SOME REMARKS ON A q-ANALOGUE OF BERNOULLI NUMBERS

Min-Soo Kim and Jin-Woo Son

Abstract

Using the p-adic q-integral due to T. Kim [4], we define a number $B_{n}^{*}(q)$ and a polynomial $B_{n}^{*}(x ; q)$ which are p-adic q-analogue of the ordinary Bernoulli number and Bernoulli polynomial, respectively. We investigate some properties of these. Also, we give slightly different construction of Tsumura's p-adic function $\ell_{p}(u, s, \chi)$ [14] using the p-adic q-integral in [4].

1. Introduction

Throughout this paper $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will respectively denote the ring of p-adic integers, the field of p-adic numbers and the completion of the algebraic closure of \mathbb{Q}_{p}. Let $|\cdot|_{p}$ be the p-adic valuation of \mathbb{C}_{p} such that $|p|_{p}=p^{-1}$. If $q \in \mathbb{C}_{p}$, one normally assumes $|q-1|_{p}<p^{-1 /(p-1)}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. We use the notation

$$
\begin{equation*}
[x]=[x ; q]=\frac{1-q^{x}}{1-q} . \tag{1.1}
\end{equation*}
$$

Hence, $\lim _{q \rightarrow 1}[x ; q]=x$ for any x with $|x|_{p} \leq 1$. Let $U D\left(\mathbb{Z}_{p}\right)$ denote the space of all uniformly (or strictly) differentiable \mathbb{C}_{p}-valued functions on \mathbb{Z}_{p}. It is well-known that the I_{0}-integral of $f \in U D\left(\mathbb{Z}_{p}\right)$ exists and is given by

$$
\begin{equation*}
I_{0}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{0}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x) \frac{1}{p^{N}}, \tag{1.2}
\end{equation*}
$$

[^0]where μ_{0} is the ordinary p-adic distribution defined by $\mu_{0}\left(x+p^{N} \mathbb{Z}_{p}\right)=$ $\frac{1}{p^{N}}$. The q-analogue of μ_{0}, denote by μ_{q}, defined by T. Kim [4] as follows: Let d be a fixed integer and p be a fixed prime number. We set
\[

$$
\begin{align*}
& X=\varliminf_{N}\left(\mathbb{Z} / d p^{N} \mathbb{Z}\right), \quad X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}} a+d p \mathbb{Z}_{p} \tag{1.3}\\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod d p^{N}\right)\right\}
\end{align*}
$$
\]

where $a \in \mathbb{Z}$ with $0 \leq a<d p^{N}$. For any positive integer N,

$$
\begin{equation*}
\mu_{q}\left(a+d p^{N} \mathbb{Z}_{p}\right)=\frac{q^{a}}{\left[d p^{N}\right]}=\frac{q^{a}}{\left[d p^{N} ; q\right]} \tag{1.4}
\end{equation*}
$$

is known as a distribution on X. In the case of $d=1$, this distribution yields an I_{q}-integral for $f \in U D\left(\mathbb{Z}_{p}\right)$

$$
\begin{equation*}
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x) \frac{q^{x}}{\left[p^{N}\right]} \tag{1.5}
\end{equation*}
$$

In particular, the relation between the I_{0}-integral and I_{q}-integral is given by

$$
\int_{\mathbb{Z}_{p}} f(x) d \mu_{0}(x)=\frac{\log q}{q-1} \int_{\mathbb{Z}_{p}} q^{-x} f(x) d \mu_{q}(x) \text { for } f \in U D\left(\mathbb{Z}_{p}\right) .
$$

We recall variant Bernoulli numbers given by below in the symbolic form: For $n \geq 0$

- $\quad B_{0}=1, \quad(B+1)^{n}-B_{n}= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1,\end{cases}$
(Ordinary Bernoulli numbers)
- $\quad \beta_{0}(q)=1, \quad q(q \beta(q)+1)^{n}-\beta_{n}(q)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1,\end{cases}$
(Carlitz's q-Bernoulli numbers (see [1]))
- $\quad B_{0}(q)=\frac{q-1}{\log q}, \quad(q B(q)+1)^{n}-B_{n}(q)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1,\end{cases}$
(Tsumura's q-Bernoulli numbers (see [15]))
- $\quad \mathcal{B}_{0}(q)=0, \quad q(\mathcal{B}(q)+1)^{n}-\mathcal{B}_{n}(q)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1,\end{cases}$
(Kim's q-Bernoulli numbers (see [2], [9])).

It is known that variant Bernoulli numbers are connected with the I_{0} and I_{q}-integral as follows: For $n \geq 0$

$$
\begin{align*}
& I_{0}\left(x^{n}\right)=\int_{\mathbb{Z}_{p}} x^{n} d \mu_{0}(x)=B_{n} \text { (Witt's formula); } \tag{1.6}\\
& I_{q}\left([x]^{n}\right)=\int_{\mathbb{Z}_{p}}[x]^{n} d \mu_{q}(x)=\beta_{n}(q) \text { (see [4]); } \tag{1.7}\\
& I_{q}\left(q^{-x}[x]^{n}\right)=\int_{\mathbb{Z}_{p}} q^{-x}[x]^{n} d \mu_{q}(x)=B_{n}(q) \text { (see [3]); } \tag{1.8}\\
& I_{q}\left(q^{-x} x^{n}\right) \stackrel{\left(1.5^{\prime}\right)}{=} \int_{\mathbb{Z}_{p}} q^{-x} x^{n} d \mu_{q}(x)=\frac{q-1}{\log q} B_{n} . \tag{1.9}
\end{align*}
$$

N. Koblitz [11] constructed the p-adic q - L-series which interpolated Carlitz's q-Bernoulli numbers $\beta_{n}(q)$. J. Satoh [13] constructed the complex q - L-series which interpolated Carlitz's q-Bernoulli numbers $\beta_{n}(q)$. T. Kim [4] proved that Carlitz's q-Bernoulli numbers $\beta_{n}(q)$ can be represented as an integral by the q-analogue μ_{q} of the ordinary p-adic invariant measure. In the complex case, H. Tsumura [15] studied a q-analogue of the Dirichlet L-series which interpolated q-Bernoulli numbers $B_{n}(q)$. In the p-adic case, T. Kim [3] constructed the p-adic q - L-function using the congruence on q-Bernoulli numbers $B_{n}(q)$.

