum_{(\tau, \nu)} w(\tau, \nu) . \tag{5.1}
\end{equation*}
$$

Given a Charlier-partition (τ, ν) of \mathbf{n} with $\tau=\left(\tau_{k}, \tau_{k-1}, \ldots, \tau_{1}\right)$, we draw the corresponding diagram on the plane as follows:

- The n integers in τ are arranged on the horizontal axis in the order they appear in τ, one step apart.
- The 1-cycles with label a are framed with a box.
- The maximum in each cycle, except that in a box, is circled, so that we can recover the cycle structure and labels.
- If a cycle σ follows a cycle σ^{\prime} in a block of ν, then we draw an arc above the horizontal line between the last element of σ^{\prime} and the first element, that is also the maximum of σ, making as few crossings as possible. The smallest number of crossings agrees with the restricted crossings in $\nu, \operatorname{rc}(\nu)$.
- Draw a straight edge between two adjacent elements if and only if they are in the same cycle.
Example 2. Let $\mathbf{n}=(3,5,5)$. Then (τ, ν) is a Charlier-partition of \mathbf{n}, where

$$
\tau=((1311)(129)(10),(846)[7](5),(31)(2))
$$

is a generalized Charlier-permutation of type \mathbf{n} and

$$
\nu=\{\{(1311),(846),(31)\},\{(129),(5),(2)\},\{(10)\}\}
$$

is a partition of cycles of τ with weight $-x$. The corresponding diagram can be illustrated as follows:

5.3. Involution. The weight function in Equation (5.1) has many cancelations. We will give a combinatorial weight-preserving sign-reversing involution ϕ with fixed set $\Pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ defined on the set of all Charlier-partitions of type \mathbf{n}.

Let (τ, ν) be a Charlier-partition of \mathbf{n}. The involution ϕ will be defined depending on three different cases of (τ, ν).

CASE 1. If (τ, ν) has a circled 1-cycle in a block by itself or a boxed 1 -cycle, then define $\phi(\tau, \nu)$ by picking up the smallest 1-cycle and switching its box to circle or vice versa. Since a boxed 1-cycle contributes $-a$ and a circled 1-cycle a, ϕ is weight-preserving sign-reversing in this case.
Case 2. We now assume that (τ, ν) has no 1-cycles, boxed or circled in a block by itself. Find the rightmost integer α, if it exists, in τ, say in τ_{i}, such that it has a neighbor β in τ_{i}, along the straight edge or an arc, to its right.
CASE 2.1. Assume that α and β are in the same cycle σ ending with $\alpha \beta$, i.e. $\sigma=(\cdots \alpha \beta)$. Since α is the penultimate entry in σ, β is not the maximum in σ. Suppose the contribution of β to $\operatorname{Cinv}\left(\tau_{i}\right)$ is j. Then τ_{i} is of the form

$$
\tau_{i}=(\cdots) \cdots(\cdots \alpha \beta)\left(t_{m}\right)\left(t_{m-1}\right) \cdots\left(t_{j+2}\right)\left(t_{j}\right) \cdots\left(t_{1}\right)
$$

with $t_{1}<t_{2}<\cdots<t_{m}$ and $t_{j+1}=\beta$. Let $\tau_{i}^{\prime}=(\cdots) \cdots(\cdots \alpha)\left(t_{m}\right)\left(t_{m-1}\right) \cdots\left(t_{1}\right)$. Integers $t_{m}, t_{m-1}, \ldots, t_{j+2}$ are moved to the left by one step and β occupies the position of t_{j+2}. We make some changes on the diagram of (τ, ν) as follows, to obtain the diagram of the Charlier-partition $\left(\tau^{\prime}, \nu^{\prime}\right)$:

Algorithm: Stretch

- Initially, start with the diagram of (τ, ν) with all arcs and edges.
- Delete the straight edge between α and β in the diagram.
- Rearrange $t_{m}, t_{m-1}, \ldots, t_{1}$ in descending order, leaving the arcs and edges intact in their present positions.
- For l from $m-1$ down to $m-j$, make the arc arriving from left at the position of t_{l} to arrive at t_{l+1}, if it exists; if there is no such arc at position t_{l} and there are no arcs at position t_{l+1}, then make the arc arriving from right at position t_{l} to arrive at position t_{l+1}.
- Add an arc between α and t_{m-j}.

