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Symmetric cube L-functions
for GL2 are entire

By Henry H. Kim and Freydoon Shahidi *

Introduction

The purpose of this paper is to prove the long awaited holomorphy of the
third symmetric power L-functions attached to nonmonomial cusp forms of
GL2 over an arbitrary number field on the whole complex plane.

To be more precise, let F be a number field whose ring of adeles is A = AF .
Let π = ⊗v πv be a cuspidal (unitary) representation of GL2(A). Let S be a
finite set of places of F such that for v 6∈ S, πv is unramified. For each v 6∈ S,
let

tv =
{(

αv 0
0 βv

)}
denote the semisimple conjugacy class of GL2(C) defining πv (cf. [Bo], [La4]).
We recall that if π is attached to a classical modular form of weight k on the
upper half-plane for which the Fourier coefficient at p is ap, then

ap = p
k−1

2 (αp + βp)

= p
k−1

2 (αp + α−1
p ).

Fix a positive integer m. Denote by rm = symm(ρ2), the mth symmetric
power representation of the standard representation ρ2 of GL2(C) = LGL0

2, an
irreducible representation of dimension m + 1 (cf. [De], [La4], [Se], [Sh5, 7],
[T]). Set

LS(s, π, rm) =
∏
v 6∈S

L(s, πv, rm),

where

L(s, πv, rm) = det(I − rm(tv)q−sv )−1

=
∏

0≤j≤m
(1− αjvβm−jv q−sv )−1
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is the Langlands L-function attached to πv and rm. Recall that if Ov and Pv are
the ring of integers of Fv and its unique maximal ideal, then qv = card(Ov/Pv).

The analytic properties (cf. [Sh7]) and special values (cf. [De]) of these
L-functions are of great interest and their consequences have been noted by
several mathematicians [De], [La4], [Muk], [Mur], [Se], [Sh7], [T].

A cuspidal representation π of GL2(A) is called monomial if π ∼= π⊗ η

for some nontrivial grossencharacter η, necessarily quadratic. Let K/F be the
quadratic extension of F attached to η by class field theory. Then there exists a
quasicharacter χ = ⊗w χw of K∗\A∗K which does not factor through the norm
so that if σv = Ind(WFv ,WKw , χw), then πv = π(σv), the representation at-
tached to σv by Langlands correspondence or the Weil representation attached
to χw. Here W∗ denotes the corresponding Weil group, w|v, and π = ⊗v πv
(cf. [L-La], [S-Tan]).

Throughout this paper we shall assume m = 3. By Langlands [La1],
LS(s, π, r3) is a meromorphic function of s on C. If π ∼= π⊗ η, η 6= 1, then
the completed L-function

L(s, π, r3) = L(s, χ3)L(s, χ2χ′),

where the L-functions on the right are those of Hecke attached to quasichar-
acters of K∗\A∗K (cf. Proposition 2.3). The quasicharacter χ′ is the conjugate
of χ by the nontrivial element of the Galois group. Without loss of generality
we may assume the central character ωπ = η · χ|A∗ is trivial on R∗+, where
A∗ = I = I1 · R∗+ with I1 ideles of norm 1 and R∗+ the multiplicative group
of positive real numbers. Observe that this is equivalent to χ|R∗+ ≡ 1. Thus
L(s, π, r3) for such π has poles only at s = 0 and 1 if and only if χ3 = 1.
Moreover, the poles are simple. Observe that since π is cuspidal χ 6= 1. In this
paper we prove (Theorem 4.9):

Theorem 1. Suppose π is not monomial. Then the partial symmetric
cube L-function LS(s, π, r3) is entire.

In fact, what we prove is a much stronger result: the holomorphy of the
full (completed) L-function on all of C, stated in this introduction as Theorem
3, from which Theorem 1 follows.

The interest in this L-function and such a result has a long history and
has attracted the attention of number theorists (cf. [D-I], [De], [H-Ra], [Sh5,
7], for example). Ever since Shimura [Shi] and Gelbart-Jacquet [Ge-J] estab-
lished similar results for LS(s, π, r2) which led to the so-called Gelbart-Jacquet
or adjoint square lift of π to GL3(A) with numerous important applications
(cf. [B-D-H-I], [H-Ra], [Lu-R-Sa1], [Lu-R-Sa2], [La3], [Ra], [Sh4, 7], to name a
few), similar questions were posed for LS(s, π, r3) with the hope that, beside
its arithmetic consequences, it could lead to a lift of π to GL4(A), a result
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of great importance (cf. [Sh7] and in particular the estimate 3/22 for Fourier
coefficients of Maass forms).

It was Langlands who first established the meromorphy of LS(s, π, r3) on
C by expressing it as the constant term of an Eisenstein series on an exceptional
group of type G2 as one of many examples in his Euler Product monograph
[La1], [Go]. His ideas about their functional equations which were explained in
a letter to Godement, were taken up by Shahidi [Sh2, 3, 1], [C-S] who estab-
lished their functional equations in general. This led to a new approach to the
study of automorphic L-functions which is now referred to as the Langlands-
Shahidi method [La1], [M-W2], [Sh1, 3, 4, 5], [K3], [F-Gol]. In the case of
LS(s, π, r3), similar results were observed by Deligne who used the Gelbart-
Jacquet lift Π of π together with the properties of L(s, π×Π) (cf. [J-S], [M-W2],
[Sh5], and Proposition 2.2).

