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SOME REMARKS ON A q-ANALOGUE
OF BERNOULLI NUMBERS

Min-Soo Kim and Jin-Woo Son

Abstract. Using the p-adic q-integral due to T. Kim [4], we de-
fine a number B∗n(q) and a polynomial B∗n(x; q) which are p-adic
q-analogue of the ordinary Bernoulli number and Bernoulli polyno-
mial, respectively. We investigate some properties of these. Also,
we give slightly different construction of Tsumura’s p-adic function
`p(u, s, χ) [14] using the p-adic q-integral in [4].

1. Introduction

Throughout this paper Zp,Qp and Cp will respectively denote the
ring of p-adic integers, the field of p-adic numbers and the completion of
the algebraic closure of Qp. Let | · |p be the p-adic valuation of Cp such
that |p|p = p−1. If q ∈ Cp, one normally assumes |q− 1|p < p−1/(p−1) so
that qx = exp(x log q) for |x|p ≤ 1. We use the notation

(1.1) [x] = [x; q] =
1− qx

1− q
.

Hence, limq→1[x; q] = x for any x with |x|p ≤ 1. Let UD(Zp) denote
the space of all uniformly (or strictly) differentiable Cp-valued functions
on Zp. It is well-known that the I0-integral of f ∈ UD(Zp) exists and is
given by

(1.2) I0(f) =
∫

Zp

f(x) dµ0(x) = lim
N→∞

pN−1∑
x=0

f(x)
1

pN
,
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where µ0 is the ordinary p-adic distribution defined by µ0(x + pNZp) =
1

pN . The q-analogue of µ0, denote by µq, defined by T. Kim [4] as follows:
Let d be a fixed integer and p be a fixed prime number. We set

(1.3)

X = lim←−
N

(Z/dpNZ), X∗ =
⋃

0<a<dp
(a,p)=1

a + dpZp,

a + dpNZp = {x ∈ X | x ≡ a (mod dpN )},
where a ∈ Z with 0 ≤ a < dpN . For any positive integer N,

(1.4) µq(a + dpNZp) =
qa

[dpN ]
=

qa

[dpN ; q]

is known as a distribution on X. In the case of d = 1, this distribution
yields an Iq-integral for f ∈ UD(Zp)

(1.5) Iq(f) =
∫

Zp

f(x)dµq(x) = lim
N→∞

pN−1∑
x=0

f(x)
qx

[pN ]
.

In particular, the relation between the I0-integral and Iq-integral is given
by

(1.5′)
∫

Zp

f(x)dµ0(x) =
log q

q − 1

∫

Zp

q−xf(x)dµq(x) for f ∈ UD(Zp).

We recall variant Bernoulli numbers given by below in the symbolic
form: For n ≥ 0

• B0 = 1, (B + 1)n −Bn =
{

1 if n = 1
0 if n > 1,

(Ordinary Bernoulli numbers)

• β0(q) = 1, q(qβ(q) + 1)n − βn(q) =
{

1 if n = 1
0 if n > 1,

(Carlitz’s q-Bernoulli numbers (see [1]))

• B0(q) =
q − 1
log q

, (qB(q) + 1)n −Bn(q) =
{

1 if n = 1
0 if n > 1,

(Tsumura’s q-Bernoulli numbers (see [15]))

• B0(q) = 0, q(B(q) + 1)n − Bn(q) =
{

1 if n = 1
0 if n > 1,

(Kim’s q-Bernoulli numbers (see [2], [9])).
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It is known that variant Bernoulli numbers are connected with the I0-
and Iq-integral as follows: For n ≥ 0

I0(xn) =
∫

Zp

xndµ0(x) = Bn (Witt’s formula);(1.6)

Iq([x]n) =
∫

Zp

[x]ndµq(x) = βn(q) (see [4]);(1.7)

Iq(q−x[x]n) =
∫

Zp

q−x[x]ndµq(x) = Bn(q) (see [3]);(1.8)

Iq(q−xxn)
(1.5′)
=

∫

Zp

q−xxndµq(x) =
q − 1
log q

Bn.(1.9)

