J. Korean Math. Soc. 39 (2002), No. 2, pp. 221-236

SOME REMARKS ON A ¢-ANALOGUE
OF BERNOULLI NUMBERS

MiN-Soo KiM AND JIN-WOO SON

Abstract. Using the p-adic g-integral due to T. Kim [4], we de-
fine a number B} (q) and a polynomial B} (x;q) which are p-adic
g-analogue of the ordinary Bernoulli number and Bernoulli polyno-
mial, respectively. We investigate some properties of these. Also,
we give slightly different construction of Tsumura’s p-adic function
Ly (u, s,x) [14] using the p-adic g-integral in [4].

1. Introduction

Throughout this paper Z,,Q, and C, will respectively denote the
ring of p-adic integers, the field of p-adic numbers and the completion of
the algebraic closure of Q,,. Let | - |, be the p-adic valuation of C, such
that |p|, = p~!. If ¢ € C,, one normally assumes |q— 1|, < p~/®~1) 5o
that ¢” = exp(zlogq) for |z|, < 1. We use the notation

(1.1) [z] = [;q] =

Hence, lim,_[z;q] = « for any x with |z|, < 1. Let UD(Z,) denote
the space of all uniformly (or strictly) differentiable C,-valued functions
on Zy. It is well-known that the Iy-integral of f € UD(Z,) exists and is
given by

pN -1

12 B = [ f@de = Jin 3 fe)
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where fio is the ordinary p-adic distribution defined by pug(z + p™NZ,) =
Z%N. The g-analogue of 11, denote by 14, defined by T. Kim [4] as follows:
Let d be a fixed integer and p be a fixed prime number. We set

X =1lm(z/dp"z), X*= |]J a+dpZ,
N

0<a<d
(1.3) (ap=t

a+dpNZ,={r e X |r=a (mod dp™)},

where a € Z with 0 < a < dp"¥. For any positive integer N,
q* q*
1.4 pq(a+dpNZ,) = =
(14) ol P) = @] = [@iq
is known as a distribution on X. In the case of d = 1, this distribution
yields an I -integral for f € UD(Z,)

pN -1

15 L= [ f@dule) = tm > f@)
Zyp =0

qx
PN
In particular, the relation between the Ip-integral and I,-integral is given
by

15) [ fadun@) =2 [ 4 f@dugo) for £ € UD(E,)

We recall variant Bernoulli numbers given by below in the symbolic
form: Forn >0

1 if n=1

By=1, (B+1)"-B, =
* (B+1) {o if > 1,

(Ordinary Bernoulli numbers)

e Bold)=1  q@B@)+1)" - Bulg) = {

(Carlitz’s g-Bernoulli numbers (see [1]))

1 if n=1
0 if n>1,

g—1 1 ifn=1
Bo(g) = B(g) +1)" — By(q) =
© Blo)=1, @B+ () {0 o0 1
(Tsumura’s g-Bernoulli numbers (see [15]))
1 if n=1
B == O, B + ]_ n_ BTL ey
o Bo(q) q(B(g) +1) (9) {o o1,

(Kim’s ¢-Bernoulli numbers (see [2], [9])).
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It is known that variant Bernoulli numbers are connected with the I,-
and I -integral as follows: For n > 0

(1.6) Ip(z™) = / x"duo(x) = By, (Witt’s formula);
z

ya

wn L") = / (2] dpig () = B(a) (sce [4]);

P

(1.8) Iy(q™*[=]") :/z q "[a]"dug(z) = Bn(q) (see [3]);

P

_ (1.5") _ qg—1
1.9 I, (¢ %x™) "= / q Cx"dug(x) = B
o) e [ ()=

N. Koblitz [11] constructed the p-adic g-L-series which interpolated
Carlitz’s g-Bernoulli numbers f3,,(q). J. Satoh [13] constructed the com-
plex g-L-series which interpolated Carlitz’s g-Bernoulli numbers (,,(q).
T. Kim [4] proved that Carlitz’s ¢g-Bernoulli numbers 3,,(¢) can be repre-
sented as an integral by the g-analogue p, of the ordinary p-adic invari-
ant measure. In the complex case, H. Tsumura [15] studied a g-analogue
of the Dirichlet L-series which interpolated g-Bernoulli numbers B,,(q).
In the p-adic case, T. Kim [3] constructed the p-adic ¢-L-function using
the congruence on ¢g-Bernoulli numbers B,,(q).