The first instances where the holomorphy of LS(s, π, r3) on all of C were
established were proved in [Mo-Sh] and [Sh5], and it was in [Sh5] that the
local factors ε(s,Πv, r3, ψv) and L(s, πv, r3) were defined for all v and the full
functional equation was stated. Moreover the adjoint cube representation r0

3 =
r3⊗ (Λ2r1)−1 was defined and the machinery for applying the converse theorem
using L(s, π, r0

3, ρ), ρ a grossencharacter, was set up (Theorem 4.1 of [Sh5]).
But the results were conditional (cf. Proposition 2.2.2 here and Theorem 4.1
of [Sh5]) and one purpose of the present paper is to establish the result with
no restriction (Theorem 2 below).

Although several efforts were made, leading to new and interesting L-
functions, it was not until 1994 (date of the preprint) that the first integral
representation for LS(s, π, r3) was found by Bump, Ginzburg, and Hoffstein
[B-G-H]. Their integral generalized that of Shimura [Shi] and Gelbart-Jacquet
[Ge-J] and therefore required a 3-sheet cover of GL2, necessitating that F
contain 3rd roots of 1. It was there that holomorphy of LS(s, π, r3) up to
Re(s) > 3/4 was established, extending the bound Re(s) > 1 of absolute
convergence in [Sh5], a consequence of a similar statement for L(s, π×Π) due
to Jacquet and Shalika [J-S]. Uncompromising complications at archimedean
places have stopped the extension beyond 3/4.

Our method is that of Langlands-Shahidi and is therefore quite represen-
tation theoretic. It starts with an observation of Kim (Observation 4.1), used
first in [K3] to prove that the exterior square L-functions for GLn, n odd,
are entire, and a consequence of Langlands’ theory of Eisenstein series [La2],
[M-W1], that if L(s, π, r0

3) has a pole for 1/2 < s < 1, then the corresponding
residual representation must be unitary [K2]. We recall that arguments of this
type, but in the opposite direction, were used by Speh [Sp] and later by Tadic
[Ta] to determine unitary duals of local groups. Since the unitary dual of G2

over a p-adic field (for real groups see [V]) is now completely determined (see a
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recent article of Muić [Mu]), this gives a contradiction, but not until we bring
an indispensable global element into our proof. (See the discussion before The-
orem 4.3.) This is provided by Ramakrishnan’s recent result [Ra] which states
that many of the πv, v 6∈ S, are tempered (true for all πv by Deligne, if π is
holomorphic). We remark that the possibility of poles on Re(s) = 1/2 needs
to be eliminated by other, all global, means (cf. [Sh5], [La2], and Proposition
2.2 and Lemma 4.7 here).

We give several proofs for Theorem 1 (Theorem 4.9), the first two relying in
varying degrees on [Ra]. The first relies more on global information [Ra], while
the second, which uses the hermitian property of each J(s, πv) if s is a pole
(Observation 4.4), relies more on the classification of Muić [Mu]. As expected,
neither proof is completely local and in fact the first proof uses the existence
of tempered components at a set of (lower) density > 1/2. The possibility
of a pole at s = 1/2 in the first proof is eliminated by using a quadratic base
change [La3], the holomorphy at s = 1/2 if the central character is trivial [Sh5],
a result also used to eliminate the pole at s = 1/2 in the second proof, and
the functional equation [Sh2, 5]. The theorem now follows from the functional
equation. (See Section 2.)

We should remark that having even one unramified tempered component
πv for an arbitrary cuspidal representation π of GL2(A) which was used in the
second proof, is highly nontrivial. In fact, if n ≥ 3, although expected, nothing
as such is known, even though it appears that the methods of [Ra] will give
the existence of tempered components for self contragredient forms on GL(3).

Third, we sketch a proof in which our global ingredient is much weaker
than the two others, namely: Given a cusp form π and any ε > 0, there exists
a local component πv = π(µv| |rvv , µv| |−rvv ), 0 ≤ rv < 1/2, µv a character
of F ∗v , such that rv < ε (cf. [K3]). But, we then need to make much deeper use
of the unitary dual of G2 coming from the conjugacy class of Borel subgroups
([Mu, Th. 5.2]). This is the approach pursued in [K3] as one does not expect
strong results such as those in [Ra] to be available when more general cases
are treated.

As explained in [Sh5], to write the result in a language appropriate for ap-
plying the converse theorem [Co-PS], one needs to consider r0

3 = r3⊗ (Λ2r1)−1.
Let ρ = ⊗v ρv be a grossencharacter. If L(s, πv, r0

3, ρv) is the corresponding
local L-function for each v as defined in [Sh5], i.e. simply

L(s, πv, r0
3, ρv) = L(s, πv⊗ ρv, r

0
3),

let
L(s, π, r0

3, ρ) =
∏
v

L(s, πv, r0
3, ρv).

Similarly define a root number ε(s, π, r0
3, ρ) as in [Sh5]. We have:
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Theorem 2. a) The L-function L(s, π, r0
3, ρ) is entire unless π is mono-

mial. Suppose π ∼= π⊗ η, η 6= 1. Let K/F be the quadratic extension attached
to η. Assume π = π(σ), where σ = Ind(WF ,WK , χ). Then

L(s, π, r0
3, ρ) = L(s, χ2χ′−1

ρK)L(s, χρK),

ρK = ρ. NK/F , and if ωπρ2|R∗+ ≡ 1, then the L-function L(s, π, r0
3, ρ) has poles

only at s = 0 and 1. They appear if and only if χ2χ′−1ρK = 1 and are simple.
b) The standard functional equation

L(s, π, r0
3, ρ) = ε(s, π, r0

3, ρ)L(1− s, π̃, r0
3, ρ
−1)

is satisfied.