N. Koblitz [11] constructed the p-adic q-L-series which interpolated
Carlitz’s q-Bernoulli numbers βn(q). J. Satoh [13] constructed the com-
plex q-L-series which interpolated Carlitz’s q-Bernoulli numbers βn(q).
T. Kim [4] proved that Carlitz’s q-Bernoulli numbers βn(q) can be repre-
sented as an integral by the q-analogue µq of the ordinary p-adic invari-
ant measure. In the complex case, H. Tsumura [15] studied a q-analogue
of the Dirichlet L-series which interpolated q-Bernoulli numbers Bn(q).
In the p-adic case, T. Kim [3] constructed the p-adic q-L-function using
the congruence on q-Bernoulli numbers Bn(q).

In this paper, we consider a uniformly (strictly) differentiable function
f(x) = xn (n ≥ 0) in the Iq-integral given by (1.5) and put

B∗
n(q) =

∫

Zp

xndµq(x); B∗
n(x; q) =

∫

Zp

(x + t)ndµq(t).

The purpose of this paper is to investigate the properties of a number
B∗

n(q) and a polynomial B∗
n(x; q). Also, we give slightly different con-

struction of Tsumura’s p-adic function `p(u, s, χ) [14] using the p-adic
q-integral in [4].

2. Another p-adic q-Bernoulli number B∗
n(q) and its basic

properties

Set f(x) = xn ∈ UD(Zp) for n ≥ 0 in the equation (1.5).
Now, for any integer n ≥ 0 we define a number B∗

n(q) and a polyno-
mial B∗

n(x; q) in the variable x ∈ Cp with |x|p ≤ 1, respectively, by

(2.1) B∗
n(q) def=

∫

Zp

xndµq(x); B∗
n(x; q) def=

∫

Zp

(x + t)ndµq(t).
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The generating function, denote by G∗q(t), of B∗
n(q) is given by

(2.2) G∗q(t) =
q − 1
log q

(
log q + t

qet − 1

)
=

∞∑
n=0

B∗
n(q)

tn

n!
.

Indeed, for f(x) = qxext ∈ UD(Zp) using the equation I0(f1) =
I0(f) + f ′(0), where f1(x) = f(x + 1) for all x ∈ Zp, we have

(2.3) I0

(
qxext

)
=

log q + t

qet − 1
.

From the formula (1.5′), we obtain

(2.4)

G∗q(t) =
q − 1
log q

(
log q + t

qet − 1

)
=

q − 1
log q

I0

(
qxext

)

=
∞∑

n=0

(
q − 1
log q

I0 (xnqx)
)

tn

n!
=

∞∑
n=0

Iq(xn)
tn

n!

=
∞∑

n=0

B∗
n(q)

tn

n!
.

We can easily prove the following.

Proposition 2.1. For n ≥ 0 and x ∈ Zp, we have

(1) B∗
0(q) = 1, q(B∗(q) + 1)n −B∗

n(q) =
{ q−1

log q if n = 1

0 if n > 1
;

(2) limq→1 B∗
n(q) = Bn;

(3) B∗
n(x; q) = (B∗(q) + x)n and limq→1 B∗

n(x; q) = Bn(x), where
Bn(x) is the ordinary Bernoulli polynomial.

From Proposition 2.1 we may say that a number B∗
n(q) and a polyno-

mial B∗
n(x; q) are another p-adic q-analogue of ordinary Bernoulli num-

ber and Bernoulli polynomial, respectively.

Proposition 2.2. For m, n ≥ 0 and x ∈ Zp, we have

(1) I0(xmqnx) = n log q
q−1 Iqn(xm) = log q

q−1 B∗
m(qn);

(2) Iq(xmqnx) =
∑∞

s=0
(log qn)s

s! B∗
m+s(q).



Some remarks on a q-analogue of Bernoulli numbers 225

Lemma 2.3. For n ≥ 0

∫

Zp

xndµq(x) =
∫

X

xndµq(x).