In this paper, we consider a uniformly (strictly) differentiable function $f(x)=x^{n}(n \geq 0)$ in the I_{q}-integral given by (1.5) and put

$$
B_{n}^{*}(q)=\int_{\mathbb{Z}_{p}} x^{n} d \mu_{q}(x) ; \quad B_{n}^{*}(x ; q)=\int_{\mathbb{Z}_{p}}(x+t)^{n} d \mu_{q}(t) .
$$

The purpose of this paper is to investigate the properties of a number $B_{n}^{*}(q)$ and a polynomial $B_{n}^{*}(x ; q)$. Also, we give slightly different construction of Tsumura's p-adic function $\ell_{p}(u, s, \chi)$ [14] using the p-adic q-integral in [4].

2. Another p-adic q-Bernoulli number $B_{n}^{*}(q)$ and its basic properties

Set $f(x)=x^{n} \in U D\left(\mathbb{Z}_{p}\right)$ for $n \geq 0$ in the equation (1.5).
Now, for any integer $n \geq 0$ we define a number $B_{n}^{*}(q)$ and a polynomial $B_{n}^{*}(x ; q)$ in the variable $x \in \mathbb{C}_{p}$ with $|x|_{p} \leq 1$, respectively, by

$$
\begin{equation*}
B_{n}^{*}(q) \stackrel{\text { def }}{=} \int_{\mathbb{Z}_{p}} x^{n} d \mu_{q}(x) ; \quad B_{n}^{*}(x ; q) \stackrel{\text { def }}{=} \int_{\mathbb{Z}_{p}}(x+t)^{n} d \mu_{q}(t) \tag{2.1}
\end{equation*}
$$

The generating function, denote by $G_{q}^{*}(t)$, of $B_{n}^{*}(q)$ is given by

$$
\begin{equation*}
G_{q}^{*}(t)=\frac{q-1}{\log q}\left(\frac{\log q+t}{q e^{t}-1}\right)=\sum_{n=0}^{\infty} B_{n}^{*}(q) \frac{t^{n}}{n!} . \tag{2.2}
\end{equation*}
$$

Indeed, for $f(x)=q^{x} e^{x t} \in U D\left(\mathbb{Z}_{p}\right)$ using the equation $I_{0}\left(f_{1}\right)=$ $I_{0}(f)+f^{\prime}(0)$, where $f_{1}(x)=f(x+1)$ for all $x \in \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
I_{0}\left(q^{x} e^{x t}\right)=\frac{\log q+t}{q e^{t}-1} \tag{2.3}
\end{equation*}
$$

From the formula (1.5'), we obtain

$$
\begin{align*}
G_{q}^{*}(t) & =\frac{q-1}{\log q}\left(\frac{\log q+t}{q e^{t}-1}\right)=\frac{q-1}{\log q} I_{0}\left(q^{x} e^{x t}\right) \\
& =\sum_{n=0}^{\infty}\left(\frac{q-1}{\log q} I_{0}\left(x^{n} q^{x}\right)\right) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} I_{q}\left(x^{n}\right) \frac{t^{n}}{n!} \tag{2.4}\\
& =\sum_{n=0}^{\infty} B_{n}^{*}(q) \frac{t^{n}}{n!} .
\end{align*}
$$

We can easily prove the following.
Proposition 2.1. For $n \geq 0$ and $x \in \mathbb{Z}_{p}$, we have
(1) $B_{0}^{*}(q)=1, q\left(B^{*}(q)+1\right)^{n}-B_{n}^{*}(q)=\left\{\begin{array}{ll}\frac{q-1}{\log q} & \text { if } n=1 \\ 0 & \text { if } n>1\end{array}\right.$;
(2) $\lim _{q \rightarrow 1} B_{n}^{*}(q)=B_{n}$;
(3) $B_{n}^{*}(x ; q)=\left(B^{*}(q)+x\right)^{n}$ and $\lim _{q \rightarrow 1} B_{n}^{*}(x ; q)=B_{n}(x)$, where $B_{n}(x)$ is the ordinary Bernoulli polynomial.

From Proposition 2.1 we may say that a number $B_{n}^{*}(q)$ and a polynomial $B_{n}^{*}(x ; q)$ are another p-adic q-analogue of ordinary Bernoulli number and Bernoulli polynomial, respectively.

Proposition 2.2. For $m, n \geq 0$ and $x \in \mathbb{Z}_{p}$, we have
(1) $I_{0}\left(x^{m} q^{n x}\right)=\frac{n \log q}{q-1} I_{q^{n}}\left(x^{m}\right)=\frac{\log q}{q-1} B_{m}^{*}\left(q^{n}\right)$;
(2) $I_{q}\left(x^{m} q^{n x}\right)=\sum_{s=0}^{\infty} \frac{\left(\log q^{n}\right)^{s}}{s!} B_{m+s}^{*}(q)$.

Lemma 2.3. For $n \geq 0$

$$
\int_{\mathbb{Z}_{p}} x^{n} d \mu_{q}(x)=\int_{X} x^{n} d \mu_{q}(x) .
$$

Proof. Note that $d \mu_{q}(x)=\frac{(q-1) q^{x}}{\log q} d \mu_{0}(x)$ for $|1-q|_{p}<p^{-1 /(p-1)}$ (see [4], [10]). It is well known that $\int_{\mathbb{Z}_{p}} x^{n} d \mu_{0}(x)=\int_{X} x^{n} d \mu_{0}(x)$ for $n \geq 0$ (cf. [4, Lemma 1]) and $q^{x}=\sum_{s=0}^{\infty} \frac{x^{s}(\log q)^{s}}{s!}$ for $|1-q|_{p}<p^{-1 /(p-1)}$. The result now follows easily.