One still needs to twist with arbitrary cusp forms on GL2(A) (cf. Theorem
8.2 of [Sh7]), but with this theorem we have hopefully taken a major step in
establishing the symmetric cube lift from GL2(A) to GL4(A), i.e. the existence
of an automorphic form on GL4(A) whose standard L-function is equal to
L(s, π, r3).

More precisely, if Π is the adjoint cube lift of π, which as explained one
expects to establish using a converse theorem, then the symmetric cube lift of
π is simply Π⊗ ωπ, where ωπ is the central character of π (cf. [Sh5]).

We conclude by stating the full result for r3 from which Theorem 1 follows.
By substituting π with π⊗ ωπ and setting ρ = 1 in Theorem 2 we have
(Theorem 4.9):

Theorem 3. a) The L-function L(s, π, r3) is entire unless π is monomial.
Suppose π ∼= π⊗ η, η 6= 1. Let K/F, χ, and σ be as in Theorem 2 so that
π = π(σ). Then

L(s, π, r3) = L(s, χ3)L(s, χ2χ′)

and the poles are simple and if ω3
π|R∗+ ≡ 1, they appear only at s = 0 and 1.

The poles exist if and only if χ3 = 1.
b) The standard functional equation

L(s, π, r3) = ε(s, π, r3)L(1− s, π̃, r3)

is satisfied.

As a consequence of Theorem 3, there is another proof of the following
result. We refer to [Ga], [Ik], [PS-Ral] for original proofs (cf. Remarks 1.1 and
4.12).

Corollary. Suppose π is not monomial. Then the partial Rankin triple
L-function LS(s, π × π × π) is entire.

We should point out that Theorem 3 can also be used to supplement
the necessary holomorphy condition needed in the main Theorem C of [H-Ra]
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which was provided by [B-G-H] there. One can then dispose of Lemma 5.4 of
[H-Ra].

The authors hope to take up related arithmetic questions in future papers.
We would like to thank Dinakar Ramakrishnan for his careful reading of

the manuscript and many useful comments.

1. Preliminaries

Let F be a number field and let G be a split group of type G2 defined over
F . For each place v of F let Fv be the corresponding completion and if v is
finite, let Ov be its ring of integers. If Pv is the maximal ideal of Ov, set qv for
the cardinability of Ov/Pv. If A is the ring of adeles of F , we set A∞ =

∏
v=∞

Fv.

Fix a split Cartan subgroup T in G and let B = TU be a Borel subgroup of
G. Let K∞ be the standard maximal compact subgroup in G(A∞) and let
Kv = G(Ov) for a finite place v. The product K = K∞×

∏
v<∞

Kv is a maximal

compact subgroup in G(A).
We follow Moeglin and Waldspurger [M-W1, App. 2]. In what follows the

roots are those of T in U . Let β1 be the long simple root and β6 the short one.
Let

β2 = β1 + β6, β3 = 2β1 + 3β6, β4 = β1 + 2β6, β5 = β1 + 3β6,

denote the other positive roots.
Let P the maximal parabolic subgroup generated by β1 (the long root).

Then we have a Levi decomposition ([Sh5]) P = MN , with M ' GL2. Thus

a
∗ = X(M)⊗ R = Rβ4, and a = Rβ∨4 .

Here X(M) is the group of F -rational characters of M . If ρP is half the sum
of roots generating N , then ρP = 5

2β4.
Let α̃ = β4 and identify s ∈ C with sα̃ ∈ a

∗
C

. Then sα̃ corresponds to the
character |det(m)|s. Let π = ⊗ πv be a cusp form on M(A) = GL2(A). We
may and will assume that the central character ωπ of π is trivial on R∗+, where
A∗ = I = I1 · R∗+ with I1 ideles of norm 1. Given a K-finite function ϕ in the
space of π, we extend ϕ to a function ϕ̃ on G(A) as in [Sh3] and set

Φs(g) = ϕ̃(g) exp〈s+ ρP , HP (g)〉.

Here HP is the usual Harish-Chandra homomorphism of M into
Hom(X(M),R). We define an Eisenstein series by

E(s, ϕ̃, g) =
∑

γ∈P (F )\G(F )

Φs(γg).
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It is known that E(s, ϕ̃, g) converges for Re(s) >> 0 and extends to a
meromorphic function of s on C, with a finite number of poles in the plane
Re(s) > 0, all simple and on the real axis.

It is also known that L2
dis(G(F )\G(A))(M,π) is spanned by the residues of

Eisenstein series for Re(s) > 0. We note that for each s, the representation of
G(A) on the space of Φs is equivalent to I(s, π) = IndGPπ⊗ exp(〈s,HP ( )〉),
where HP is the Harish-Chandra homomorphism. We know that the poles of
Eisenstein series coincide with those of its constant terms. So it is enough to
consider the constant term along P , which is given for each f ∈ I(s, π) by

E0(s, f, g) =
∑
w∈Ω

M(s, π, w)f(g),

Ω = {1, ρ6ρ1ρ6ρ1ρ6}, and

M(s, π, w)f(g) =
∫
N−w (A)

f(w−1ng) dn.