Proof. Note that dµq(x) = (q−1)qx

log q dµ0(x) for |1−q|p < p−1/(p−1) (see
[4], [10]). It is well known that

∫
Zp

xn dµ0(x) =
∫

X
xn dµ0(x) for n ≥ 0

(cf. [4, Lemma 1]) and qx =
∑∞

s=0
xs(log q)s

s! for |1−q|p < p−1/(p−1). The
result now follows easily. ¤

Lemma 2.4. For any positive integer d and k ≥ 0

B∗
k(x; q) = dk[d]−1

d−1∑

i=0

qiB∗
k

(
x + i

d
; qd

)
.

Proof. By Lemma 2.3 we have

B∗
k(x; q) = lim

N→∞
1

[dpN ]

dpN−1∑
n=0

qn(x + n)k

= lim
N→∞

1
[d]

1
[pN ; qd]

d−1∑

i=0

pN−1∑
n=0

qi+dn(x + i + dn)k

= [d]−1
d−1∑

i=0

dkqi lim
N→∞

1
[pN ; qd]

pN−1∑
n=0

(qd)n

(
x + i

d
+ n

)k

= [d]−1
d−1∑

i=0

dkqi

∫

Zp

(
x + i

d
+ t

)k

dµqd(t)

= dk[d]−1
d−1∑

i=0

qiB∗
k

(
x + i

d
; qd

)
.

This completes the proof. ¤
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Theorem 2.5. For k ≥ 0, let µ∗k = µ∗k;q be define by

µ∗k(a + dpNZp)
def= (dpN )k[dpN ]−1qaB∗

k

(
a

dpN
; qdpN

)
,

where N and d are positive integers. Then µ∗k is a distribution on X.

Proof. Since µ∗0;q = µq which is a distribution on X (see [4]), for any
positive integer k we show that µ∗k is a distribution on X. For that, it is
suffices to check that

p−1∑

i=0

µ∗k(a + idpN + dpN+1Zp)

= (dpN+1)kqa[dpN+1]−1

p−1∑

i=0

qidpN

B∗
k

(
a + idpN

dpN+1
; qdpN+1

)

= (dpN )kqa[dpN ]−1

{
pk

[p; qdpN ]

p−1∑

i=0

(qdpN

)iB∗
k

( a
dpN + i

p
; (qdpN

)p

)}

= (dpN )k[dpN ]−1qaB∗
k

(
a

dpN
; qdpN

)
(using Lemma 2.4)

= µ∗k(a + dpNZp).

This completes the proof. ¤

3. A generalized q-Bernoulli numbers B∗
k,χ(q) and related

properties

Let χ be a Dirichlet character with conductor d, where d is a positive
integer. For k ≥ 0 we define the k-th generalized q-Bernoulli number
belonging to the character χ by

(3.1) B∗
k,χ(q) def=

∫

X

χ(x)xkdµq(x).

Using a similar method used in the proof of Lemma 2.4, we may perform
the integral in the right hand side of (3.1) to get

(3.2) B∗
k,χ(q) = dk[d]−1

d−1∑
a=0

qaχ(a)B∗
k

(a

d
; qd

)
.
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Proposition 3.1. For k ≥ 0, we have

(1)
∫

X
χ(x)dµ∗k(x) = B∗

k,χ(q);
(2)

∫
pX

χ(x)dµ∗k(x) = χ(p)pk[p]−1B∗
k,χ(qp);

(3)
∫

X
χ(x)dµ∗k;qc( 1

cx) = χ(c)B∗
k,χ(qc);

(4)
∫

pX
χ(x)dµ∗k;qc( 1

cx) = χ(c)χ(p)pk[p]−1B∗
k,χ(qpc).

Proof. Using the definition of µ∗k;q given by Theorem 2.5 and the
formula (3.2), the proofs are clear. ¤

Corollary 3.2. For k ≥ 0
∫

X

χ(x)xk dµq(x) =
∫

X

χ(x) dµ∗k(x).

