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Abstract. In this paper, by using q-deformed bosonic p-adic integral,
we give λ-Bernoulli numbers and polynomials, we prove Witt’s type for-
mula of λ-Bernoulli polynomials and Gauss multiplicative formula for
λ-Bernoulli polynomials. By using derivative operator to the generating
functions of λ-Bernoulli polynomials and generalized λ-Bernoulli num-
bers, we give Hurwitz type λ-zeta functions and Dirichlet’s type λ-L-
functions; which are interpolated λ-Bernoulli polynomials and general-
ized λ-Bernoulli numbers, respectively. We give generating function of λ-
Bernoulli numbers with order r. By using Mellin transforms to their func-
tion, we prove relations between multiply zeta function and λ-Bernoulli
polynomials and ordinary Bernoulli numbers of order r and λ-Bernoulli
numbers, respectively. We also study on λ-Bernoulli numbers and poly-
nomials in the space of locally constant. Moreover, we define λ-partial
zeta function and interpolation function.

Introduction, definitions and notations

Throughout this paper, Z, Zp, Qp and Cp will be denoted by the ring of
rational integers, the ring of p-adic integers, the field of p-adic rational numbers
and the completion of the algebraic closure of Qp, respectively. Let νp be the
normalized exponential valuation of Cp with |p|p = p−νp(p) = 1

p , (cf. [2, 3, 4,
5, 6, 7, 8, 9, 16, 17, 20, 26]).

When one talks of q-extension, q considered in many ways such as an in-
determinate, a complex number q ∈ C, as p-adic number q ∈ Cp. If q ∈ C
one normally assumes that |q| < 1. If q ∈ Cp, we normally assume that
|q − 1|p < p−

1
p−1 so that qx = exp(x log q) for |x|p ≤ 1. We use the following
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notations:

[x] = [x : q] =
1− qx

1− q
(cf. [3, 4, 5, 6, 8, 9, 24, 26, 28]).

Observe that when limq→1[x] = x, for any x with |x|p ≤ 1 in the present p-adic

case [x : a] =
1− ax

1− a
.

Let d be a fixed integer and let p be a fixed prime number. For any positive
integer N , we set

X = lim←−
N

(
Z/dpNZ

)
,

X∗ = ∪0<a<dp,(a,p)=1(a + dpZp),

a + dpNZp = {x ∈ X|x ≡ a (mod dpn)},

where a ∈ Z lies in 0 ≤ a < dpN . We assume that u ∈ Cp with |1 − u|p ≥ 1.
(cf. [3, 4, 5, 6, 7, 8, 24, 26]).

For x ∈ Zp, we say that g is a uniformly differentiable function at point
a ∈ Zp, and write g ∈ UD(ZP ), the set of uniformly differentiable functions, if
the difference quotients,

Fg(x, y) =
g(y)− g(x)

y − x
,

have a limit l = g′(a) as (x, y) → (a, a). For f ∈ UD(Zp), the q-deformed
bosonic p-adic integral was defined as

(A)

Iq(f) =
∫

Zp

f(x)dµq(x)

= lim
N→∞

pN−1∑
x=0

f(x)µq(x + pNZp)

= lim
N→∞

pN−1∑
x=0

f(x)
qx

[pN ]
, (cf. [4, 5, 9]).

By Eq-(A), we have

lim
q→−q

Iq(f) = I−q(f) =
∫

Zp

f(x)dµ−q(x).

This integral, I−q(f), give the q-deformed integral expression of fermioinc.
The classical Euler numbers were defined by means of the following generating
function:

2
et + 1

=
∞∑

m=0

Em
tm

m!
, |t| < π (cf. [6, 7, 20, 21]).
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Let u be algebraic in complex number field. Then Frobenius-Euler polyno-
mials [6, 7, 20, 21] were defined by

(A1)
1− u

et − u
ext = eH(u,x)t =

∞∑
m=0

Hm(u, x)
tm

m!
,

where we use technical method’s notation by replacing Hm(u, x) by Hm(u, x)
symbolically. In case x = 0, Hm(u, 0) = Hm(u), which is called Frobenius-Euler
number. The Frobenius-Euler polynomials of order r, denoted by H

(r)
n (u, x),

were defined by
(

1− u

et − u

)r

etx =
∞∑

n=0

H(r)
n (u, x)

tn

n!
(cf. [7, 10, 25, 26]).

The values at x = 0 are called Frobenius-Euler numbers of order r. When
r = 1, these numbers and polynomials are reduced to ordinary Frobenius-Euler
numbers and polynomials. In the usual notation, the n-th Bernoulli polynomial
were defined by means of the following generating function:

(
t

et − 1

)
etx =

∞∑
n=0

Bn(x)
tn

n!
.