Weyl group representatives are all chosen to lie in K ∩G(F ). Here

N−w =
∏
α>0

w−1α<0

Uα,

where Uα is the one parameter unipotent subgroup. Then

M(s, π, w) = ⊗ M(s, πv, w),
where

M(s, πv, w)fv(g) =
∫
N−w (Fv)

fv(w−1ng) dn

with f = ⊗ fv, where fv is the unique Kv-fixed function normalized by
fv(ev) = 1 for almost all v.

Let LM = GL2(C) be the L-group of M . Denote by r the adjoint action
of LM on the Lie algebra L

n of LN , the L-group of N .
Then

r = r0
3 ⊕ ∧2r1,

where r1 is the standard representation of GL2(C), r3 is the symmetric cube
representation of GL2(C), and r0

3 = r3⊗ (∧2r1)−1 is the adjoint cube repre-
sentation of GL2(C) (see [Sh5]).

Then it is well-known ([La1], [Sh4], equation (2.7)) that for w=ρ6ρ1ρ6ρ1ρ6

M(s, π, w)f= ⊗
v∈S

M(s, πv, w)fv⊗ ⊗
v/∈S

f̃v ×
LS(s, π̃, r0

3)LS(2s, π̃,∧2r1)
LS(1 + s, π̃, r0

3)LS(1 + 2s, π̃,∧2r1)

where S is a finite set of places of F , including all the archimedean places such
that for every v /∈ S, πv is a class one representation and if f = ⊗

v
fv, then
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for v /∈ S, fv is the unique Kv-fixed function normalized by fv(ev) = 1. The
function f̃v is the Kv-fixed function in the space of I(−s, w(πv)).

Finally, LS(s, π, r0
3) = Π

v/∈S
L(s, πv, r0

3), where L(s, πv, r0
3) is the local Lang-

lands’ L-function attached to πv and r0
3, and LS(s, π,∧2r1) = LS(s, ωπ) is the

partial Hecke L-function, where ωπ is the central character of π. Finally π̃ is
the contragredient of π and ωπ̃ = ω−1

π .

Remark 1.1. Ikeda [Ik] calculated the poles of the Rankin triple
L-function LS(s, π × π × π) for π a cuspidal representation of GL2 [Ga],
[PS-Ral]. The triple L-function is related to the partial symmetric cube L-
function of π as follows:

LS(s, π × π × π) = LS(s, π, r3)(LS(s, π⊗ ωπ))2.

The symmetric cube L-function satisfies

L(s, π, r3) = L(s, π⊗ ωπ, r
0
3).

2. A review of earlier global results

We will continue with our assumption that ωπ|R∗+ ≡ 1. As mentioned
before we will lose no generality and therefore we resume this assumption
throughout our proof. We know the following facts about the symmetric cube
L-functions. Let S be a finite set of places of F such that every πv, v /∈ S,
is of class one, i.e., it has a vector fixed by GL2(Ov). Then the class of each
πv, v /∈ S, is uniquely determined by the conjugacy class of a diagonal matrix

tv =
(
αv 0
0 βv

)
∈ GL2(C).

Then given v /∈ S, the local Langlands’ L-functions are

L(s, πv, r0
3) = (1− α2

vβ
−1
v q−sv )−1(1− αvq−sv )−1(1− βvq−sv )−1(1− α−1

v β2
vq
−s
v )−1

and

L(s, πv, r3) = det(I − r3(tv)q−sv )−1

= (1− α3
vq
−s
v )−1(1− α2

vβvq
−s
v )−1(1− αvβ2

vq
−s
v )−1(1− β3

vq
−s
v )−1.

Theorem 2.1 ([La1], [Sh2, 3, 5]).
(1) Fix a nontrivial additive character ψ = ⊗v ψv of F\A, unramified for

v /∈ S. Then at every place v ∈ S, a local L-function L(s, πv, r3) and a local
root number ε(s, πv, r3, ψv) (which equals 1 if πv and ψv are unramified)
can be defined so that if L(s, π, r3) =

∏
v L(s, πv, r3) and ε(s, π, r3) =∏

v ε(s, πv, r3, ψv), then

L(s, π, r3) = ε(s, π, r3)L(1− s, π̃, r3),

where π̃ is the contragradient of π. Similarly for L(s, π, r0
3).
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(2) L(s, π, r3) and L(s, π, r0
3) both converge absolutely for Re(s) > 1 and are

therefore holomorphic and nonzero over that region.

(3) They can be extended to meromorphic functions of s on C.

(4) They never vanish on the line Re(s) = 1.

Proposition 2.2 (Shahidi [Sh5]).

(1) Suppose ωπ = 1. Then L(s, π, r0
3) and L(s, π, r3) are holomorphic at s = 1

2 .

(2) The L-function L(s, π, r0
3) has no poles except possibly for simple ones

on the interval 1
2 ≤ s < 1. If Π is the Gelbart-Jacquet lift of π, then

L(s, π, r0
3) = L(s, π ×Π)/L(s, π).

Proposition 2.3. Suppose π is a monomial cuspidal representation of
GL2(A), i.e., π ⊗ η ' π for some nontrivial character η of F ∗\A∗; then
L(s, π, r0

3) has poles possibly only at s = 0, 1 and nowhere else. It has a pole at
s = 1 and 0 if and only if π corresponds to the two-dimensional Galois repre-
sentations of the Weil group of F with the image isomorphic to the symmetric
group S3. The poles are simple.