Lemma 2.4. For any positive integer d and $k \geq 0$

$$
B_{k}^{*}(x ; q)=d^{k}[d]^{-1} \sum_{i=0}^{d-1} q^{i} B_{k}^{*}\left(\frac{x+i}{d} ; q^{d}\right) .
$$

Proof. By Lemma 2.3 we have

$$
\begin{aligned}
B_{k}^{*}(x ; q) & =\lim _{N \rightarrow \infty} \frac{1}{\left[d p^{N}\right]} \sum_{n=0}^{d p^{N}-1} q^{n}(x+n)^{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{[d]} \frac{1}{\left[p^{N} ; q^{d}\right]} \sum_{i=0}^{d-1} \sum_{n=0}^{p^{N}-1} q^{i+d n}(x+i+d n)^{k} \\
& =[d]^{-1} \sum_{i=0}^{d-1} d^{k} q^{i} \lim _{N \rightarrow \infty} \frac{1}{\left[p^{N} ; q^{d}\right]} \sum_{n=0}^{p^{N}-1}\left(q^{d}\right)^{n}\left(\frac{x+i}{d}+n\right)^{k} \\
& =[d]^{-1} \sum_{i=0}^{d-1} d^{k} q^{i} \int_{\mathbb{Z}_{p}}\left(\frac{x+i}{d}+t\right)^{k} d \mu_{q^{d}}(t) \\
& =d^{k}[d]^{-1} \sum_{i=0}^{d-1} q^{i} B_{k}^{*}\left(\frac{x+i}{d} ; q^{d}\right) .
\end{aligned}
$$

This completes the proof.

Theorem 2.5. For $k \geq 0$, let $\mu_{k}^{*}=\mu_{k ; q}^{*}$ be define by

$$
\mu_{k}^{*}\left(a+d p^{N} \mathbb{Z}_{p}\right) \stackrel{\text { def }}{=}\left(d p^{N}\right)^{k}\left[d p^{N}\right]^{-1} q^{a} B_{k}^{*}\left(\frac{a}{d p^{N}} ; q^{d p^{N}}\right)
$$

where N and d are positive integers. Then μ_{k}^{*} is a distribution on X.
Proof. Since $\mu_{0 ; q}^{*}=\mu_{q}$ which is a distribution on X (see [4]), for any positive integer k we show that μ_{k}^{*} is a distribution on X. For that, it is suffices to check that

$$
\begin{aligned}
& \sum_{i=0}^{p-1} \mu_{k}^{*}\left(a+i d p^{N}+d p^{N+1} \mathbb{Z}_{p}\right) \\
& =\left(d p^{N+1}\right)^{k} q^{a}\left[d p^{N+1}\right]^{-1} \sum_{i=0}^{p-1} q^{i d p^{N}} B_{k}^{*}\left(\frac{a+i d p^{N}}{d p^{N+1}} ; q^{d p^{N+1}}\right) \\
& =\left(d p^{N}\right)^{k} q^{a}\left[d p^{N}\right]^{-1}\left\{\frac{p^{k}}{\left[p ; q^{d p^{N}}\right]} \sum_{i=0}^{p-1}\left(q^{d p^{N}}\right)^{i} B_{k}^{*}\left(\frac{\frac{a}{d p^{N}}+i}{p} ;\left(q^{d p^{N}}\right)^{p}\right)\right\} \\
& =\left(d p^{N}\right)^{k}\left[d p^{N}\right]^{-1} q^{a} B_{k}^{*}\left(\frac{a}{d p^{N}} ; q^{d p^{N}}\right)(\text { using Lemma 2.4) } \\
& =\mu_{k}^{*}\left(a+d p^{N} \mathbb{Z}_{p}\right) .
\end{aligned}
$$

This completes the proof.

3. A generalized q-Bernoulli numbers $B_{k, \chi}^{*}(q)$ and related properties

Let χ be a Dirichlet character with conductor d, where d is a positive integer. For $k \geq 0$ we define the k-th generalized q-Bernoulli number belonging to the character χ by

$$
\begin{equation*}
B_{k, \chi}^{*}(q) \stackrel{\text { def }}{=} \int_{X} \chi(x) x^{k} d \mu_{q}(x) . \tag{3.1}
\end{equation*}
$$

Using a similar method used in the proof of Lemma 2.4, we may perform the integral in the right hand side of (3.1) to get

$$
\begin{equation*}
B_{k, \chi}^{*}(q)=d^{k}[d]^{-1} \sum_{a=0}^{d-1} q^{a} \chi(a) B_{k}^{*}\left(\frac{a}{d} ; q^{d}\right) . \tag{3.2}
\end{equation*}
$$

Proposition 3.1. For $k \geq 0$, we have
(1) $\int_{X} \chi(x) d \mu_{k}^{*}(x)=B_{k, \chi}^{*}(q)$;
(2) $\int_{p_{X}} \chi(x) d \mu_{k}^{*}(x)=\chi(p) p^{k}[p]^{-1} B_{k, \chi}^{*}\left(q^{p}\right)$;
(3) $\int_{X} \chi(x) d \mu_{k ; q^{c}}^{*}\left(\frac{1}{c} x\right)=\chi(c) B_{k, \chi}^{*}\left(q^{c}\right)$;
(4) $\int_{p X} \chi(x) d \mu_{k ; q^{c}}^{*}\left(\frac{1}{c} x\right)=\chi(c) \chi(p) p^{k}[p]^{-1} B_{k, \chi}^{*}\left(q^{p c}\right)$.

Proof. Using the definition of $\mu_{k ; q}^{*}$ given by Theorem 2.5 and the formula (3.2), the proofs are clear.