For x = 0, Bn(0) = Bn are said to be the n-th Bernoulli numbers. The
Bernoulli polynomials of order r were defined by

(
t

et − 1

)r

etx =
∞∑

n=0

B(r)
n (x)

tn

n!

and B
(r)
n (0) = B

(r)
n are called the Bernoulli numbers of order r. Let x, w1, w2,

. . ., wr be complex numbers with positive real parts. When the generalized
Bernoulli numbers and polynomials were defined by means of the following
generating function:

w1w2 · · ·wrt
rext

(ew1t − 1)(ew2t − 1) · · · (ewrt − 1)
=

∞∑
n=0

B(r)
n (x | w1, w2, . . . , wr)

tn

n!

and B
(r)
n (0 | w1, w2, . . . , wr) = B

(r)
n (w1, w2, . . . , wr) (cf. [13, 15]).

The Hurwitz zeta function is defined by

ζ(s, x) =
∞∑

n=0

1
(x + n)s

,

ζ(s, 1) = ζ(s), which is the Riemann zeta function. The multiple zeta functions
[12, 26] were defined by

(C) ζr(s) =
∑

0<n1<n2<···<nr

1
(n1 + · · ·+ nr)s

.

We summarize our paper as follows:
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In section 1, by using q-deformed bosonic p-adic integral, the generating
functions of λ-Bernoulli numbers and polynomials are given. From these gen-
erating functions, we derive many new interesting identities related to these
numbers and polynomials and we prove Gauss multiplicative formula for λ-
Bernoulli numbers. Witt’s type formula of λ-Bernoulli polynomials is given.

In section 2, by using derivative operator
(

d

dt

)k
∣∣∣∣∣
t=0

to the generating func-

tion of the λ-Bernoulli numbers, we construct Hurwitz’ type λ-zeta function,
which interpolates λ-Bernoulli polynomials at negative integers.

In section 3, by using same method of section 2, we give Dirichlet type
λ-L-function which interpolates generalized λ-Bernoulli numbers.

In section 4, the generating functions of λ-Bernoulli numbers of order r
are obtained. From these generating generating functions, we derive some
interesting relations between multiple zeta functions and λ-Bernoulli numbers
of order r.

In section 5, we give some important identities related to generalized λ-
Bernoulli numbers of order r.

In section 6, we study on λ-Bernoulli numbers and polynomials in the space
of locally constant. In this section, we also define λ-partial zeta function which
interpolates λ-Bernoulli numbers at negative integers.

In section 7, we give p-adic interpolation functions.

1. λ-Bernoulli numbers

In this section, by using Eq-(A), we give integral equation of bosonic p-
adic integral. By using this integral equation we define generating function of
λ-Bernoulli polynomials. We give fundamental properties of the λ-Bernoulli
numbers and polynomials. We also give some new identities related to λ-
Bernoulli numbers and polynomials. We prove Gauss multiplicative formula for
λ-Bernoulli numbers as well. Witt’s type formula of λ-Bernoulli polynomials
is given.

To give the expression of bosonic p-adic integral in Eq-(A), we consider the
limit

(0) I1(f) = lim
q→1

Iq(f) =
∫

Zp

f(x)dµ1(x) (cf. [16, 17, 18, 21]),

in the sense of bosonic p-adic integral on Zp (= p-adic invariant integral on
Zp). From this p-adic invariant integral on Zp, we derive the following integral
equation:

(1) I1(f1) = I1(f) + f ′(0) (cf. [17]),

where f1(x) = f(x + 1). Let Cpn be the space of primitive pn-th root of unity,

Cpn = {ζ | ζpn

= 1}.



ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS 439

Then, we denote
Tp = lim

n→∞
Cpn =→

n≥0
∪Cpn .

For λ ∈ Zp, we take f(x) = λxetx, and f1(x) = etλf(x). Thus we have

(2) f1(x)− f(x) = (λet − 1)f(x).

By substituting (2) into (1), we get

(2a) (λet − 1)I1(f) = f ′(0), (cf. [4, 21]).

Consequently, we have

(3)
log λ + t

λet − 1
:=

∞∑
n=0

Bn(λ)
tn

n!
, (cf. [4]).

By using Eq-(3), we obtain

λ(B(λ) + 1)n −Bn(λ) =





log λ, if n = 0
1, if n = 1
0, if n > 1,

with the usual convention of replacing Bn(λ) by Bn(λ), (cf. [4, 17, 18, 21]).
From this result, we derive the values of some Bn(λ) numbers as follows:

B0(λ) =
log λ

λ− 1
, B1(λ) =

λ− 1− λ log λ

(λ− 1)2
, . . . , (cf. [4, 17, 21]).

We note that, if λ ∈ Tp, for some n ∈ N, then Eq-(2a) is reduced to the
following generating function:

(3a)
t

λet − 1
=

∞∑
n=0

Bn(λ)
tn

n!
(cf. [4]).