In this paper, we consider a uniformly (strictly) differentiable function
f(z) = 2™ (n > 0) in the I -integral given by (1.5) and put

Bila) = | aduy(o) Biwia) = [ (a0 dy(t)
z, Z,

The purpose of this paper is to investigate the properties of a number
B (q) and a polynomial B} (z;q). Also, we give slightly different con-
struction of Tsumura’s p-adic function £, (u, s, x) [14] using the p-adic
g-integral in [4].

2. Another p-adic ¢-Bernoulli number B} (q) and its basic
properties

Set f(z) = 2" € UD(Z,) for n > 0 in the equation (1.5).
Now, for any integer n > 0 we define a number B} (¢) and a polyno-
mial B} (z;q) in the variable z € C, with |z|, < 1, respectively, by

@) B@® [ i Biwa ™ [ @,

P P
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The generating function, denote by G (t), of B;;(q) is given by

(2.2) G(t) = q—1 <10gQ+t) _ iB;(q)t—
n=0

logg \ get —1

Indeed, for f(z) = ¢%e* € UD(Z,) using the equation Iy(f1) =
In(f) + f'(0), where fi(x) = f(z +1) for all x € Z,, we have

logq+t
2. Iy (¢"e™) = ——.
(2.3) 0(q € ) get — 1

From the formula (1.5"), we obtain

g—1 (logq+t .
* — I xr T
Gi(t) < 1> logq 0 (¢°e™)

logg \ get —

(2.4) :i<(f_1fo( > ifq
n=0 0gq n=0
oo . tn’
n=0 !

We can easily prove the following.

ProrosiTION 2.1. Forn > 0 and x € Z,, we have
W B =1 o5+ 17 - By = { B M
Oq_7q q nq_ 0 1fn>17
(2) limg—1 B;(q) = By;
(3) B (z;q) = (B*(q) + )" and lim,_,1 B} (z;q) = B,(x), where
B, (x) is the ordinary Bernoulli polynomial.

From Proposition 2.1 we may say that a number B (¢q) and a polyno-
mial B} (x;q) are another p-adic g-analogue of ordinary Bernoulli num-
ber and Bernoulli polynomial, respectively.

ProrosSITION 2.2. For m, n >0 and x € Z,, we have

(1) Iola™q™) = "5 (™) = W50 By, (")

(2) To(emq"™) = Y2, By (a).
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LEMMA 2.3. Forn >0

/Zx”d,uq(ac):/xxnduq(a:).

P

Proof. Note that dpg(z) = (qgé)qqm dpo(x )for [1—q|, < p~ /=Y (see

, t is well known that "™ dpo(z " dpo(x) for n >

4], [10]). 1 1 k h 7, "d vrtd f 0
(cf. [4, Lemma 1]) and ¢® =) o, © (1(;% 9° for [1—gl, < p~ /@1, The
result now follows easily. 0

LEMMA 2.4. For any positive integer d and k > 0

d—
p T +1
Bj(x;q) = d*[d Z By, < qd> .

=0

Proof. By Lemma 2.3 we have

1 dpN —1
BZ(LU%CI):A}EH W Z q"(z +n)*
o ap n=0
d— 1p —1
=1 o (g g+ dn)*
N—>oo
=0 n=0
d—1 pN—1 S k
_ —1 k i d
- ;dw@m[pwqd]gw (5 +n)
d—1 - k
_[d]—lzd’fqi/ <+t> dpiqa (t)
=0 Zyp
d—1
; +1
:dkzd—l i B* L d
Yo si (T