Proof. We give a proof from [Sh5], [Za]. Suppose π⊗ η ' π for a nontrivial
grössencharacter η. Then η2 = 1 and η determines a quadratic extension E/F .
According to [L-La], there is a grössencharacter χ of E such that π = π(χ),
where π(χ) is the automorphic representation whose local factor at v is the one
attached to the representation of the local Weil group induced from χv. Let
χ′ be the conjugate of χ by the action of the nontrivial element of the Galois
group. Then the Gelbart-Jacquet lift is given by

Π = IndGL3(A)
P (A) (π(χχ′−1)⊗ η),

where P is the standard maximal parabolic subgroup of GL3 of type (2,1). The
representation π(χχ′−1) is cuspidal unless χχ′−1 factors through the norm.
Then

L(s, π, r0
3) = L(s, π(χ)× π(χχ′−1))

= L(s, χ2χ′−1)L(s, χ).

This has a pole for Re s > 0 if and only if π(χχ′−1) is cuspidal and π(χχ′−1) '
π(χ). This is equivalent to χ3 = 1, χ 6= 1 and χ|A× = 1. Representations in
this class correspond to the two-dimensional Galois representations of the Weil
group of F whose images are isomorphic to the symmetric group S3.

Remark 2.1. Note that the central character of π(χ) is η ·χ|A× . Therefore
in the above case, the central character of π = π(χ) is ωπ = η and it is a
nontrivial quadratic character.
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So from this section on, we may assume that π is a nonmonomial cuspidal
representation of GL2(A). Our goal is to prove that L(s, π, r3) and L(s, π, r0

3)
are both entire.

Proposition 2.4 ([J-S], [Sh5]). Suppose π is nonmonomial. Then
L(s, π, r3) has no poles on the line Re(s) = 1.

Therefore it is enough to show that L(s, π, r0
3) is holomorphic for the region

1
2 ≤ s < 1. Our proof will not apply to s = 1/2 and we therefore treat that
separately.

3. Analysis of local intertwining operators

In this section we prove two useful propositions. We normalize the local
intertwining operators by means of root numbers and L-functions as in [Sh1]
(cf. Section 2 here). Notation will remain as in [Sh1]. In both propositions πv
is a local component of π, although the results and the proofs are valid for any
local unitary representation.

Proposition 3.1. The normalized intertwining operator N(s, πv, w) is
holomorphic for Re s > 0.

Proof. For πv tempered and Re(s) > 0, the local factors L(s, π̃v, ri) and
M(s, πv, w) are holomorphic. Moreover L(s, π̃v, ri) is never zero. Next assume
πv is a complementary series; πv = π(µ| |r, µ| |−r), 0 < r < 1

2 . Here we have
suppressed the dependence of µ and r on v. We follow [K2] and [Za]. Under
the identification M ' GL2,

(3.1) IndG(Fv)
P (Fv)πv⊗ exp(〈sα̃,HP ( )〉) = IndG(Fv)

B(Fv)χ⊗ exp(〈Λ, HB( )〉),

where Λ = (2r)β3 + (s − 3r)β4. Here χ is defined by conditions χ ◦ β∨3 =
χ ◦ β∨5 = µ. Then χ ◦ β∨1 = 1 and χ ◦ β∨6 = µ. We can identify the operator
M(s, πv, w) with M(Λ, χ, w).

For non-archimedean places, by Winarsky’s result [W, p. 952], M(Λ, χ, w)
is holomorphic unless µ = 1, s ∈ {±r,±3r} or µ2 = 1, s = 0. But these are
just poles of L(s, π̃v, r0

3)L(2s, ω−1
πv ) and the assertion is proved. Note that

L(s, π̃v, r0
3)L(2s, ω−1

πv ) has no zeros. For archimedean places, we use [Sh6,
p. 110].

The following proposition is due to [Za]. In [K2], only the case Re(s− 3r)
> 0 was treated.

Proposition 3.2. Suppose 1/2 ≤ Re(s) < 1. Then for each v, the
image of N(s, πv, w) is irreducible. We denote this image by J(s, πv). If πv is
tempered, it is the ordinary Langlands’ quotient of I(s, πv).
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Proof. Note that −1 < Re(s − 3r) < 1, 〈Λ, β∨6 〉 = s − 3r, and 〈Λ, β∨1 〉
= 2r. Therefore, the normalized operators N(ρ6,Λ) and N(ρ6, ρ6Λ) are both
holomorphic and N(ρ6, ρ6Λ)N(ρ6,Λ) = I. (See the proof of Proposition 3.1
and the form of the normalizing factors.) Note that we have suppressed the
dependence on χ in the notation. Therefore N(ρ6,Λ) is an isomorphism. In
the same way, we can show that N(ρ1,Λ) is an isomorphism.

If Re(s−3r) > 0, then Λ is in the positive Weyl chamber for 1
2 ≤ Re (s) < 1

and so it is irreducible by Langlands’ classification. Let us be more precise.
The element w = ρ6ρ1ρ6ρ1ρ6 is not the longest element of the Weyl group
associated to the Borel subgroup. However, wρ1 = ρ1w is. Then N(ρ1w,Λ) =
N(ρ1, wΛ)N(w,Λ). By Langlands’ classification, the image of N(ρ1w,Λ) is
irreducible and by the same method N(ρ1, wΛ) is an isomorphism. Therefore,
the image of N(w,Λ) is irreducible.