If λ = e2πi/f , f ∈ N and λ ∈ C, then Eq-(3) is reduced to (3a). Eq-(3a) is
obtained by Kim [3]. Let u ∈ C, then by substituting x = 0 into Eq-(A1), we
set

(3b)
1− u

et − u
=

∞∑
n=0

Hn(u)
tn

n!
(cf. [4, 17, 18, 21]).

Hn(u) is denoted Frobenius-Euler numbers. Relation between Hn(u) and
Bn(λ) is given by the following theorem:

Theorem 1. Let λ ∈ Zp. Then

(4)
Bn(λ) =

log λ

λ− 1
Hn(λ−1) +

nHn−1(λ−1)
λ− 1

,

B0(λ) =
log λ

λ− 1
H0(λ−1).
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Proof. By using Eq-(3), we have
∞∑

n=0

Bn(λ)
tn

n!
=

log λ + t

λet − 1
=

log λ

λet − 1
+

t

λet − 1

=
1− λ−1

(1− λ−1)λ
·
(

log λ

et − λ−1

)
− (1− λ−1)

(et − λ−1)
· t

λ(1− λ−1)

=
log λ

λ− 1

∞∑
n=0

Hn(λ−1)
tn

n!
+

t

λ− 1

∞∑
n=0

Hn(λ−1)
tn

n!
,

the next to the last step being a consequence of Eq-(3b). After some elementary
calculations, we have

∞∑
n=0

Bn(λ)
tn

n!
=

log λ

λ− 1
H0(λ−1)

+
∞∑

n=1

(
log λ

λ− 1
Hn(λ−1) +

n

λ− 1
Hn−1(λ−1)

)
tn

n!
.

By comparing coefficient
tn

n!
in the above, then we obtain the desired result. ¤

Observe that, if λ ∈ Tp in Eq-(4), then we have, B0(λ) = 0 and Bn(λ) =
nHn−1(λ−1)

λ− 1
, n ≥ 1.

By Eq-(3) and Eq-(4), we obtain the following formula:
For n ≥ 0, λ ∈ Zp

(4a)
∫

Zp

λxxndµ1(x) =





log λ

λ− 1
H0(λ−1), n = 0

log λ

λ− 1
Hn(λ−1) +

n

λ− 1
Hn−1(λ−1), n > 0

and

(4b)
∫

Zp

λxxndµ1(x) = Bn(λ), n ≥ 0.

Now, we define λ-Bernoulli polynomials, we use these polynomials to give the
sums powers of consecutive. The λ-Bernoulli polynomials are defined by means
of the following generating function:

(5)
log λ + t

λet − 1
etx =

∞∑
n=0

Bn(λ;x)
tn

n!
.

By Eq-(3) and Eq-(5), we have

Bn(λ; x) =
n∑

k=0

(
n

k

)
Bk(λ)xn−k.

The Witt’s formula for Bn(λ;x) is given by the following theorem:
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Theorem 2. For k ∈ N and λ ∈ Zp, we have

(6) Bn(λ; x) =
∫

Zp

(x + y)nλydµ1(y).

Proof. By substituting f(y) = et(x+y)λy into Eq-(1), we have
∫

Zp

et(x+y)λydµ1(y) =
∞∑

n=0

Bn(λ; x)
tn

n!
=

(log λ + t)etx

λet − 1
.

By using Taylor expansion of etx in the left side of the above equation, after
some elementary calculations, we obtain the desired result. ¤

We now give the distribution of the λ-Bernoulli polynomials.

Theorem 3. Let n ≥ 0, and let d ∈ Z+. Then we have

(7) Bn(λ; x) = dn−1
d−1∑
a=0

λaBn

(
λd;

x + a

d

)
.

Proof. By using Eq-(6),

Bn(x; λ) =
∫

Zp

(x + y)nλydµ1(y)

= lim
N→∞

1
dpN

dpN−1∑
y=0

(x + y)nλy

= lim
N→∞

1
dpN

d−1∑
a=0

pN−1∑
y=0

(a + dy + x)nλa+dy

= dn−1 lim
N→∞

1
pN

d−1∑
a=0

λa

pN−1∑
y=0

(
a + x

d
+ y

)n

(λd)y

= dn−1 1
pN

d−1∑
a=0

λa

∫

Zp

(
a + x

d
+ y

)n

(λd)y.

Thus, we have the desired result. ¤

By substituting x = 0 into Eq-(7), we have the following corollary:

Corollary 1. For m,n ∈ N, we have

(8) mBn(λ) =
n∑

j=0

(
n

j

)
Bj(λm)mj

m−1∑
a=0

λaan−j .

(Gauss multiplicative formula for λ-Bernoulli numbers).

By Eq-(8), we have
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Theorem 4. For m, n ∈ N and λ ∈ Zp, we have

(9) mBn(λ)−mn[m]λBn(λm) =
n−1∑

j=0

(
n

j

)
Bj(λm)mj

m−1∑

k=1

λkkn−j .