Proof. The definition of B∗
k,χ(q) and Proposition 3.1(1) imply

∫

X

χ(x)xk dµq(x) =
∫

X

χ(x) dµ∗k(x).

This completes the proof. ¤

We set

(3.3) p∗ =
{

p if p > 2
4 if p = 2.

Let d̄ = [d, p∗] be the least common multiple of conductor d of χ and p∗.
By using the Iq-integral, we have the Witt’s type formula in the p-adic
cyclotomic field Qp(χ) as follows:

(3.4) B∗
k,χ(q) = lim

N→∞

d̄pN∑
x=1

χ(x)xk qx

[d̄pN ]
, k ≥ 0.

For any rational integers s and t, let χs = χs,k;q be an operator on
f(q) as follows:

(3.5) χsf(q) def= sk[s]−1χ(s)f(qs);



228 Min-Soo Kim and Jin-Woo Son

(3.6) χsχt def= [s]−1[s; qt]
(
χs,k;qt ◦ χt,k;q

)
.

Now we choose a rational integer number c such that (c, d̄) = 1 and
c 6= ±1, and we put

(3.7) µc
k =

1
k

log q

q − 1

(
µ∗k;q(U)− ck+1[c]−1µ∗k;qc

(
1
c
U

))
, k ≥ 1,

where U ⊂ X is compact open set. Then µc
k must be a distribution

on X (µc
k is not a measure on X) and, using Proposition 3.1 and the

definition of the operator χp, χc and χpχc given by (3.5) and (3.6), this
distribution yields an integral on X∗ = X − pX as follows:∫

X∗
χ(x)dµc

k(x)

=
∫

X

χ(x)dµc
k(x)−

∫

pX

χ(x)dµc
k(x)

=
1
k

log q

q − 1

(∫

X

χ(x)dµ∗k;q(x)− ck+1[c]−1

∫

X

χ(x)dµ∗k;qc(
1
c
x)

)

− 1
k

log q

q − 1

(∫

pX

χ(x)dµ∗k;q(x)− ck+1[c]−1

∫

pX

χ(x)dµ∗k;qc(
1
c
x)

)

=
1
k

log q

q − 1

{ (
B∗

k,χ(q)− pk[p]−1χ(p)B∗
k,χ(qp)

)

− χ(c)ck+1[c]−1
(
B∗

k,χ(qc)− pk[p]−1χ(p)B∗
k,χ(qpc)

) }

=
log q

q − 1
(1− χp)(1− cχc)

B∗
k,χ(q)
k

.

Hence we obtain

(3.8)
∫

X∗
χ(x)dµc

k(x) =
log q

q − 1
(1− χp)(1− cχc)

B∗
k,χ(q)
k

.

Theorem 3.3. For k ≥ 1
∫

X∗
χ(x)dµc

k(x) = lim
N→∞

d̄pN∑∗

x=1

χ(cx)(cx)k−1

[
− cx

d̄pN

]

g

qcx,

where
∑∗

means to take sums over the rational integers prime to p in
the given range, c is a rational integer number such that (c, d̄) = 1 and
c 6= ±1, and [·]g is Gauss’s symbol.
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Proof. From (3.8) we must show that

lim
N→∞

d̄pN∑∗

x=1

χ(cx)(cx)k−1

[
− cx

d̄pN

]

g

qcx =
log q

q − 1
(1−χp)(1− cχc)

B∗
k,χ(q)
k

.

We can rewrite B∗
k,χ(q), k ≥ 1, given by (3.4) as

B∗
k,χ(q)

= lim
N→∞

1
[d̄pN ]

d̄pN∑∗

x=1

χ(x)xkqx + lim
N→∞

1
[d̄pN−1; qp]

1
[p]

d̄pN−1∑
y=1

χ(py)(py)kqpy

= lim
N→∞

1
[d̄pN ]

d̄pN∑∗

x=1

χ(x)xkqx + pk[p]−1χ(p)B∗
k,χ(qp).

That is,

(A) lim
N→∞

1
[d̄pN ]

d̄pN∑∗

x=1

χ(x)xkqx = B∗
k,χ(q)− pk[p]−1χ(p)B∗

k,χ(qp).