If Re(s−3r) < 0, then Λ is not in the positive Weyl chamber. But ρ6(Λ) =
(s− r)β3 + (3r − s)β4 is in the positive Weyl chamber. Now use the fact that
ρ1wρ6 = ρ6ρ1w. So N(ρ1w, ρ6Λ)N(ρ6,Λ) = N(ρ6, ρ1wΛ)N(ρ1, wΛ)N(w,Λ).
We note that the normalized operators attached to ρ1 and ρ6 are isomorphisms.
Therefore, again the image of N(w,Λ) is irreducible.

Suppose Re(s− 3r) = 0. Then by inducing in stages, we have:

IndG(Fv)
B(Fv)χ⊗ exp(< Λ, HB( ) >) = IndG(Fv)

P ′(Fv)π
′
v⊗ exp(〈2rα̃′, HP ′( )〉),

where π′v = IndGL2(Fv)
B0(Fv) χ(1, µ) and P ′ is the other maximal parabolic subgroup

of G. We note from [K2] that P ′ = M ′N ′, M ′ ' GL2 and α̃′ = β3 and χ(1, µ)
is the character of T (F ) with respect to this identification. Here B0 = M ′∩B.
Again by Langlands’ classification, the image of N(s, πv, w) is irreducible.

The fact that J(s, πv) is the Langlands quotient when πv is tempered
follows from the fact that M(s, πv, w) and N(s, πv, w) are proportional if πv is
tempered (cf. proof of Proposition 3.1).

4. Proof of the main theorem

Recall the following from [K3]:

Observation 4.1. If L(s, π, r0
3) has a pole for 1

2 ≤ s < 1, then J(s, π̃)
= ⊗vJ(s, π̃v) belongs to the residual spectrum L2

dis(G(F )\G(A))(M,π̃), and con-
sequently each J(s, π̃v) is unitary.

Proof. By [La2], [M-W1] the global intertwining operator M(s, π, w) gives
the poles of the Eisenstein series. In view of the results in Section 2 and
Proposition 3.1, they are precisely those of L(s, π, ro3) if 1/2 ≤ s < 1. Moreover
the residue at a given (simple) pole s on this interval is J(s, π̃) = ⊗v J(s, π̃v),
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an irreducible representation (Proposition 3.2) which by [La2], [M-W1] appears
in L2 and is therefore unitary. More precisely by [La1], [M-W1], the kernel of
the residue of the Eisenstein series, a map from I(s, π̃) into the L2-space, is
exactly that of the normalized operator N(s, π̃, w) = ⊗v N(s, π̃v, w) whose
image is the irreducible representation J(s, π̃).

The new local result which we need to rely on is in a recent article of Muić
[Mu] in which he has determined the unitary dual ofG2 over a non-archimedean
field completely. Here, we recall a part of the classification needed.

Theorem 4.2 (Muić [Mu]). If πv is tempered and s is real, then J(s, πv)
is unitary if and only if one of the following conditions is satisfied :

(1) πv is a supercuspidal representation ρ such that ρ ' ρ̃, ωρ = 1, and
0 < s ≤ 1

2 .

(2) πv is a supercuspidal representation ρ such that ρ ' ρ̃, and Im(τ) ' S3

(the symmetric group in 3 variables), and 0 < s ≤ 1, where ρ = π(τ)
and τ :WF 7−→ GL(2,C) is the attached admissible homomorphism. Then
detτ = ωρ via class field theory.

(3) πv is a non-supercuspidal discrete series and 0 < s ≤ 1
2 .

(4) πv ' π(µv, µ−1
v ), µ3

v 6= 1, and 0 < s ≤ 1
2 .

(5) πv ' π(µv, µ−1
v ), µ3

v = 1, and 0 < s ≤ 1
2 or s = 1.

(6) πv ' π(1, µv), µv has order two, and 0 < s ≤ 1.

Next we observe that if πv = π(| |r, | |−r), 0 < r < 1/2, is a complemen-
tary series representation of M(Fv) = GL2(Fv), then by (3.1):

I(s, πv) = I(Λ, 1),

where Λ = 2rβ3 + (s − 3r)β4 is as in Proposition 3.1. By Theorem 5.2 of
[Mu], the shaded upper triangle of the unitary dual coming from the conjugacy
class of Borel subgroups is defined by inequalities 〈Λ, β∨2 〉 > 1, 〈Λ, β∨3 〉 < 1,
〈Λ, β∨1 〉 > 0, and 〈Λ, β∨6 〉 > 0. Since 〈Λ, β∨2 〉 = s + 3r and 〈Λ, β∨3 〉 = s + r,
while 〈Λ, β∨1 〉 = 2r and 〈Λ, β∨6 〉 = s−3r, this triangle has the points (1/6, 1/2),
(1/4, 3/4), and (0, 1) as its vertices in the rs-plane. Consequently for each
0 < r < 1/4, there exists 1/2 < s < 1 for which J(s, πv) is unitary and all
such s are attained for 0 < r < 1/4.

In view of this observation it is clear that to eliminate the poles between
1/2 and 1 (Theorem 4.9), beside those of Section 2 and Observation 4.1, one
still needs another global ingredient since a priori local components πv could
all be in the complementary series, i.e. nontempered. For this we use a recent
result of Ramakrishnan [Ra] that allows an arbitrary cuspidal representation
to have tempered components at a subset of finite places of F with a fairly
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large lower Dirichlet density, a very deep result. In both proofs that we give
for our main result (Theorem 4.9), we need his result, but to differing degrees.
One requires his density, but not fully, while the other uses the fact that the
cusp form has at least one nondiscrete (non-supercuspidal is enough) tempered
component, still a fairly deep global result. Consequently the second proof
relies more on local results.