Theorem 5. Let k ∈ Z, with k > 1. Then we have

(10) Bl(λ; k)− λ−kBl(λ) = λ−kl

k−1∑
n=0

λnnl−1 + (λ−k log λ)
k−1∑
n=0

nlλl.

Proof. We set

(10a)

−
∞∑

n=0

e(n+k)tλn +
∞∑

n=0

entλn−k =
k−1∑
n=0

entλn−k

=
∞∑

l=0

(λ−k
k−1∑
n=0

nlλn)
tl

l!

=
∞∑

l=1

(λ−kl

k−1∑
n=0

nl−1λn)
tl−1

l!
.

Multiplying (t+log λ) both side of Eq-(10a), then by using Eq-(3) and Eq-(5),
after some elementary calculations, we have

(10b)

∞∑

l=0

(Bl(λ; k)− λ−kBl(λ))
tl

l!

=
∞∑

l=0

(λ−kl

k−1∑
n=0

λnnl−1 + λ−k log λ

k−1∑
n=0

nlλl)
tl

l!
.

By comparing coefficient
tl

l!
in both sides of Eq-(10b). Thus we arrive at the

Eq-(10). Thus we complete the proof of theorem. ¤

Observe that limλ→1 Bl(λ) = Bl. For λ → 1, then Eq-(10) reduces the
following:

Bl(k)−Bl = l

k−1∑
n=0

nl−1.

If λ ∈ Tp, then Eq-(10) reduces to the following formula:

Bl(λ; k)− λ−kBl(λ) = λ−kl

k−1∑
n=0

λnnl−1.

Remark. Garrett and Hummel [2] proved combinatorial proof of q-analogue of
n∑

k=1

k3 =
(

n + 1
k

)2
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as follows:
n∑

k=1

qk−1[k]2q

([
k − 1

2

]

q2

+
[
k + 1

2

]

q2

)
=

[
n + 1

2

]2

q

,

where
[
n
k

]
q

=
∏k

j=1

[n + 1− j]q
[j]q

, q-binomial coefficients. In [12], Kim con-

structed the following formula

Sn,qh(k) =
k−1∑

l=0

qhl

[l]n

=
1

n + 1

n∑

j=0

(
n + 1

j

)
βj,qq

kj [k]n+1−j − (1− q(n+1)k)βn+1,q

n + 1
,

where βj,q are the q-Bernoulli numbers which were defined by

e
t

1−q
q − 1
log q

− t

∞∑
n=0

qn+xe[n+x]t =
∞∑

n=0

βn,q(x)
n!

tn, |q| < 1, |t| < 1,

βn,q(0) = βn,q (cf. [11, 12]).
Schlosser [22] gave for n = 1, 2, 3, 4, 5 the value of Sn,qh [k]. In [27], the

authors also gave another proof of Sn,q(k) formula.

2. Hurwitz’s type λ-zeta function

In this section, by using generating function of λ-Bernoulli polynomials,
we construct Hurwitz’s type λ-zeta function, which is interpolate λ-Bernoulli
polynomials at negative integers. By Eq-(5), we get

Fλ(t; x) =
log λ + t

λet − 1
ext = −(log λ + t)

∞∑
n=0

λne(n+x)t

=
∞∑

n=0

Bn(λ)
tn

n!
.

By using
dk

dtk
derivative operator to the above, we have

Bk(λ; x) =
dk

dtk
Fλ(t; x)

∣∣∣∣
t=0

,

Bk(λ; x) = − log λ

∞∑
n=0

λn(n + x)k − k

∞∑
n=0

(n + x)k−1λn.

Thus we arrive at the following theorem:
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Theorem 6. For k ≥ 0, we have

−1
k

Bk(λ; x) =
log λk

k

∞∑
n=0

λn(n + x)k +
∞∑

n=0

λn(n + x)k−1.

Consequently, we define Hurwitz type zeta function as follows:

Definition 1. Let s ∈ C. Then we define

(11) ζλ(s, x) =
log λ

1− s

∞∑
n=0

λn

(n + x)s−1
+

∞∑
n=0

λn

(n + x)s
.

Note that ζλ(s, x) is analytic continuation, except for s = 1, in whole com-
plex plane. By Definition 1 and Theorem 6, we have the following:

Theorem 7. Let s = 1− k, k ∈ N. Then

(12) ζλ(1− k, x) = −Bk(λ, x)
k

.

3. Generalized λ-Bernoulli numbers associated with Dirichlet type
λ-L-functions

By using Eq-(0), we define

(12) I1(fd) = I1(f) +
d−1∑

j=0

f ′(j),

where fd(x) = f(x + d),
∫
X f(x)dµ(x) = I1(f).