Let $\phi(\tau, \nu)=\left(\tau^{\prime}, \nu^{\prime}\right)$. We need to show that ϕ is a weight-preserving sign-reversing involution. The involution part will be clear after the next subcase is introduced. Clearly we have $w\left(\tau^{\prime}, \nu^{\prime}\right)=-w(\tau, \nu)$ when $q=1$, since $\left(\tau^{\prime}, \nu^{\prime}\right)$ has one more 1-cycle than (τ, ν), contributing -1 to $w\left(\tau^{\prime}, \nu^{\prime}\right)$. So it suffices to prove that the exponents of q in $w(\tau, \nu)$ and $w\left(\tau^{\prime}, \nu^{\prime}\right)$ are the same. This can be done easily by induction on j. The loss in Charlier inversions from τ to τ^{\prime} exactly matches the gain in restricted crossings from ν to ν^{\prime} for all j.

The following are some examples with $\mathbf{n}=(3,6,2)$.
(11) (10)

(10) (9)

(5)

(5) ${ }^{2} 3$

(1)

Three sets of (τ, ν) and $\left(\tau^{\prime}, \nu^{\prime}\right)$ of type $\mathbf{n}=(3,6,2)$ with $\alpha=8$.
Case 2.2. We now assume that α and β are in different cycles. Clearly β forms a 1 -cycle and adjoins α by an arc. Moreover, all integers to the right of α in τ_{i} form 1-cycles and are in descending order. Suppose there are exactly j integers between α and β. Then τ_{i} is of the form $\tau_{i}=(\cdots) \cdots(\cdots \alpha)\left(t_{m}\right)\left(t_{m-1}\right) \cdots\left(t_{1}\right)$ with $t_{1}<t_{2}<\cdots<t_{m}$ and $t_{m-j}=\beta$. Let $\tau_{i}^{\prime}=(\cdots) \cdots\left(\cdots \alpha t_{j+1}\right)\left(t_{m}\right)\left(t_{m-1}\right) \cdots\left(t_{j+2}\right)\left(t_{j}\right) \cdots\left(t_{1}\right)$. Integers $t_{m}, t_{m-1}, \ldots, t_{j+2}$ are moved to the right by one step and t_{j+1} occupies the position of t_{m}. We make some changes on the diagram of (τ, ν) as follows, to obtain the diagram of the Charlier-partition $\left(\tau^{\prime}, \nu^{\prime}\right)$:

Algorithm: Compress

- Initially, start with the diagram of (τ, ν) with all arcs and edges.
- Delete the arc between α and $\beta=t_{m-j}$ in the diagram.
- For l from $m-j$ to $m-1$, make the arc arriving from left at the position of t_{l+1} to arrive at t_{l}, if it exists; if there is no such arc at position t_{l+1} and there are no arcs at position t_{l}, then make the arc arriving from right at position t_{l+1} to arrive at position t_{l}.
- Rearrange $t_{m}, t_{m-1}, \ldots, t_{j+1}$ as $t_{j+1}, t_{m}, t_{m-1}, \ldots, t_{j+2}$.
- Add a straight edge between α and t_{j+1}.

We let $\phi(\tau, \nu)=\left(\tau^{\prime}, \nu^{\prime}\right)$.
If (τ, ν) falls on CaSE 2.1 then $\left(\tau^{\prime}, \nu^{\prime}\right)$ falls on Case 2.2 and vice versa. The algorithms Stretch and Compress are inverses to each other. If the roles of (τ, ν) and $\left(\tau^{\prime}, \nu^{\prime}\right)$ are exchanged in the examples for algorithm Stretch, then they become examples of algorithm Compress.
Case 3. Assume that (τ, ν) does not fall in Cases 1 and 2. All the cycles in (τ, ν) are 1-cycles, every block in ν has at least two cycles, and each block of ν has at most one element in N_{i} for each $i=1,2, \ldots, k$. So ν is a partition in $\Pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. Let $\phi(\tau, \nu)=(\tau, \nu)$. The Charlier-partition (τ, ν) becomes a fixed point of ϕ.

Combining Cases 1, 2 and 3, the mapping ϕ is a weight-preserving sign-reversing involution on the set of all Charlier-partitions of type \mathbf{n} with fixed set $\Pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. This constitutes a combinatorial proof of Theorem 6.