We choose a rational integer number c such that (c, d̄) = 1 and c 6= ±1.
Let x and xN be the rational integers such that 1 ≤ x, xN ≤ d̄pN and
(x, p) = (xN , p) = 1, and determine a rational integer number rN (x) by
xN = cx + rN (x)d̄pN , i.e.,

(B) rN (x) = − cx

d̄pN
+

xN

d̄pN
=

[
− cx

d̄pN

]

g

,

where [·]g is Gauss’s symbol. Then we have

1
[d̄pN ]

d̄pN∑∗

xN=1

χ(xN )(xN )kqxN

=
d̄pN∑∗

x=1

χ(cx)
{
(cx)k+k(cx)k−1

(
rN (x)d̄pN

)
+· · ·+(

rN (x)d̄pN
)k

} qxN

[d̄pN ]

≡ 1
[d̄pN ]

d̄pN∑∗

x=1

χ(cx)(cx)kqxN + k
d̄pN

[d̄pN ]

d̄pN∑∗

x=1

χ(cx)(cx)k−1rN (x)qxN

(mod (d̄pN )2[d̄pN ]−1).
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Since

lim
N→∞

qrN (x)d̄pN

= 1 for |1− q|p < p−1/(p−1); lim
N→∞

d̄pN

[d̄pN ]
=

q − 1
log q

,

using the formula (A) we find that

B∗
k,χ(q)− pk[p]−1χ(p)B∗

k,χ(qp)

= lim
N→∞

1
[d̄pN ]

d̄pN∑∗

xN=1

χ(xN )(xN )kqxN

= lim
N→∞

1
[d̄pN ]

d̄pN∑∗

x=1

χ(cx)(cx)kqcx

+ k
q − 1
log q

lim
N→∞

d̄pN∑∗

x=1

χ(cx)(cx)k−1rN (x)qcx

= χ(c)ck+1[c]−1 lim
N→∞

1
[d̄pN ; qc]

d̄pN∑∗

x=1

χ(x)xk(qc)x

+ k
q − 1
log q

lim
N→∞

d̄pN∑∗

x=1

χ(cx)(cx)k−1rN (x)qcx

= χ(c)ck+1[c]−1
{
B∗

k,χ(qc)− pk[p]−1χ(p)Bk,χ(qpc)
}

+ k
q − 1
log q

lim
N→∞

d̄pN∑∗

x=1

χ(cx)(cx)k−1rN (x)qcx,

that is, using (B) and the definition of the operators χp, χc and χpχc

given by (3.5) and (3.6) we have

lim
N→∞

d̄pN∑∗

x=1

χ(cx)(cx)k−1

[
− cx

d̄pN

]

g

qcx

=
1
k

log q

q − 1

{ (
B∗

k,χ(q)− pk[p]−1χ(p)B∗
k,χ(qp)

)

− χ(c)ck+1[c]−1
(
B∗

k,χ(qc)− pk[p]−1χ(p)B∗
k,χ(qpc)

) }

=
log q

q − 1
(1− χp)(1− cχc)

B∗
k,χ(q)
k

.
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This completes the proof. ¤

Now, we will consider a q-analogue of Nasybullin’s lemma (see [8,
Theorem 1]; we follow the notation of [8]).

Let B∗
n(x; q) be the nth q-Bernoulli polynomials in (2.2). The nth

q-Bernoulli functions Pn(x) are define by Pn(x) = P (x; q) = B∗
n(x; q)

for 0 ≤ x < 1. They are periodic with period 1 and agree with the
q-Bernoulli polynomials B∗

n(x; q) in the interval 0 ≤ x < 1.
By Lemma 2.4 we have

dn[d]−1
d−1∑

i=0

qiB∗
n

(
x + i

d
; qd

)
= B∗

n(x; q).

Hence for any real number x

dn[d]−1
d−1∑

i=0

qiPn

(
x + i

d
; qd

)
= Pn(x; q).