Let χ be a Dirichlet character with conductor d ∈ N+, λ ∈ Zp.
By substituting f(x) = λxχ(x)etx into Eq-(12), then we have

(12a)

∫

X
χ(x)λxetxdµ1(x) =

d−1∑

j=0

χ(j)λjetj(log λ + t)
λdedt − 1

=
∞∑

n=0

Bn,χ(λ)
tn

n!
.

By Eq-(12a), we easily see that

(12b) Bn,χ(λ) =
∫

X
χ(x)xnλxdµ1(x).

From Eq-(12a), we define generating function of generalized Bernoulli num-
ber by

(12c) Fλ,χ(t) =
d−1∑

j=0

χ(j)λjetj(log λ + t)
λdedt − 1

=
∞∑

n=0

Bn(λ)
tn

n!
.
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Observe that if λ ∈ Tp, then the above formula reduces to

Fλ,χ(t) =
d−1∑

j=0

χ(j)λjetjt

λdedt − 1
=

∞∑

j=0

Bn(λ)
tn

n!

(for detail see cf. [3, 16, 18, 22, 23, 24]).
From the above, we easily see that

Fλ,χ(t) = −(log λ + t)
∞∑

m=1

χ(m)λmetm =
∞∑

n=0

Bn,χ(λ)
tn

n!
.

By applying
dk

dtk

∣∣∣∣
t=0

derivative operator both sides of the above equation, we

arrive at the following theorem:

Theorem 8. Let k ∈ Z+, λ ∈ Zp and let χ be a Derichlet character with
conductor d. Then we have

(13)
∞∑

m=1

χ(m)λmmk−1 +
log λ

k

∞∑
m=1

λmχ(m)mk = −Bk,χ(λ)
k

.

Definition 2 (Dirichlet type λ-L function). For λ, s ∈ C, we define

(14) Lλ(s, χ) =
∞∑

m=1

λmχ(m)
ms

− log λ

s− 1

∞∑
m=1

λmχ(m)
ms−1

.

Relation between Lλ(s, χ) and ζλ(s, y) is given by the following theorem :

Theorem 9. Let s ∈ C and d ∈ Z+. Then we have

Lλ(s, χ) = d−s
d∑

a=1

λaχ(a)ζλd

(
s,

a

d

)
.

Proof. By substituting m = a + dk, a = 1, 2, . . . , d, k = 0, 1, . . . ,∞, into Eq-
(14), we have

Lλ(s, χ) =
d∑

a=1

∞∑

k=0

λa+dkχ(a + dk)
(a + dk)s

− log λ

s− 1

d∑
a=1

∞∑

k=0

λa+dkχ(a + dk)
(a + dk)s−1

= d−s
d∑

a=1

(λaχ(a))

[ ∞∑

k=0

(λd)k

(k + a
d )s

− log λd

s− 1

∞∑

k=0

(λd)k

(k + a
d )s−1

]
.

By using Eq-(11) in the above we obtain the desired result. ¤

Theorem 10. For k ∈ Z+, we have

Lλ(1− k, χ) = −1
k

Bk,χ(λ), k > 0.

Proof. By substituting s = 1 − k in Definition 2 and using Eq-(13), we easily
obtain the desired result. ¤
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Remark. If λ ∈ Tp, then from Definition 2, we have

Lλ(s, χ) =
∞∑

m=1

λmχ(m)
ms

.

In [21, 18], Kim studied on the λ-Euler numbers and he gave interesting
many relations on λ-Euler numbers and polynomials. λ-Bernoulli numbers and
polynomials are corresponding to λ-Euler numbers and polynomials (see [21]).
In [17, 18], Kim et al gave λ-(h, q) zeta function and λ-(h, q) L-function. These
functions interpolate λ− (h, q)-Bernoulli numbers at negative integer. Observe
that, if we take s = 1− k in Theorem 9, and then using Eq-(12) in Theorem 7,
we get another proof of Theorem 10.

4. λ-Bernoulli numbers of order r associated with multiple zeta
function

In this section, we define generating function of λ-Bernoulli numbers of order
r. By using Mellin transforms and Cauchy residue theorem, we obtain multiple
zeta function which is given in Eq-(C). We also gave relations between λ-
Bernoulli polynomials of order r and multiple zeta function at negative integers.
This relation is important and very interesting. Let r ∈ Z+. Generating
function of λ-Bernoulli numbers of order r is defined by

(15) F
(r)
λ (t) =

(
log λ + t

λet − 1

)r

=
∞∑

n=0

B(r)
n (λ)

tn

n!
.

Generating function of λ-Bernoulli polynomials of order r is defined by

F
(r)
λ (t, x) = F

(r)
λ (t)etx =

∞∑
n=0

B(r)
n (λ)

tn

n!
.