We recall Ramakrishnan’s result [Ra]:

Theorem 4.3 (Ramakrishnan [Ra]). Let π be a cuspidal , unitary repre-
sentation of GL2(A). Let S(π) be the set of primes where πv is tempered. For
any set X of primes, denote by δ(X) the lower Dirichlet density of X. Then

δ(S(π)) ≥ 9
10
.

Next, let J(ν, σ) be the Langlands quotient for an irreducible unitary
representation of G. Let P1 = M1N1 be the corresponding standard parabolic
subgroup, N1 ⊂ U , so that σ is a tempered representation of M1(Fv) and
ν ∈ a

∗
M1

, where aM1 is the real Lie algebra of the split component A1 of M1.
Then since J(ν, σ) is unitary, it is hermitian [K3]. This means that there
exists an element w1 in the Weyl group of A1 in G satisfying w1(σ) ∼= σ and
w1(ν) = −ν, where ν is real. We record this observation from [K3] as:

Observation 4.4. Any unitary representation is hermitian.

Lemma 4.5. Assume πv is tempered and J(s, πv) is unitary. Moreover
suppose s is real. Then πv ∼= π̃v. In particular ω2

πv = 1.

Proof. Since πv is tempered and J(s, πv) is unitary, it must be hermitian
by Observation 4.4. Consequently w(πv) ∼= πv. By the discussion in the last
part of the proof of Proposition 6.1 of [Sh5], w(πv) = πv⊗ ω−1

πv = π̃v ∼= πv.

Lemma 4.6. Suppose L(s, π, r0
3) has a pole for 1/2 ≤ s < 1. Then ω2

π = 1.

Proof. By Ramakrishnan’s Theorem 4.3 and Lemma 4.5, ω2
πv = 1 for a

set of primes whose lower Dirichlet density is at least 9/10. One can now
apply either the equidistribution of values of ωπ, or as pointed out to us by
Ramakrishnan, use the simpler result of Hecke that two idele class characters
agreeing at all the places in a set of Dirichlet density larger than 1/2 are equal,
to conclude that ω2

π = 1.

Lemma 4.7. The L-function L(s, π, r0
3) is holomorphic at s = 1/2.

Proof. By Part 1 of Proposition 2.2, we may assume ωπ 6= 1. By Lemma
4.6, ω2

π = 1, ωπ 6= 1. Let E/F be the quadratic extension of F defined by ωπ.
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Denote by Π the base change [La3] of π to GL2(AE). Since π is not
monomial Π remain cuspidal [La3]. Then

L(s,Π, r0
3) = L(s, π, r0

3)L(s, π⊗ ωπ, r
0
3).

Note that π⊗ ωπ = π̃ and by the functional equation (Theorem 2.1.1),

L(1/2, π, r0
3) = ε(1/2, π, r0

3)L(1/2, π̃, r0
3).

Thus if L(s, π, r0
3) has a pole at s = 1/2, then L(s,Π, r0

3) must have a double
pole at s = 1/2. This contradicts the holomorphy (in fact simplicity of the
pole is enough) of L(s,Π, r0

3) at s = 1/2, as the central character of Π is trivial,
again by Proposition 2.2.1, which completes the lemma.

The following lemma relies more on local results of Muić [Mu], and Propo-
sitions 3.1 and 3.2 here. It reduces our use of [Ra] to π having a single nondis-
crete tempered component, still a fairly deep global result. We will use this
lemma to give a second proof of our main result.

Lemma 4.8. J(s, πv) is hermitian if and only if πv ∼= π̃v. Consequently
if L(s, π, r0

3) has a pole for s > 0, then π ∼= π̃.

Proof. In view of Lemma 4.5, we may assume πv = π(µ| |r, µ| |−r), where
µ is a unitary character of F ∗v and 0 < r < 1/2. Again we have suppressed the
dependence of µ and r on v. Then

I(s, πv) ∼= IndG(Fv)
B(Fv)χ⊗ exp(〈Λ, HB( )〉)

defn= I(Λ, χ),

where Λ = (2r)β3 + (s − 3r)β4 and χ is as in the proof of Proposition 3.1;
i.e. χ ◦ β∨3 = χ ◦ β∨5 = µ. The longest element in the Weyl group of T in G

sends χ to χ−1. Suppose s − 3r > 0. Then the Langlands quotient J(s, πv)
of (3.1) being hermitian implies χ−1 = χ, leading to ωπv = µ2 = 1. Now
suppose Re(s−3r) < 0. Then as in Proposition 3.2, the Langlands quotient of
the (standard) module induced from χ′ = ρ6(χ) and ρ6(Λ) is again hermitian.
This time χ′ ◦ β∨5 = 1, while χ′ ◦ β∨1 = µ. The same argument now applies.
The case s− 3r = 0 is even easier. The lemma is now proved.

We are now ready to prove the main result of our paper:

Theorem 4.9. Suppose π is not monomial. Then the symmetric cube
L-function L(s, π, r3) and the adjoint cube L-function L(s, π, r0

3) are both en-
tire.

Proof. We shall give three proofs. The first one relies more on global
results [Ra] than local ones [Mu]. Besides the results in Section 2, it requires
Lemmas 4.5, 4.6, and 4.7. The second one is more local and uses more of
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classification of the unitary dual of G2 over a non-archimedean field [Mu].
But it still needs Ramakrishnan’s global result [Ra], although not as strongly.
Besides the results in Sections 2 and 3, it requires Lemma 4.8.