Corollary 3.2. For $k \geq 0$

$$
\int_{X} \chi(x) x^{k} d \mu_{q}(x)=\int_{X} \chi(x) d \mu_{k}^{*}(x) .
$$

Proof. The definition of $B_{k, \chi}^{*}(q)$ and Proposition 3.1(1) imply

$$
\int_{X} \chi(x) x^{k} d \mu_{q}(x)=\int_{X} \chi(x) d \mu_{k}^{*}(x) .
$$

This completes the proof.

We set

$$
p^{*}= \begin{cases}p & \text { if } p>2 \tag{3.3}\\ 4 & \text { if } p=2\end{cases}
$$

Let $\bar{d}=\left[d, p^{*}\right]$ be the least common multiple of conductor d of χ and p^{*}. By using the I_{q}-integral, we have the Witt's type formula in the p-adic cyclotomic field $\mathbb{Q}_{p}(\chi)$ as follows:

$$
\begin{equation*}
B_{k, \chi}^{*}(q)=\lim _{N \rightarrow \infty} \sum_{x=1}^{\bar{d} p^{N}} \chi(x) x^{k} \frac{q^{x}}{\left[\bar{d} p^{N}\right]}, \quad k \geq 0 \tag{3.4}
\end{equation*}
$$

For any rational integers s and t, let $\chi^{s}=\chi^{s, k ; q}$ be an operator on $f(q)$ as follows:

$$
\begin{equation*}
\chi^{s} f(q) \stackrel{\text { def }}{=} s^{k}[s]^{-1} \chi(s) f\left(q^{s}\right) ; \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\chi^{s} \chi^{t} \stackrel{\text { def }}{=}[s]^{-1}\left[s ; q^{t}\right]\left(\chi^{s, k ; q^{t}} \circ \chi^{t, k ; q}\right) . \tag{3.6}
\end{equation*}
$$

Now we choose a rational integer number c such that $(c, \bar{d})=1$ and $c \neq \pm 1$, and we put

$$
\begin{equation*}
\mu_{k}^{c}=\frac{1}{k} \frac{\log q}{q-1}\left(\mu_{k ; q}^{*}(U)-c^{k+1}[c]^{-1} \mu_{k ; q^{c}}^{*}\left(\frac{1}{c} U\right)\right), k \geq 1, \tag{3.7}
\end{equation*}
$$

where $U \subset X$ is compact open set. Then μ_{k}^{c} must be a distribution on $X\left(\mu_{k}^{c}\right.$ is not a measure on $\left.X\right)$ and, using Proposition 3.1 and the definition of the operator χ^{p}, χ^{c} and $\chi^{p} \chi^{c}$ given by (3.5) and (3.6), this distribution yields an integral on $X^{*}=X-p X$ as follows:

$$
\begin{aligned}
& \int_{X^{*}} \chi(x) d \mu_{k}^{c}(x) \\
&= \int_{X} \chi(x) d \mu_{k}^{c}(x)-\int_{p X} \chi(x) d \mu_{k}^{c}(x) \\
&= \frac{1}{k} \frac{\log q}{q-1}\left(\int_{X} \chi(x) d \mu_{k ; q}^{*}(x)-c^{k+1}[c]^{-1} \int_{X} \chi(x) d \mu_{k ; q^{c}}^{*}\left(\frac{1}{c} x\right)\right) \\
& \quad-\frac{1}{k} \frac{\log q}{q-1}\left(\int_{p X} \chi(x) d \mu_{k ; q}^{*}(x)-c^{k+1}[c]^{-1} \int_{p X} \chi(x) d \mu_{k ; q^{c}}^{*}\left(\frac{1}{c} x\right)\right) \\
&= \frac{1}{k} \frac{\log q}{q-1}\left\{\left(B_{k, \chi}^{*}(q)-p^{k}[p]^{-1} \chi(p) B_{k, \chi}^{*}\left(q^{p}\right)\right)\right. \\
&\left.\quad \quad-\chi(c) c^{k+1}[c]^{-1}\left(B_{k, \chi}^{*}\left(q^{c}\right)-p^{k}[p]^{-1} \chi(p) B_{k, \chi}^{*}\left(q^{p c}\right)\right)\right\} \\
&= \frac{\log q}{q-1}\left(1-\chi^{p}\right)\left(1-c \chi^{c}\right) \frac{B_{k, \chi}^{*}(q)}{k} .
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
\int_{X^{*}} \chi(x) d \mu_{k}^{c}(x)=\frac{\log q}{q-1}\left(1-\chi^{p}\right)\left(1-c \chi^{c}\right) \frac{B_{k, \chi}^{*}(q)}{k} \tag{3.8}
\end{equation*}
$$

Theorem 3.3. For $k \geq 1$

$$
\int_{X^{*}} \chi(x) d \mu_{k}^{c}(x)=\lim _{N \rightarrow \infty} \sum_{x=1}^{\bar{d} p^{N}} \chi(c x)(c x)^{k-1}\left[-\frac{c x}{\bar{d} p^{N}}\right]_{g} q^{c x},
$$

where \sum^{*} means to take sums over the rational integers prime to p in the given range, c is a rational integer number such that $(c, \bar{d})=1$ and $c \neq \pm 1$, and $[\cdot]_{g}$ is Gauss's symbol.