Observe that when r = 1, Eq-(15) reduces to Eq-(3). By applying Mellin
transforms to the Eq-(15) we get

1
Γ(s)

∫ ∞

0

λre−trF
(r)
λ (−t)(t− log λ)s−r−1dt

=
∞∑

n1,...,nr=0

1
(n1 + n2 + · · ·+ nr + r)s

.

Thus, we get, by (C)

ζr(s) =
1

Γ(s)

∫ ∞

0

λre−trF
(r)
λ (−t)(t− log λ)s−r−1dt.

By using the above relation, we obtain the following theorem:

Theorem 11. Let r,m ∈ Z+. Then we have

(D1) ζr(−m) = (−λ)rm!
∞∑

j=0

(−m− r − 1
j

)
(log λ)j Bm+r+j(λ; r)

(m + r + j)!
.
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Remark. If λ → 1, the above theorem reduces to

(D2) ζr(−m) = (−1)rm!
Bm+r(1; r)
(m + r)!

which is given Theorem 6 in [13].
By (D1) and (D2), we obtain relation between λ-Bernoulli polynomials of

order r and ordinary Bernoulli polynomials of order r as follows:

Bm+r(r) = λr
∞∑

j=0

(−m− r − 1
j

)
(log λ)j Bm+r+j(λ; r)

(m + r + j)!
(m + r)!,

where m, r ∈ Z+.

We now give relations between B
(r)
n (λ) and H

(r)
n (λ−1) as follows:

If λ ∈ Tp, then Eq-(15) reduces to the following equation

tr

(λet − 1)r
=

∞∑
n=0

B(r)
n (λ)

tn

n!
.

Thus by the above equation, we easily see that

tr = (λet − 1)reB(r)(λ)t

=
r∑

l=0

λl(−1)r−le(B(r)(λ)+l)t

=
∞∑

n=0

(
r∑

l=0

λl(−1)r−l(B(r)(λ) + l)n)
tn

n!
.

Consequently we have
r∑

l=0

λl(−1)r−l(B(r)(λ) + l)n =

{
0 if n 6= r

1 if n = r.

By Eq-(15) we obtain
∞∑

n=0

B(r)
n (λ)

tn

n!
=

tr

(λ− 1)r

∞∑
n=0

H(r)
n (λ−1)

tn

n!
.

By comparing coefficient
tn

n!
in the both sides of the above equation, we have

B
(r)
n+r(λ) =

Γ(n + r + 1)
Γ(n + 1)

1
(λ− 1)r

H(r)
n (λ−1).

Observe that, if we take r = 1, then the above identity reduce to Eq-(4), that
is

Bn+1(λ) =
(n + 1)
λ− 1

Hn(λ−1).
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5. λ-Bernoulli numbers and polynomials associated with
multivariate p-adic invariant integral

In this section, we give generalized λ-Bernoulli numbers of order r. Consider
the multivariate p-adic invariant integral on Zp to define λ-Bernoulli numbers
and polynomials.

(16)

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
r−times

λw1x1+···+wrxre(w1x1+···+wrxr)tdµ1(x1) · · · dµ1(xr)

=
(w1 log λ + w1t) · · · (wr log λ + wrt)

(λw1ew1t − 1) · · · (λwrewrt − 1)

=
∞∑

n=0

B(r)
n (λ; w1, w2, . . . , wr)

tn

n!
,

where we called B
(r)
n (λ;w1, w2, . . . , wr) λ-extension of Bernoulli numbers. Sub-

stituting λ = 1 into Eq-(16), λ-extension of Bernoulli numbers reduce to Barnes
Bernoulli numbers as follows :

(w1t) · · · (wrt)
(ew1t − 1) · · · (ewrt − 1)

=
∞∑

n=0

B(r)
n (w1, . . . , wr)

tn

n!
,

where B
(r)
n (w1, . . . , wr) are denoted Barnes Bernoulli umbers and w1, . . . , wr

complex numbers with positive real parts [1, 7, 26]. Observe that when w1 =
w2 = · · · = wr = 1 in Eq-(16), we obtain the λ-Bernoulli numbers of higher
order as follows:

(
log λ + t

λet − 1

)r

=
∞∑

n=0

B(r)
n (λ)

tn

n!
.

We note that B
(r)
n (λ; 1, 1, . . . , 1) = B

(r)
n (λ).

Consider
(

log λ + t

λet − 1

)r

ext =
∞∑

n=0

B(r)
n (λ; x)

tn

n!
.

Observe that

∞∑
n=0

B(r)
n (λ; x)

tn

n!
=

(
log λ + t

λet − 1

)r

e(log λ+t)xλ−x

=
1
λx

∞∑
m=0

B(r)
m (λ;x)

(t + log λ)m

m!
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=
1
λx

∞∑
m=0

B
(r)
m (λ; x)

m!

m∑

l=0

(
m

l

)
(log λ)mtm−l

=
∞∑

m=0

(
1
λx

∞∑

l=0

B
(r)
n+l(λ; x)

l!
(log λ)l

)
tn

n!
.