This completes the proof. O
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THEOREM 2.5. For k >0, let puy, = py., be define by
* def _ a * a N
wila+dpVZ,) = (dp™) [dp™] g By (de;qd” )
where N and d are positive integers. Then puj is a distribution on X.
Proof. Since pg., = g which is a distribution on X (see [4]), for any

positive integer k we show that uj is a distribution on X. For that, it is
suffices to check that

p—1
Z wi(a+idp™N + dp™t17Z,)
i=0
B a+ idp™ N1
= (dpN T [dpN T Y g B <de+1 ;g™ >
i=0
L o +i
o . p Nyios [ dpN N
= (dp™)*q [dp™] T S = D (4™ )' By (p; (™ )”)
[p; ¢ ] = p
= (dp™)*[dp™ ]~ q"B; (daN; qde> (using Lemma 2.4)
p
= pp(a+dp"Zy).
This completes the proof. O

3. A generalized ¢-Bernoulli numbers B;  (¢) and related
properties

Let x be a Dirichlet character with conductor d, where d is a positive
integer. For k& > 0 we define the k-th generalized g-Bernoulli number
belonging to the character x by

(3.1) Bf (q) % /X x(@)z*dptg ().

Using a similar method used in the proof of Lemma 2.4, we may perform
the integral in the right hand side of (3.1) to get

d—1
(3:2) Bi \(q) = d"[d ™Y q"x(@)Bi (5ia”) -
a=0
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ProrosiTiON 3.1. For k > 0, we have

(1) Jx x(@)dp(z) = B;  (a);

2) [ x x(@)dui(z) = x(p)p*[p] " B, (¢);

(3) [y x(@)dpt.qe(22) = x(¢) B, (¢°);

4) [,x x(@)dp g (52) = x()x(p)p*[p] ' B, (7).

Proof. Using the definition of pj., given by Theorem 2.5 and the
formula (3.2), the proofs are clear. O

COROLLARY 3.2. For k>0

[ x@it dugte) = [ xta) dia).

X

Proof. The definition of By | (¢) and Proposition 3.1(1) imply
[ vt dng(@) = [ (@) dii o).
b's b's

This completes the proof. ]

We set

. P ifp>2
(3.3) pz{

4 ifp=2.

Let d = [d, p*] be the least common multiple of conductor d of x and p*.
By using the I;,-integral, we have the Witt’s type formula in the p-adic
cyclotomic field Q,(x) as follows:

™ .
. pu— — > .
(3.4) By, (q) ]\}Lnool 9;1 x(x)z [dpN]’ k=20

For any rational integers s and ¢, let x* = x** be an operator on
f(q) as follows:

(3.5) VH@) % s () ()
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(3.6) X 8] s '] (R o).

Now we choose a rational integer number ¢ such that (¢,d) = 1 and
¢ # +1, and we put

c_llogg [, kt1p0—1, * 1
(3.7) g = Eq 1 <:uk;q(U) — [c] Foiesqe EU s k>1,

where U C X is compact open set. Then pf must be a distribution
on X (uf is not a measure on X) and, using Proposition 3.1 and the
definition of the operator x?, x¢ and x?x¢ given by (3.5) and (3.6), this
distribution yields an integral on X* = X — pX as follows:

_ /X (@) dis () — / x(@)dig ()
- ;;C’gql < /X x(@)dpg,, () — F e~ /X x(x)du’é;qc(ix))
8 ([ s [ o o)

- % logq { (Bi (@) = P*[p] ™' x(p) Bi  (¢"))

— x() ™ (B (a) = p"[p] " x(p) Bis 1, (¢7°)) }

log g o Biy (@)
= S (1= xP)(1 — ex®)
qg—1
Hence we obtain
. log q o Bi (q)
68) [ @i = B0 00 - )T
THEOREM 3.3. Fork >1
dp™
(& : * - cr cxT
[ X = Jim S et -]
r=1 g

where Y_" means to take sums over the rational integers prime to p in

the given range, c is a rational integer number such that (¢,d) =1 and
¢ # %1, and [-|, is Gauss’s symbol.
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Proof. From (3.8) we must show that

a7 cx log g B (q)
. * k—1 cr __ c k,x
A}E}%O E x(cx)(cx) [_CWVLQ = ﬁ(l—xp)(l—cx )T

=1

We can rewrite By | (¢), k > 1, given by (3.4) as

B \(q)
aw”, 1 p
_ = > x(@)ate® 4+ lim S (py) (py)
N—oo [de] =1 — 00 [de 1 qp] [p] t
ap"
= Jim o > x(@)a*q” + p* ] x(p) B\ (¢")
r=1
That is,
P
(o) Jim sl > x(@)2*q" = B (q) — p"[p] " x(p) B, (4")-
=1