Proof. From (3.8) we must show that
$\lim _{N \rightarrow \infty} \sum_{x=1}^{\bar{d} p^{N}}{ }^{*} \chi(c x)(c x)^{k-1}\left[-\frac{c x}{\bar{d} p^{N}}\right]_{g} q^{c x}=\frac{\log q}{q-1}\left(1-\chi^{p}\right)\left(1-c \chi^{c}\right) \frac{B_{k, \chi}^{*}(q)}{k}$.
We can rewrite $B_{k, \chi}^{*}(q), k \geq 1$, given by (3.4) as

$$
\begin{aligned}
& B_{k, \chi}^{*}(q) \\
= & \lim _{N \rightarrow \infty} \frac{1}{\left[\bar{d} p^{N}\right]} \sum_{x=1}^{\bar{d} p^{N}} \chi(x) x^{k} q^{x}+\lim _{N \rightarrow \infty} \frac{1}{\left[\bar{d} p^{N-1} ; q^{p}\right]} \frac{1}{[p]} \sum_{y=1}^{\bar{d} p^{N-1}} \chi(p y)(p y)^{k} q^{p y} \\
= & \lim _{N \rightarrow \infty} \frac{1}{\left[\bar{d} p^{N}\right]} \sum_{x=1}^{*} \chi(x) x^{k} q^{x}+p^{k}[p]^{-1} \chi(p) B_{k, \chi}^{*}\left(q^{p}\right) .
\end{aligned}
$$

That is,
(A) $\quad \lim _{N \rightarrow \infty} \frac{1}{\left[\bar{d} p^{N}\right]} \sum_{x=1}^{\bar{d} p^{N}}{ }^{*} \chi(x) x^{k} q^{x}=B_{k, \chi}^{*}(q)-p^{k}[p]^{-1} \chi(p) B_{k, \chi}^{*}\left(q^{p}\right)$.

We choose a rational integer number c such that $(c, \bar{d})=1$ and $c \neq \pm 1$. Let x and x_{N} be the rational integers such that $1 \leq x, x_{N} \leq \bar{d} p^{N}$ and $(x, p)=\left(x_{N}, p\right)=1$, and determine a rational integer number $r_{N}(x)$ by $x_{N}=c x+r_{N}(x) \bar{d} p^{N}$, i.e.,

$$
\begin{equation*}
r_{N}(x)=-\frac{c x}{\bar{d} p^{N}}+\frac{x_{N}}{\bar{d} p^{N}}=\left[-\frac{c x}{\bar{d} p^{N}}\right]_{g}, \tag{B}
\end{equation*}
$$

where $[\cdot]_{g}$ is Gauss's symbol. Then we have

$$
\begin{aligned}
& \frac{1}{\left[\bar{d} p^{N}\right]} \sum_{x_{N}=1}^{\bar{d} p^{N}}{ }^{*} \chi\left(x_{N}\right)\left(x_{N}\right)^{k} q^{x_{N}} \\
= & \sum_{x=1}^{\bar{d}^{N}} \chi(c x)\left\{(c x)^{k}+k(c x)^{k-1}\left(r_{N}(x) \bar{d} p^{N}\right)+\cdots+\left(r_{N}(x) \bar{d} p^{N}\right)^{k}\right\} \frac{q^{x_{N}}}{\left[\bar{d} p^{N}\right]} \\
\equiv & \frac{1}{\left[\bar{d} p^{N}\right]} \sum_{x=1}^{\bar{d} p^{N}} \chi(c x)(c x)^{k} q^{x_{N}}+k \frac{\bar{d} p^{N}}{\left[\bar{d} p^{N}\right]} \sum_{x=1}^{\bar{d} p^{N}} \chi(c x)(c x)^{k-1} r_{N}(x) q^{x_{N}} \\
& \left(\bmod \left(\bar{d} p^{N}\right)^{2}\left[\bar{d} p^{N}\right]^{-1}\right) .
\end{aligned}
$$

Since

$$
\lim _{N \rightarrow \infty} q^{r_{N}(x) \bar{d} p^{N}}=1 \text { for }|1-q|_{p}<p^{-1 /(p-1)} ; \quad \lim _{N \rightarrow \infty} \frac{\bar{d} p^{N}}{\left[\bar{d} p^{N}\right]}=\frac{q-1}{\log q}
$$

using the formula (A) we find that

$$
\begin{aligned}
& B_{k, \chi}^{*}(q)-p^{k}[p]^{-1} \chi(p) B_{k, \chi}^{*}\left(q^{p}\right) \\
= & \lim _{N \rightarrow \infty} \frac{1}{\left[\bar{d} p^{N}\right]} \sum_{x_{N}=1}^{\bar{d}^{N}}{ }^{*} \chi\left(x_{N}\right)\left(x_{N}\right)^{k} q^{x_{N}} \\
= & \lim _{N \rightarrow \infty} \frac{1}{\left[\bar{d} p^{N}\right]} \sum_{x=1}^{\bar{d}^{N}}{ }^{*} \chi(c x)(c x)^{k} q^{c x} \\
& +k \frac{q-1}{\log q} \lim _{N \rightarrow \infty} \sum_{x=1}^{\bar{d} p^{N}}{ }^{*} \chi(c x)(c x)^{k-1} r_{N}(x) q^{c x} \\
= & \chi(c) c^{k+1}[c]^{-1} \lim _{N \rightarrow \infty} \frac{1}{\left[\bar{d} p^{N} ; q^{c}\right]} \sum_{x=1}^{\bar{d}^{N}}{ }^{*} \chi(x) x^{k}\left(q^{c}\right)^{x} \\
& +k \frac{q-1}{\log q} \lim _{N \rightarrow \infty} \sum_{x=1}^{\bar{d}^{N}} * \\
= & \chi(c) c^{k+1}[c]^{-1}\left\{B_{k, \chi}^{*}(c x)^{k-1} r_{N}(x) q^{c x}-p^{k}[p]^{-1} \chi(p) B_{k, \chi}\left(q^{p c}\right)\right\} \\
& +k \frac{q-1}{\log q} \lim _{N \rightarrow \infty} \sum_{x=1}^{\bar{d}^{N}}{ }^{*} \chi(c x)(c x)^{k-1} r_{N}(x) q^{c x},
\end{aligned}
$$

that is, using (B) and the definition of the operators χ^{p}, χ^{c} and $\chi^{p} \chi^{c}$ given by (3.5) and (3.6) we have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \sum_{x=1}^{\bar{d} p^{N}}{ }^{*} \chi(c x)(c x)^{k-1}\left[-\frac{c x}{\bar{d} p^{N}}\right]_{g} q^{c x} \\
= & \frac{1}{k} \frac{\log q}{q-1}\left\{\left(B_{k, \chi}^{*}(q)-p^{k}[p]^{-1} \chi(p) B_{k, \chi}^{*}\left(q^{p}\right)\right)\right. \\
& \left.\quad-\chi(c) c^{k+1}[c]^{-1}\left(B_{k, \chi}^{*}\left(q^{c}\right)-p^{k}[p]^{-1} \chi(p) B_{k, \chi}^{*}\left(q^{p c}\right)\right)\right\} \\
= & \frac{\log q}{q-1}\left(1-\chi^{p}\right)\left(1-c \chi^{c}\right) \frac{B_{k, \chi}^{*}(q)}{k} .
\end{aligned}
$$

This completes the proof.