Now, comparing coefficient
tn

n!
both sides of the above equation, we easily arrive

at the following theorem:

Theorem 12. For n, r ∈ N and λ ∈ Zp, we have

B(r)
n (λ; x) =

1
λr

∞∑

l=0

B
(r)
n+l(λ; x)

(log λ)l

l!
,

where 0l =

{
1 if l = 0
0 if l 6= 0.

Remark. In Theorem 12, we see that

lim
λ→1

B(r)
n (λ; x) =

{
B

(r)
n (x) if l = 0,

0 if l 6= 0.

6. λ-Bernoulli numbers and polynomials in the space of locally
constant

In this section, we construct partial λ-zeta functions, we need this function
in the following section. We need this function in the following section. By
Eq-(3b), Frobenius-Euler polynomials are defined by means of the following
generating function:

(
1− u

et − u

)
ext =

∞∑
n=0

Hn(u, x)
tn

n!
.

As well known, we note that the Frobenius-Euler polynomials of order r were
defined by

(
1− u

et − u

)r

ext =
∞∑

n=0

H(r)
n (u, x)

tn

n!
.

The case x = 0, H
(r)
n (u, 0) = H

(r)
n (u), which are called Frobenius-Euler num-

bers of order r.
If λ ∈ Tp, then λ-Bernoulli polynomials of order r are given by

tr

(λet − 1)r
ext =

∞∑
n=0

B(r)
n (λ; x)

tn

n!
.
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Hurwitz type λ-zeta function is given by

(17) ζλ(s, x) =
∞∑

n=0

λn

(n + x)s
, λ ∈ Tp.

Thus, from Theorem 7, we have

(17a) ζλ(1− k, x) = −1
k

B(λ; x), k ∈ Z+.

We now define λ-partial zeta function as follows

(17b) Hλ(s, a|F ) =
∑

m≡a (mod F )

λm

ms
.

From (17), we have

(17c) Hλ(s, a|F ) =
λa

F s
ζλF

(
s,

a

F

)
,

where ζλF

(
s,

a

F

)
is given by Eq-(17). By Eq-(17a) we have

(18) Hλ(1− n, a|F ) = −
Fn−1λaBn(λF ;

a

F
)

n
, n ∈ Z+.

If λ ∈ Tp, then by Eq-(14), we have

Lλ(s, χ) =
∞∑

n=1

λnχ(n)
ns

,

where s ∈ C, χ be the primitive Dirichlet character with conductor f ∈ Z+.
By Theorem 9, Eq-(17c) and Eq-(18) we easily see that

Lλ(s, χ) =
F∑

a=1

χ(a)Hλ

(
s,

a

F

)
,

and

Lλ(1− k, χ) = −Bk,χ(λ)
k

, k ∈ Z+,

where Bk,χ(λ) is defined by

F−1∑
a=0

tλaχ(a)eat

λF eFt − 1
=

∞∑
a=0

Bn,χ(λ)
tn

n!
, λ ∈ Tp

and F is multiple of f .

Remark.
Bm(λ)

m
=

1
λ− 1

Hn−1(λ−1), λ ∈ Tp.
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7. p-adic interpolation function

In this section we give p-adic λ-L function. Let w be the Teichimuller char-
acter and let 〈x〉 =

x

w(x)
.

When F is multiple of p and f and (a, p) = 1, we define

Hp,λ(s, a|F ) =
1

s− 1
λa〈a〉1−s

∞∑

j=0

(
1− s

j

) (
F

a

)j

Bj(λF ).

From this we note that

Hp,λ(1− n, a|F ) = − 1
n

λa

F
〈a〉n

n∑

j=0

(
n

j

)(
F

a

)j

Bj(λF )

= − 1
n

Fn−1λaw−n(a)Bn(λF ;
a

F
)

= w−n(a)Hλ(1− n;
a

F
),

since by Theorem 3 for λ ∈ Tp, Eq-(18).
By using this formula, we can consider p-adic λ-L-function for λ-Bernoulli

numbers as follows:

Lp,λ(s, χ) =
F∑

a=1
(a,p)=1

χ(a)Hp,λ

(
s,

a

F

)
.

By using the above definition, we have

Lp,λ(1− n, χ) =
F∑

a=1
(a,p)=1

χ(a)Hp,λ

(
1− n,

a

F

)

= − 1
n

(
Bn,χw−n(λ)− pn−1χw−n(p)Bn,χw−n(λp)

)
.

Thus, we define the formula

Lp,λ(s, χ) =
1
F

1
s− 1

F∑
a=1

χ(a)λa〈a〉1−s
∞∑

j=0

(
1− s

j

)
Bj(λF )

for s ∈ Zp.