From the above that the function Pn(x; q) satisfies the property of q-
Nasybullin’s lemma with constants A = d−n[d], B = 0. Then ρ 6= 0 is
equal to d−n[d], as ρ2 = Aρ + Bρ reduces simply to ρ2 = d−n[d]ρ. Thus
we define the function µn = µn;q on a + d̄pNZp by

µn(a + d̄pNZp) := (d̄pN )n[d̄pN ]−1qaPn

(
a

d̄pN
; qd̄pN

)
.

This can be extended to a measure on lim←−N (Z/d̄pNZ) for N ≥ 0.
Let χ be a primitive Dirichlet character with conductor d̄. Then the

generalized q-Bernoulli number in (3.4) is defined by

B∗
k,χ(q) = lim

N→∞
1

[d̄pN ]

d̄pN−1∑
n=0

χ(n)nkqn =
d̄k

[d̄]

d̄−1∑
a=0

qaχ(a)B∗
k

(a

d̄
; qd

)
.

Let

L(µn, χ) = lim
N→∞

d̄pN−1∑∗

a=0

χ(a)µn(a + d̄pNZp)

= lim
N→∞

∑

a (mod d̄pN )
(a,p)=1

χ(a)µn(a + d̄pNZp),
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where
∑∗ means to take sums over the rational integers prime to p in

the given range. Then since the character χ is constant on a + d̄Zp,

L(µn, χ) = lim
N→∞

∑

a (mod d̄pN )

χ(a)µn(a + d̄pNZp)

− lim
N→∞

∑

a (mod d̄pN )
p|a

χ(a)µn(a + d̄pNZp)

= B∗
n,χ(q)− pn[p]−1χ(p)B∗

n,χ(qp),

where B∗
n,χ(q) is the nth q-Bernoulli number containing χ. Thus we

obtain

L
(
µn, χω−n

)
= B∗

n,χω−n(q)− pn[p]−1χω−n(p)B∗
n,χω−n(qp)

where n ≥ 1 and ω is the Teichmüller character mod p∗.

4. Iq-integral and Tsumura’s p-adic function

Let z ∈ Cp be such that zdpN 6= 1 for all N. In [10], N. Koblitz defined

(4.1) Ez(a + dpNZp) =
za

1− zdpN .

He obtained

Proposition 4.1 ([10]). Ez is a distribution on X. Let D1 = {x ∈
Cp | |x− 1|p < 1}, and let D1 = Cp\D1 be the complement of the open

unit disc around 1. Then Ez is a measure if and only if z ∈ D1.

Note that if q ∈ D1 and ordp(1 − q) 6= −∞, then µq(a + dpNZp) =
(1 − q)Eq(a + dpNZp). Thus µq(a + dpNZp) = qa

[dpN ]
in q ∈ D1 and

ordp(1− q) 6= −∞ is the similar measure as Koblitz measure.
Hereafter, we assume that q ∈ D1 and ordp(1− q) 6= −∞.
Now, for t ∈ Cp with ordpt > 1

p−1 , we define a number H∗
m(q) by

(4.2)
q − 1

qet − 1
=

∞∑
m=0

H∗
m(q)

tm

m!
.
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Note that H∗
m(q−1) = Hm(q) where the number Hm(q) defined by

1−q
et−q =

∑∞
m=0

Hm(q)
m! tm is called the m-th Euler number belonging to q,

which lies in an algebraic closure of Qp.
We can express the numbers H∗

m(q) as an integral over Zp, for d =
1, X = Zp, by using the measure µq, that is,

(4.3)
∫

Zp

xmdµq(x) = H∗
m(q) for m ≥ 0.

Indeed, we find that

∫

Zp

etxdµq(x) = lim
N→∞

1− q

1− qpN

pN−1∑
a=0

eatqa

=
1− q

1− qet
lim

N→∞
1− etpN

qpN

1− qpN =
q − 1

qet − 1
,

since etpN

approaches 1 as N → ∞, the limit is 1. Let t ∈ Cp with
ordpt > 1

p−1 . Then we obtain

(4.4)
∞∑

m=0

H∗
m(q)

tm

m!
=

∫

Zp

etxdµq(x) =
∞∑

m=0

∫

Zp

xmdµq(x)
tm

m!
.