Now, we will consider a q-analogue of Nasybullin's lemma (see $[8$, Theorem 1]; we follow the notation of [8]).

Let $B_{n}^{*}(x ; q)$ be the nth q-Bernoulli polynomials in (2.2). The nth q-Bernoulli functions $P_{n}(x)$ are define by $P_{n}(x)=P(x ; q)=B_{n}^{*}(x ; q)$ for $0 \leq x<1$. They are periodic with period 1 and agree with the q-Bernoulli polynomials $B_{n}^{*}(x ; q)$ in the interval $0 \leq x<1$.

By Lemma 2.4 we have

$$
d^{n}[d]^{-1} \sum_{i=0}^{d-1} q^{i} B_{n}^{*}\left(\frac{x+i}{d} ; q^{d}\right)=B_{n}^{*}(x ; q)
$$

Hence for any real number x

$$
d^{n}[d]^{-1} \sum_{i=0}^{d-1} q^{i} P_{n}\left(\frac{x+i}{d} ; q^{d}\right)=P_{n}(x ; q)
$$

From the above that the function $P_{n}(x ; q)$ satisfies the property of q Nasybullin's lemma with constants $A=d^{-n}[d], B=0$. Then $\rho \neq 0$ is equal to $d^{-n}[d]$, as $\rho^{2}=A \rho+B \rho$ reduces simply to $\rho^{2}=d^{-n}[d] \rho$. Thus we define the function $\mu_{n}=\mu_{n ; q}$ on $a+\bar{d} p^{N} \mathbb{Z}_{p}$ by

$$
\mu_{n}\left(a+\bar{d} p^{N} \mathbb{Z}_{p}\right):=\left(\bar{d} p^{N}\right)^{n}\left[\bar{d} p^{N}\right]^{-1} q^{a} P_{n}\left(\frac{a}{\bar{d} p^{N}} ; q^{\bar{d} p^{N}}\right) .
$$

This can be extended to a measure on $\varliminf_{N}\left(\mathbb{Z} / \bar{d} p^{N} \mathbb{Z}\right)$ for $N \geq 0$.
Let χ be a primitive Dirichlet character with conductor \bar{d}. Then the generalized q-Bernoulli number in (3.4) is defined by

$$
B_{k, \chi}^{*}(q)=\lim _{N \rightarrow \infty} \frac{1}{\left[\bar{d} p^{N}\right]} \sum_{n=0}^{\bar{d} p^{N}-1} \chi(n) n^{k} q^{n}=\frac{\bar{d}^{k}}{[\bar{d}]} \sum_{a=0}^{\bar{d}-1} q^{a} \chi(a) B_{k}^{*}\left(\frac{a}{\bar{d}} ; q^{d}\right) .
$$

Let

$$
\begin{aligned}
L\left(\mu_{n}, \chi\right) & =\lim _{N \rightarrow \infty} \sum_{a=0}^{\bar{d} p^{N}-1} \chi(a) \mu_{n}\left(a+\bar{d} p^{N} \mathbb{Z}_{p}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{\substack{\left(\bmod \bar{d} p^{N}\right) \\
(a, p)=1}} \chi(a) \mu_{n}\left(a+\bar{d} p^{N} \mathbb{Z}_{p}\right),
\end{aligned}
$$

where \sum^{*} means to take sums over the rational integers prime to p in the given range. Then since the character χ is constant on $a+\bar{d} \mathbb{Z}_{p}$,

$$
\begin{aligned}
L\left(\mu_{n}, \chi\right)= & \lim _{N \rightarrow \infty} \sum_{a\left(\bmod \bar{d} p^{N}\right)} \chi(a) \mu_{n}\left(a+\bar{d} p^{N} \mathbb{Z}_{p}\right) \\
& -\lim _{N \rightarrow \infty} \sum_{a\left(\bmod \overline{p_{p}}\right)}^{p} \chi(a) \mu_{n}\left(a+\bar{d} p^{N} \mathbb{Z}_{p}\right) \\
= & B_{n, \chi}^{*}(q)-p^{n}[p]^{-1} \chi(p) B_{n, \chi}^{*}\left(q^{p}\right),
\end{aligned}
$$

where $B_{n, \chi}^{*}(q)$ is the nth q-Bernoulli number containing χ. Thus we obtain

$$
L\left(\mu_{n}, \chi \omega^{-n}\right)=B_{n, \chi \omega^{-n}}^{*}(q)-p^{n}[p]^{-1} \chi \omega^{-n}(p) B_{n, \chi \omega^{-n}}^{*}\left(q^{p}\right)
$$

where $n \geq 1$ and ω is the Teichmüller character $\bmod p^{*}$.

4. I_{q}-integral and Tsumura's p-adic function

Let $z \in \mathbb{C}_{p}$ be such that $z^{d p^{N}} \neq 1$ for all N. In [10], N. Koblitz defined

$$
\begin{equation*}
E_{z}\left(a+d p^{N} \mathbb{Z}_{p}\right)=\frac{z^{a}}{1-z^{d p^{N}}} . \tag{4.1}
\end{equation*}
$$

He obtained
Proposition 4.1 ([10]). E_{z} is a distribution on X. Let $D_{1}=\{x \in$ $\left.\mathbb{C}_{p}| | x-\left.1\right|_{p}<1\right\}$, and let $\bar{D}_{1}=\mathbb{C}_{p} \backslash D_{1}$ be the complement of the open unit disc around 1. Then E_{z} is a measure if and only if $z \in \bar{D}_{1}$.