6. A variation

Consider the polynomials $\hat{C}_{n}(x \mid q)$ defined by

$$
\begin{equation*}
\hat{C}_{n+1}(x \mid q)=\left(x-b[n]_{q}\right) \hat{C}_{n}(x \mid q)-a[n]_{q} \hat{C}_{n-1}(x \mid q), \quad n \geq 0 \tag{6.1}
\end{equation*}
$$

where $\hat{C}_{0}(x \mid q)=1$ and $\hat{C}_{-1}(x \mid q)=0$. Then (see $[3,11]$) the polynomials $\hat{C}_{n}(x \mid q)$ are orthogonal with respect to the linear functional $\hat{\mathcal{L}}_{q}$ defined by

$$
\hat{\mathcal{L}}_{q}\left(x^{n}\right)=\hat{\mu}_{n}=\sum_{\pi \in \Pi_{n}^{\prime}} q^{\mathrm{rc}(\pi)} a^{\operatorname{block}(\pi)} b^{n-2 \operatorname{block}(\pi)}
$$

where Π_{n}^{\prime} is the set of partitions of $[n]$ without singleton.
These polynomials may be obtained from $C_{n}(x, a ; q)$ as follows: let $p_{n}(x)$ be the polynomial $C_{n}(x+a, a ; q)$ with a replaced by a / b^{2}, then $\hat{C}_{n}(x \mid q)=b^{n} p_{n}(x / b)$. It follows from (2.2) that

$$
\hat{C}_{n}(x \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{6.2}\\
k
\end{array}\right](-1)^{n-k} q^{k^{2}-k n}\left(\frac{a}{b}\right)^{n-k} \prod_{i=0}^{k-1}\left(x+\frac{a}{b} q^{-i}-b[i]_{q}\right) .
$$

The first values of these polynomials are

$$
\begin{aligned}
& \hat{C}_{1}(x \mid q)=x \\
& \hat{C}_{2}(x \mid q)=x^{2}-b x-a \\
& \hat{C}_{3}(x \mid q)=x^{3}-b(q+2) x^{2}+\left(b^{2}(1+q)-2 a-a q\right) x+a b(1+q)
\end{aligned}
$$

Since the linearization coefficients are invariant by translation of x, we have

$$
\begin{equation*}
\frac{\hat{\mathcal{L}}_{q}\left(\prod_{i=1}^{k} \hat{C}_{n_{i}}(x \mid q)\right)}{\hat{\mathcal{L}}_{q}\left(\left(\hat{C}_{n_{k}}(x \mid q)\right)^{2}\right)}=\left.\frac{\mathcal{L}_{q}\left(\prod_{i=1}^{k} C_{n_{i}}(x, a ; q)\right)}{\mathcal{L}_{q}\left(\left(C_{n_{k}}(x, a ; q)\right)^{2}\right)}\right|_{a \rightarrow a / b^{2}} \cdot b^{n_{1}+n_{2}+\cdots n_{k-1}-n_{k}} \tag{6.3}
\end{equation*}
$$

As $\hat{\mathcal{L}}_{q}\left(\hat{C}_{n_{k}}(x \mid q) \hat{C}_{n_{k}}(x \mid q)\right)=\mathcal{L}_{q}\left(C_{n_{k}}(x, a ; q) C_{n_{k}}(x, a ; q)\right)=a^{n_{k}} n_{k}!_{q}$, we derive immediately from (6.3) and Theorem 6 the following

Theorem 9 (Anshelevich). The linearization coefficients of the polynomials $\hat{C}_{n}(x \mid q)$ are the generating functions of the inhomogeneous partitions:

$$
\hat{\mathcal{L}}_{q}\left(\hat{C}_{n_{1}}(x \mid q) \cdots \hat{C}_{n_{k}}(x \mid q)\right)=\sum_{\pi \in \Pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)} q^{\mathrm{rc}(\pi)} a^{\operatorname{block}(\pi)} b^{n_{1}+\cdots+n_{k}-2 \operatorname{block}(\pi)}
$$

Anshelevich [2] presented the above theorem as a generalization of several other previously known results and proved it by the same method for Theorem 6. We have just shown that Theorem 6 and Theorem 9 are actually equivalent.

Now Corollary 8 implies the following
Corollary 10. We have the following linearization formula:

$$
\begin{equation*}
\hat{C}_{n_{1}}(x \mid q) \hat{C}_{n_{2}}(x \mid q)=\sum_{n_{3}} \hat{K}_{n_{1} n_{2} n_{3}} \hat{C}_{n_{3}}(x \mid q), \tag{6.4}
\end{equation*}
$$

where

$$
\hat{K}_{n_{1} n_{2} n_{3}}=\sum_{l \geq 0} \frac{\left.n_{1}!_{q} n_{2}!_{q} a^{l} b^{n_{1}+n_{2}-n_{3}-2 l} q^{\left(n_{1}+n_{2}-n_{3}-2 l\right.}\right)}{l!_{q}\left(n_{3}-n_{1}+l\right)!_{q}\left(n_{3}-n_{2}+l\right)!_{q}\left(n_{1}+n_{2}-n_{3}-2 l\right)!_{q}} .
$$