We choose a rational integer number ¢ such that (¢,d) =1 and ¢ # £1.
Let z and zn be the rational integers such that 1 < z,zx < dp" and
(z,p) = (zn,p) = 1, and determine a rational integer number 7y (x) by
Ty = cx +ry(z)dp”, ie.,

cx TN cx
B ST S
®) (@) v Ty [ deL’
where [-], is Gauss’s symbol. Then we have
7N
S e
[dpN] =,
_ .
* _ B q=N
= X(cx){(ca:)k-i-k:(ca:)k 1( N(a:)de) 4+ (TN(x)de) } ]
r=1
o i T
— * x /4 * k—1 T
= 7 > xlex)(ex)q™ +k— X(ex)(ex)* Iy (z)g™
[dp™] Z= [dp™] zzl
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Since

. 7 /(o . dp q—1
1 rn (@AY _ 1 for 11 — < p~ 1/ (=1). 1 il
i g or [1—qlp <p N TN T Tegg

using the formula (A) we find that
By (@) = p"[p) "X () Bi  (¢")

dp™

= lim ; Z* x(zn)(zn) g™

C

that is, using (B) and the definition of the operators x?, x¢ and xPx
given by (3.5) and (3.6) we have

dp"™
lim x(cz)(cx)r? [—_N] q~*
N—>oox:1 dp g

_ % ;qul { (Biix(a) =" [p) " x(p) Bi:  (¢"))

A @FT (B (6) — 2T () Bl () }
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This completes the proof. O

Now, we will consider a g-analogue of Nasybullin’s lemma (see [8,
Theorem 1]; we follow the notation of [8]).

Let B! (x;q) be the nth ¢g-Bernoulli polynomials in (2.2). The nth
g-Bernoulli functions P, (x) are define by P,(z) = P(z;q) = B} (z;q)
for 0 < x < 1. They are periodic with period 1 and agree with the
g-Bernoulli polynomials B} (x;q) in the interval 0 < z < 1.

By Lemma 2.4 we have

d—
Z . < qd) = B} (7;9).
=0

Hence for any real number x

dZ; (5 ) = Patasa)

From the above that the function P, (z;q) satisfies the property of ¢-
Nasybullin’s lemma with constants A = d="[d], B = 0. Then p # 0 is
equal to d="[d], as p? = Ap + Bp reduces simply to p? = d~"[d]p. Thus
we define the function p, = fin., on a + dp™¥7Z, by

_ - - a N
pn(a+dpNZy) = (dp™)"dp"] " " Py (d wid® >

This can be extended to a measure on lim  (Z/dp™Z) for N >0.
Let x be a primitive Dirichlet character with conductor d. Then the
generalized g-Bernoulli number in (3.4) is defined by

1 d_PN—l Jk d—1 a
* I T k. n __ a * . d
By (@) = A}EHOOW nZ:% x(n)n®q" = W];)q x(a)By (57(1 ) .
Let
d_pN—l
Lipm,x) = lim > - x(a)pn(a+ dp™Zy)

a=0

= lim > x(@)pa(a+dpVZy),
a (mod dp™)

(a,p)=1
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where >_" means to take sums over the rational integers prime to p in
the given range. Then since the character x is constant on a + dZ,,

Lipn,x) = Jim " x(a)ua(a+dpVZ,)
a (mod dp™)

: 7. N
—Jm oy (@ (a+dpVZ,)
a (mod dp™)

pla

= By, (0) = " [p) " 'x(p) By, (d"),

where B:‘L’X(q) is the nth ¢-Bernoulli number containing y. Thus we
obtain

L (i, xw™) = Bl (@) = P"[p] " xw™ " (p) B}s 10 (¢")

where n > 1 and w is the Teichmiiller character mod p*.

4. I,-integral and Tsumura’s p-adic function

Let z € C, be such that 2" 1 for all N. In [10], N. Koblitz defined

Z(l

N —

He obtained

PROPOSITION 4.1 ([10]). E. is a distribution on X. Let D1 = {z €
C, | |z — 1|, <1}, and let Dy = C,\D; be the complement of the open
unit disc around 1. Then E, is a measure if and only if z € D;.