Hence, comparing the above formulas,
∫
Zp

xmdµq(x) = H∗
m(q) for m ≥ 0.

Note that if q ∈ D1 then
∫
Zp

xmdµq(x) = B∗
m(q) (see Section 2).

Let ω denote the Teichmüller character mod p∗. For x ∈ X∗, we set
〈x〉 = x/ω(x). For s ∈ Zp, we define

(4.5) `p,q(s)
def= lim

N→∞
1− q

1− qpN

pN−1∑
m=0

qm

ms
.

Then we obtain `p,q(−k) = limN→∞
1−q

1−qpN

∑pN−1
m=0 qmmk = H∗

k(q) for
k ≥ 0.

Let χ be a primitive Dirichlet character with conductor d. For k ≥ 0,
the generalized numbers H∗

k,χ(q) is defined by

(4.6) H∗
k,χ(q) =

∫

X

χ(x)xkdµq(x).
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For s ∈ Zp, we define the function `p,q by

(4.7) `p,q(s, χ) =
∫

X∗
〈x〉−sχ(x)dµq(x)

which is slightly different from the one in [14]. The value of this function
at non-positive integers are given by

Proposition 4.2. For any k ≥ 0, we have

`p,q(−k, χωk) = H∗
k,χ(q)− pk[p]−1χ(p)H∗

k,χ(qp).

Proof. Since µq(pU) = µqp(U) for U ⊂ X,
∫

pX
χ(x)xkdµq(x) =

[p]−1
∫

X
χ(px)(px)kdµqp(x) = pk[p]−1χ(p)H∗

k,χ(qp). The proof now fol-
lows directly. ¤

For α, β ∈ Cp and any function f(q), we set

(4.8) (α + βpk) ~ f(q) := αf(q) + βpkf(qp).

We have the following Kummer congruences.

Corollary 4.3. If k ≡ k′ (mod (p− 1)pN ), then

(1− χ(p)pk) ~
H∗

k,χ(q)
1− q

≡ (1− χ(p)pk′) ~
H∗

k′,χ(q)
1− q

(mod pN ).

Proof. Note that (see [10, Proposition 2])

∣∣∣∣
µq(a + dpNZp)

1− q

∣∣∣∣
p

=
∣∣∣∣

qa

(1− q)[dpN ]

∣∣∣∣
p

=
∣∣∣∣

qa

1− qdpN

∣∣∣∣
p

≤ 1,

where we use the assumption q ∈ D1. By [12, Chapter II, §2], if k ≡ k′

(mod (p− 1)pN ), then we have

|xk − xk′ |p ≤ 1
pN

for x ∈ X∗.
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Using the corollary at the end of [12, Chapter II, §5], we easily see that

`p,q(−k, χωk)
1− q

=
∫

X∗
〈x〉kχωk(x)

dµq(x)
1− q

=
∫

X∗
χ(x)xk dµq(x)

1− q

≡
∫

X∗
χ(x)xk′ dµq(x)

1− q
(mod pN )

=
`p,q(−k′, χωk′)

1− q
.

By Proposition 4.2 and (4.8), the result now follows easily. ¤

Remark. By the definition (2.2) and (4.2), we obtain that

∞∑
n=0

B∗
n(q)

tn

n!
=

q − 1
log q

(
log q + t

qet − 1

)

=
q − 1

qet − 1
+

t

log q

q − 1
qet − 1

=
∞∑

n=0

H∗
n(q)

tn

n!
+

t

log q

∞∑
n=0

H∗
n(q)

tn

n!
.

Equating the coefficient of tn, we obtain the following relation between
the q-analogue Bernoulli numbers B∗(q) and the number H∗(q)

B∗
n(q) = H∗

n(q) +
n

log q
H∗

n−1(q) (n ≥ 1).
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