First proof. In view of the results in Section 2 and Lemma 4.7 we only
need to show that the L-functions are holomorphic for 1/2 < s < 1. Suppose
L(s, π, r0

3) has a pole for 1/2 < s < 1. Then by Lemma 4.6, ω2
π = 1. By

equidistribution of values of ωπ, ωπv = 1 for a set of (finite) primes v with a
Dirichlet density at least 1/2. On the other hand by Theorem 4.3, the lower
Dirichlet density for primes with πv tempered is at least 9/10. By Observation
4.1 we therefore have a finite place v and a nondiscrete tempered component
πv with a trivial central character such that J(s, πv) is unitary. By parts (4)
and (5) of Theorem 4.2 this is a contradiction, which completes the theorem.

Second proof. Assume that s (with 1/2 < s < 1) is a pole of L(s, π, r0
3).

Then by Lemma 4.8, π ∼= π̃ = π⊗ ω−1
π . Unless ωπ = 1, π is monomial.

We therefore need to assume ωπ = 1. By Theorem 4.3 there is at least one
unramified tempered component πv. Since ωπv = 1, Parts 4 and 5 of Theo-
rem 4.2 show that J(s, πv) is not unitary, contradicting the pole at s. The
pole at s = 1/2 is eliminated by Proposition 2.2.1 and the theorem is now a
consequence of the results of Section 2, particularly the functional equation.

Sketch of a third proof. Our global ingredient is now the much weaker
result that given ε > 0, there exists a local component πv = π(µv| |rvv , µv| |−rvv ),
0 ≤ rv < 1/2, µv ∈ F̂ ∗v , such that rv < ε (cf. [K3]). We now drop the subscript
v from our notation and observe that if χ1 and χ2 are characters of F ∗v as in
Theorem 5.2 of [Mu], then χ1 = χ ·β∨5 = µ = µv and χ2 = χ.β∨1 = 1, where χ is
as in the proof of Proposition 3.1. We translate the unitary dual of G2 coming
from the conjugacy class of its Borel subgroups, given by Theorem 5.2 of [Mu],
to our rs-plane, r = rv, as in the discussion immediately after Theorem 4.2.
If µ = 1, then χ1 = χ2 = 1 and the contribution to the unitary dual will
consist of the two shaded triangles of Figure 1, page 483, of [Mu], which in
the rs-plane have (0, 1), (1/4, 3/4), (1/6, 1/2), and (0, 1/2), (1/6, 1/2), (0,0) as
their vertices. On the other hand, if µ2 = 1, but µ 6= 1, then χ2

1 = χ2 = 1, but
χ1 6= 1, and we are in Case (iii) of Theorem 5.2 of [Mu]. The contribution now
comes only from the lower triangle (0, 1/2), (1/6, 1/2), (0, 0). Now, if s is a pole
for L(s, π, r0

3), 1/2 < s < 1, we choose v such that 0 < rv < (1 − s)/3. This
gives a parameter inside the triangle whose vertices are (0,1), (1/6, 1/2), and
(0,1/2) which cannot be unitary, a contradiction. Observe that the fact that
the inside of this last triangle cannot afford any unitary parameter is crucial
and remarkable. To conclude we apply Lemma 4.7.
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Remark 4.10. As discussed in the introduction, using an integral rep-
resentation, Bump, Ginzburg, and Hoffstein [B-G-H], have also proved the
holomorphy of the partial L-function LS(s, σ, r3) for Re(s) > 3/4, provided
that F has cube roots of unity.

Remark 4.11. From Proposition 2.2 and Theorem 4.9, it follows that
L(s, π × Π)/L(s, π) is entire, where Π is the Gelbart-Jacquet lift of π. This
means that the zeros of L(s, π) are among those of L(s, π ×Π).

Remark 4.12. From Remark 1.1 and Theorem 4.9, it follows that the
partial Rankin triple L-function LS(s, π × π × π) is entire for a nonmonomial
representation π. It also follows that the zeros of LS(s, π⊗ ωπ)2 are among
those of LS(s, π× π× π) and in particular LS(s, π× π× π) could have double
zeros at s = 1/2.

Remark 4.13.
(1) In calculation of the residual spectrum in [K2], the first author had to

assume the holomorphy of L(s, π, r0
3) for nonmonomial representations,

together with a bound on the Fourier coefficients, in order to prove Propo-
sition 3.2. Since we now have these facts by Proposition 3.2 and Theorem
4.9, we can remove those assumptions from [K2].

(2) In calculation of the residual spectrum associated to Borel subgroups,
in [K2] the first author assumed that the archimedean components were
spherical. Now Zampera [Za] has removed this condition and therefore
the archimedean places can be treated the same way as others.

(3) The first author likes to make the following corrections to [K2]. On page
1245, line 10, G should be assumed to have anisotropic center. In line 12
of page 1248, Zampera should be referred to with a masculine pronoun.
In the character table of S4 on page 1266, ψ211, ψ22, and ψ31, should
respectively be changed to ψ22, ψ31, and ψ211. Finally, in line 1 of page
1271, Λ should be Λ = (s − r)β3 + (2r)β4 and therefore the assumption
r < 1/6 in Theorem 5.1 is unnecessary.
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605–674.

[Mo-Sh] C. J. Moreno and F. Shahidi, The L-function L3(s, π∆) is entire, Invent. Math.
79 (1985), 247–251.
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