References

[1] E. W. Barnes, On the theory of the multiple gamma functions, Trans. Camb. Philos.
Soc. 19 (1904), 374–425.

[2] K. C. Garret and K. Hummel, A combinatorial proof of the sum of q-cubes, Electron.
J. Combin. 11 (2004), no. 1, Research Paper 9.

[3] K. Iwasawa, Lectures on p-adic L-function, Annals of Mathematics Studies, No. 74.
Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972.

[4] L. C. Jang and H. K. Pak, Non-Archimedean integration associated with q-Bernoulli
numbers, Proc. Jangjeon Math. Soc. 5 (2002), no. 2, 125–129.



452 TAEKYUN KIM, SEOG-HOON RIM, YILMAZ SIMSEK, AND DAEYEOUL KIM

[5] T. Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg.
Saga Univ. Math. 22 (1994), no. 2, 21–26.

[6] , On a q-analogue of the p-adic log gamma functions and related integrals, J.
Number Theory 76 (1999), no. 2, 320–329.

[7] , q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288–299.
[8] , An invariant p-adic integral associated with Daehee numbers, Integral Trans-

forms Spec. Funct. 13 (2002), no. 1, 65–69.
[9] , On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no.

3, 261–267.
[10] , A note on multiple zeta functions, JP J. Algebra Number Theory Appl. 3

(2003), no. 3, 471–476.
[11] , Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli

Polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91–98.
[12] , Remark on the multiple Bernoulli numbers, Proc. Jangjeon Math. Soc. 6 (2003),

no. 2, 185–192.
[13] , Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyung-

shang) 9 (2004), no. 1, 15–18.
[14] , Analytic continuation of multiple q-zeta functions and their values at negative

integers, Russ. J. Math. Phys. 11 (2004), no. 1, 71–76.
[15] , A note on multiple Dirichlet’s q-L-function, Adv. Stud. Contemp. Math.

(Kyungshang) 11 (2005), no. 1, 57–60.
[16] , Power series and asymptotic series associated with the q-analog of the two-

variable p-adic L-function, Russ. J. Math. Phys. 12 (2005), no. 2, 186–196.
[17] , Multiple p-adic L-function, Russ. J. Math. Phys. 13 (2006), 151–157.
[18] , A new approach to p-adic q-L-functions, Adv. Stud. Contemp. Math. (Kyung-

shang) 12 (2006), no. 1, 61–72.
[19] , On the analogs of Euler numbers and polynomials associated with p-adic q-

integral on Zp at q = −1, J. Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.09.027.
[20] , A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 13

(2006), 315–320.
[21] T. Kim, L. C. Jang, S.-H. Rim, and H.-K. Pak, On the twisted q-zeta functions and

q-Bernoulli polynomials, Far East J. Appl. Math. 13 (2003), no. 1, 13–21.
[22] J. Satho, q-analogue of Riemann’s ζ-function and q-Euler numbers, J. Number Theory

31 (1989), no. 3, 346–362.
[23] M. Schlosser, q-analogues of the sums of consecutive integers, squares, cubes, quarts

and quints, Electron. J. Combin. 11 (2004), no. 1, Research Paper 71.
[24] K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers

and its derivatives, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985), no. 1, 113–125.
[25] Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud.

Contemp. Math. 11 (2005), no. 2, 205–218.
[26] , Twisted (h, q)-Bernoulli numbers and polynomials related to (h, q)-zeta function

and L-function, J. Math. Anal. Appl. 324 (2006), 790–804.
[27] Y. Simsek, D. Kim, T. Kim, and S.-H. Rim, A note on the sums of powes of consecutive

q-integers, J. Appl. Funct. Different Equat. 1 (2006), 63–70.
[28] Y. Simsek and S. Yang, Transformation of four Titchmarsh-type infinite integrals and

generalized Dedekind sums associated with Lambert series, Adv. Stud. Contemp. Math.
(Kyungshang) 9 (2004), no. 2, 195–202.

[29] H. M. Srivastava, T. Kim, and Y. Simsek, q-Bernoulli multiple q-zeta functions and
basic L-series, Russ. J. Math. Phys. 12 (2005), no. 2, 241–268.



ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS 453

Taekyun Kim
Division of General Education-Mathematics
Kwangwoon University
Seoul 139-704, Korea
E-mail address: tkim64@hanmail.net

Seog-Hoon Rim
Department of mathematical Education
Kyungpook National University
Taegu 702-701, Korea
E-mail address: shrim@knu.ac.kr

Yilmaz Simsek
University of Akdeniz
Faculty of Art and Science
Department of Mathematics 07058 Antalya, Turkey
E-mail address: ysimsek@akdeniz.edu.tr

Daeyeoul Kim
National Institute for Mathematical Science
Daejeon 305-340, Korea
E-mail address: daeyeoul@chonbuk.ac.kr