Note that if ¢ € Dy and ord,(1 — q) # —oo, then p,(a + dpN7Z,) =
(1 — q)E,(a + dpNZ,). Thus py(a + dpNZ,) = % in ¢ € D; and
ordy(1 — ¢q) # —oo is the similar measure as Koblitz measure.

Hereafter, we assume that ¢ € D; and ord,(1 — ¢) # —oc.

Now, for t € C,, with ord,t > p—il, we define a number H (q) by

(4.2) a-1 > Hilg)—-
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Note that H} (¢7') = H,,(q) where the number H,,(q) defined by
l—q _ ynoe H:fni’(ﬂ)tm is called the m-th Euler number belonging to g,

et—q m=0
which lies in an algebraic closure of Q,,.
We can express the numbers H} (q) as an integral over Z,, for d =

1,X = Z,, by using the measure p4, that is,

(4.3) /Z x"dpg(z) = H;,(q) for m > 0.

P

Indeed, we find that

g P
tx . —4q at a
edug(x) = lim eq
[, et = e 3
_1-g¢ - 1—etqupN: q—1
1—qet NSoo 1 —gP" get — 1’

since et?” approaches 1 as N — oo, the limit is 1. Let t € C, with
ord,t > p%l. Then we obtain

. * tm tx . m tm
(1.4) E¥M@W=éemmmi;¢fdwmm.

P

Hence, comparing the above formulas, pr 2" dpg(z) = HY,(q) form > 0.
Note that if ¢ € Dy then pr x™dpg(x) = B, () (see Section 2).
Let w denote the Teichmiiller character mod p*. For x € X™, we set
(x) = x/w(z). For s € Z,, we define
N
lim L-q " _1£

N—>ool—qu 0 ms'
m=

(4.5) O

Then we obtain £, ,(—k) = limy_c0 ﬁ% anN:_Ol q"mk = H}(q) for
k> 0.

Let x be a primitive Dirichlet character with conductor d. For k£ > 0,
the generalized numbers Hy | (¢) is defined by

(4.6) wAQ:Axmﬂwm»
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For s € Z,, we define the function ¢, , by

(4.7) bpals:0 = [ (@) X(@dpg(2)

which is slightly different from the one in [14]. The value of this function
at non-positive integers are given by

ProproSITION 4.2. For any k > 0, we have

Cpg(—k, xw®) = Hy  (q) — p"[p]"x(p) Hj 5, (d")-

Proof. Since pq(pU) = pe(U) for U C X, pr x(x)zFdp,(x) =

Pl [x x(px)(px)*dpgr (x) = k[p]_lx(p)H,’;X(qp). The proof now fol-

lows directly. O

For «, 8 € C, and any function f(q), we set

(4.8) (a+8p") ® f(q) == af(q) + BP" f ().
We have the following Kummer congruences.

COROLLARY 4.3. Ifk =k’ (mod (p — 1)p"), then

H; (q) o Hip L (9)
(1—-x(p)p*) ® f’f . = - x(p)p*) ® f’i_xq (mod p™).
Proof. Note that (see [10, Proposition 2])
‘uq(a +dpNZp) | ' q* _ ‘ q° )
1—gq » A =qldpN]], J1—q®"| — 7

where we use the assumption ¢ € D;. By [12, Chapter 11, §2], if k = &’
(mod (p — 1)p), then we have
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Using the corollary at the end of [12, Chapter II, §5], we easily see that

L—gq l—q
dpiq ()
k QHq
= x(x)z
[ xtayer G
rd T
= [ vt P9 (noa p)
X* -
_ E;qu(_k/’ ka’)
= T,
By Proposition 4.2 and (4.8), the result now follows easily. U

REMARK. By the definition (2.2) and (4.2), we obtain that

iB*()ﬁ_q—l logg+1
o @ = logq \ qet —1
q—l t q—1
logqqet—l

[e.o]

* * tn
:ZH loquHn(q)m.

Equating the coefficient of ", we obtain the following relation between
the g-analogue Bernoulli numbers B*(¢q) and the number H*(q)

n *

Bia) = Hila) + oo Hia(a) (n=1).
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