When $a=1$ and $b=0$ the polynomials $\hat{C}_{n}(x \mid q)$ reduce to a family of q-Hermite polynomials $\tilde{H}_{n}(x \mid q)$ (see $\left.[10,(2.11)]\right)$ and we get the corresponding combinatorial interpretation for the linearization coefficients of the q-Hermite polynomials in [10]:

$$
\begin{equation*}
\hat{\mathcal{L}}_{q}\left(\tilde{H}_{n_{1}}(x \mid q) \cdots \tilde{H}_{n_{k}}(x \mid q)\right)=\sum_{\pi} q^{\mathrm{rc}(\pi)} \tag{6.5}
\end{equation*}
$$

where the summation is over all inhomogeneous 2-partitions π of $\left[n_{1}+\cdots+n_{k}\right]$, i.e., inhomogeneous partitions of which each block contains only two elements.

In particular, when $a=1$ and $b=0$, identity (6.4) reduces to

$$
\tilde{H}_{n_{1}}(x \mid q) \tilde{H}_{n_{2}}(x \mid q)=\sum_{l=0}^{\min \left(n_{1}, n_{2}\right)}\left[\begin{array}{c}
n_{1} \tag{6.6}\\
l
\end{array}\right]_{q}\left[\begin{array}{c}
n_{2} \\
l
\end{array}\right]_{q} l!_{q} \tilde{H}_{n_{1}+n_{2}-2 l}(x \mid q)
$$

7. Remarks

The q-Charlier polynomials in [6] have a natural q-Stirling number associated with their moments, a simple explicit formula, but a complicated and non-positive linearization formula. In contrast, Al-Salam-Chihara q-Charlier polynomials have a complicated q Stirling number associated with their moments, a complicated explicit formula, but the most natural linearization formula.

References

[1] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, M.A., 1976.
[2] M. Anshelevich, Linearization coefficients for orthogonal polynomials using stochastic processes, The Annals of Probability, 2005, Vol. 33, No. 1, 114-136.
[3] Ph. Biane, Some properties of crossings and partitions, Discrete Math., 175 (1997), 41-53.
[4. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978.
[5] A. de Médicis, Aspects combinatoires des nombres de Stirling, des polynômes orthogonaux de Sheffer et de leurs q-analogues, ISBN 2-89276-114-X, Vol. 13, Publications du LACIM, UQAM, Montréal, 1993.
[6] A. de Médicis, D. Stanton, D. White, The Combinatorics of q-Charlier Polynomials, J. Combin. Theory Ser. A 69, 1995, 87-114.
[7] M. de Saint-Catherine and G. Viennot, Combinatorial interpretation of integrals of products of Hermite, Laguerre and Tchebycheff polynomials. Orthogonal polynomials and applications (Bar-le-Duc, 1984), 120-128, Lecture Notes in Math., 1171, Springer, Berlin, 1985.
[8] I. Gessel, Generalized rook polynomials and orthogonal polynomials, in " q-Series and Partitions" (D. Stanton, Ed.), IMA Volumes in Math. and Its Appl., Vol. 18, pp. 159-176, Springer-Verlag, New York, 1989.
[9] M. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005.
[10] M. Ismail, D. Stanton and G. Viennot, The Combinatorics of q-Hermite polynomials and the Askey-Wilson integral, Europ. J. Combinatorics (1987) 8, 379-392.
[11] A. Kasraoui and J. Zeng, Distribution of crossings, nestings and alignments of two edges in matchings and partitions, to appear in Electronic. J. Combin. 13(1), 2006, \#R33.
[12] R. Koekoek and R.F.Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Delft University of Technology, Report no. 98-17 (1998).
[13] R. Simion and D. Stanton, Octabasic Laguerre polynomials and permutation statistics, J. Comp. Appl. Math. 68 (1996), 297-329.
[14] J. Zeng, Linéarisation de produits de polynômes de Meixner, Krawtchouk, et Charlier, SIAM J. Math. Anal., Vol. 21, No. 5, pp. 1349-1368, 1990.

Department of Mathematics, KAISt, Daejeon 305-701, Korea
E-mail address: dskim@math.kaist.ac.kr
School of Mathematics, University of Minnesota, Minneapolis, MN 55455
E-mail address: stanton@math.umn.edu
Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622, Villeurbanne
E-mail address: zeng@math.univ-lyon1.fr

[^0]: The first author was partially supported by KRF grant R05-2004-000-11511-0.
 The second author was partially supported by NSF grant DMS-0503660.