Note that if $q \in \bar{D}_{1}$ and $\operatorname{ord}_{p}(1-q) \neq-\infty$, then $\mu_{q}\left(a+d p^{N} \mathbb{Z}_{p}\right)=$ $(1-q) E_{q}\left(a+d p^{N} \mathbb{Z}_{p}\right)$. Thus $\mu_{q}\left(a+d p^{N} \mathbb{Z}_{p}\right)=\frac{q^{a}}{\left[d p^{N}\right]}$ in $q \in \bar{D}_{1}$ and $\operatorname{ord}_{p}(1-q) \neq-\infty$ is the similar measure as Koblitz measure.

Hereafter, we assume that $q \in \bar{D}_{1}$ and $\operatorname{ord}_{p}(1-q) \neq-\infty$.
Now, for $t \in \mathbb{C}_{p}$ with $\operatorname{ord}_{p} t>\frac{1}{p-1}$, we define a number $H_{m}^{*}(q)$ by

$$
\begin{equation*}
\frac{q-1}{q e^{t}-1}=\sum_{m=0}^{\infty} H_{m}^{*}(q) \frac{t^{m}}{m!} \tag{4.2}
\end{equation*}
$$

Note that $H_{m}^{*}\left(q^{-1}\right)=H_{m}(q)$ where the number $H_{m}(q)$ defined by $\frac{1-q}{e^{t-q}}=\sum_{m=0}^{\infty} \frac{H_{m}(q)}{m!} t^{m}$ is called the m-th Euler number belonging to q, which lies in an algebraic closure of \mathbb{Q}_{p}.

We can express the numbers $H_{m}^{*}(q)$ as an integral over \mathbb{Z}_{p}, for $d=$ $1, X=\mathbb{Z}_{p}$, by using the measure μ_{q}, that is,

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} x^{m} d \mu_{q}(x)=H_{m}^{*}(q) \quad \text { for } m \geq 0 \tag{4.3}
\end{equation*}
$$

Indeed, we find that

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} e^{t x} d \mu_{q}(x) & =\lim _{N \rightarrow \infty} \frac{1-q}{1-q^{p^{N}}} \sum_{a=0}^{p^{N}-1} e^{a t} q^{a} \\
& =\frac{1-q}{1-q e^{t}} \lim _{N \rightarrow \infty} \frac{1-e^{t p^{N}} q^{p^{N}}}{1-q^{p^{N}}}=\frac{q-1}{q e^{t}-1}
\end{aligned}
$$

since $e^{t p^{N}}$ approaches 1 as $N \rightarrow \infty$, the limit is 1 . Let $t \in \mathbb{C}_{p}$ with $\operatorname{ord}_{p} t>\frac{1}{p-1}$. Then we obtain

$$
\begin{equation*}
\sum_{m=0}^{\infty} H_{m}^{*}(q) \frac{t^{m}}{m!}=\int_{\mathbb{Z}_{p}} e^{t x} d \mu_{q}(x)=\sum_{m=0}^{\infty} \int_{\mathbb{Z}_{p}} x^{m} d \mu_{q}(x) \frac{t^{m}}{m!} \tag{4.4}
\end{equation*}
$$

Hence, comparing the above formulas, $\int_{\mathbb{Z}_{p}} x^{m} d \mu_{q}(x)=H_{m}^{*}(q)$ for $m \geq 0$.
Note that if $q \in D_{1}$ then $\int_{\mathbb{Z}_{p}} x^{m} d \mu_{q}(x)=B_{m}^{*}(q)$ (see Section 2).
Let ω denote the Teichmüller character $\bmod p^{*}$. For $x \in X^{*}$, we set $\langle x\rangle=x / \omega(x)$. For $s \in \mathbb{Z}_{p}$, we define

$$
\begin{equation*}
\ell_{p, q}(s) \stackrel{\text { def }}{=} \lim _{N \rightarrow \infty} \frac{1-q}{1-q^{p^{N}}} \sum_{m=0}^{p^{N}-1} \frac{q^{m}}{m^{s}} . \tag{4.5}
\end{equation*}
$$

Then we obtain $\ell_{p, q}(-k)=\lim _{N \rightarrow \infty} \frac{1-q}{1-q^{p^{N}}} \sum_{m=0}^{p^{N}-1} q^{m} m^{k}=H_{k}^{*}(q)$ for $k \geq 0$.

Let χ be a primitive Dirichlet character with conductor d. For $k \geq 0$, the generalized numbers $H_{k, \chi}^{*}(q)$ is defined by

$$
\begin{equation*}
H_{k, \chi}^{*}(q)=\int_{X} \chi(x) x^{k} d \mu_{q}(x) \tag{4.6}
\end{equation*}
$$

For $s \in \mathbb{Z}_{p}$, we define the function $\ell_{p, q}$ by

$$
\begin{equation*}
\ell_{p, q}(s, \chi)=\int_{X^{*}}\langle x\rangle^{-s} \chi(x) d \mu_{q}(x) \tag{4.7}
\end{equation*}
$$

which is slightly different from the one in [14]. The value of this function at non-positive integers are given by

Proposition 4.2. For any $k \geq 0$, we have

$$
\ell_{p, q}\left(-k, \chi \omega^{k}\right)=H_{k, \chi}^{*}(q)-p^{k}[p]^{-1} \chi(p) H_{k, \chi}^{*}\left(q^{p}\right)
$$

Proof. Since $\mu_{q}(p U)=\mu_{q^{p}}(U)$ for $U \subset X, \int_{p X} \chi(x) x^{k} d \mu_{q}(x)=$ $[p]^{-1} \int_{X} \chi(p x)(p x)^{k} d \mu_{q^{p}}(x)=p^{k}[p]^{-1} \chi(p) H_{k, \chi}^{*}\left(q^{p}\right)$. The proof now follows directly.

For $\alpha, \beta \in \mathbb{C}_{p}$ and any function $f(q)$, we set

$$
\begin{equation*}
\left(\alpha+\beta p^{k}\right) \circledast f(q):=\alpha f(q)+\beta p^{k} f\left(q^{p}\right) \tag{4.8}
\end{equation*}
$$

We have the following Kummer congruences.
Corollary 4.3. If $k \equiv k^{\prime}\left(\bmod (p-1) p^{N}\right)$, then

$$
\left(1-\chi(p) p^{k}\right) \circledast \frac{H_{k, \chi}^{*}(q)}{1-q} \equiv\left(1-\chi(p) p^{k^{\prime}}\right) \circledast \frac{H_{k^{\prime}, \chi}^{*}(q)}{1-q} \quad\left(\bmod p^{N}\right) .
$$

Proof. Note that (see [10, Proposition 2])

$$
\left|\frac{\mu_{q}\left(a+d p^{N} \mathbb{Z}_{p}\right)}{1-q}\right|_{p}=\left|\frac{q^{a}}{(1-q)\left[d p^{N}\right]}\right|_{p}=\left|\frac{q^{a}}{1-q^{d p^{N}}}\right|_{p} \leq 1
$$

where we use the assumption $q \in \bar{D}_{1}$. By [12, Chapter II, $\left.\S 2\right]$, if $k \equiv k^{\prime}$ $\left(\bmod (p-1) p^{N}\right)$, then we have

$$
\left|x^{k}-x^{k^{\prime}}\right|_{p} \leq \frac{1}{p^{N}} \quad \text { for } x \in X^{*}
$$

Using the corollary at the end of [12, Chapter II, §5], we easily see that

$$
\begin{aligned}
\frac{\ell_{p, q}\left(-k, \chi \omega^{k}\right)}{1-q} & =\int_{X^{*}}\langle x\rangle^{k} \chi \omega^{k}(x) \frac{d \mu_{q}(x)}{1-q} \\
& =\int_{X^{*}} \chi(x) x^{k} \frac{d \mu_{q}(x)}{1-q} \\
& \equiv \int_{X^{*}} \chi(x) x^{k^{\prime}} \frac{d \mu_{q}(x)}{1-q}\left(\bmod p^{N}\right) \\
& =\frac{\ell_{p, q}\left(-k^{\prime}, \chi \omega^{k^{\prime}}\right)}{1-q} .
\end{aligned}
$$

By Proposition 4.2 and (4.8), the result now follows easily.

Remark. By the definition (2.2) and (4.2), we obtain that

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n}^{*}(q) \frac{t^{n}}{n!} & =\frac{q-1}{\log q}\left(\frac{\log q+t}{q e^{t}-1}\right) \\
& =\frac{q-1}{q e^{t}-1}+\frac{t}{\log q} \frac{q-1}{q e^{t}-1} \\
& =\sum_{n=0}^{\infty} H_{n}^{*}(q) \frac{t^{n}}{n!}+\frac{t}{\log q} \sum_{n=0}^{\infty} H_{n}^{*}(q) \frac{t^{n}}{n!} .
\end{aligned}
$$

Equating the coefficient of t^{n}, we obtain the following relation between the q-analogue Bernoulli numbers $B^{*}(q)$ and the number $H^{*}(q)$

$$
B_{n}^{*}(q)=H_{n}^{*}(q)+\frac{n}{\log q} H_{n-1}^{*}(q) \quad(n \geq 1) .
$$

References

[1] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[2] T. Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 (1994), 21-26.
[3] , On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), 73-86.
[4] On a q-analogue of the p-adic log gamma functions and related integral, J. Number Theory 76 (1999), 320-329.
[5] , A note on p-adic Dedekind sums, Comptes Rendus De l'Academine Bulgare des Sciences (to appear).
[6] , A note on the values of zeta, Notes Number Theory Discrete Math. (to appear).
[7] T. Kim and H. S. Kim, Remark on p-adic q-Bernoulli numbers, Advanced Studies in Contemporary Math. 1 (1999), 127-136.
[8] H. S. Kim, P.-S. Lim, and T. Kim, A remark on p-adic q-Bernoulli measure, Bull. Korean Math. Soc. 33 (1996), 39-44.
[9] M.-S. Kim and J.-W. Son, On Bernoulli numbers, J. Korean Math. Soc. 37 (2000), 391-410.
[10] N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), 455-468.
[11] _ On Carlitz's q-Bernoulli numbers, J. Number Theory 14 (1982), 332339.
[12] , p-adic Numbers, p-adic Analysis and Zeta-Functions, 2nd, SpringerVerlag, New York, 1984.
[13] J. Satoh, q-analogue of Riemann's ζ-function and q-Euler numbers, J. Number Theory 31 (1989), 346-362.
[14] H. Tsumura, On a p-adic interpolation of the generalized Euler numbers and its applications, Tokyo J. Math. 10 (1987), 281-293.
[15] _ A note on q-analogues of the Dirichlet series and q-Bernoulli numbers, J. Number Theory 39 (1991), 251-256.
[16] L. Washington, Introduction to Cyclotomic Fields, 2nd, Springer-Verlag, New York, 1997.

Department of Mathematics
Kyungnam University
Masan 631-701, Korea
E-mail: mskim@mail.kyungnam.ac.kr
sonjin@hanma.kyungnam.ac.kr

[^0]: Received March 12, 2001. Revised July 23, 2001.
 2000 Mathematics Subject Classification: 11B68, 11E95.
 Key words and phrases: q-analogue, Bernoulli numbers, p-adic q-integral.

