ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

Taekyun Kim, Seog-Hoon Rim, Yilmaz Simsek*, and Daeyeoul Kim

Reprinted from the
Journal of the Korean Mathematical Society
Vol. 45, No. 2, March 2008
(c)2008 The Korean Mathematical Society

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

Taekyun Kim, Seog-Hoon Rim, Yilmaz Simsek*, and Daeyeoul Kim

Abstract

In this paper, by using q-deformed bosonic p-adic integral, we give λ-Bernoulli numbers and polynomials, we prove Witt's type formula of λ-Bernoulli polynomials and Gauss multiplicative formula for λ-Bernoulli polynomials. By using derivative operator to the generating functions of λ-Bernoulli polynomials and generalized λ-Bernoulli numbers, we give Hurwitz type λ-zeta functions and Dirichlet's type λ - L functions; which are interpolated λ-Bernoulli polynomials and generalized λ-Bernoulli numbers, respectively. We give generating function of λ Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and λ-Bernoulli polynomials and ordinary Bernoulli numbers of order r and λ-Bernoulli numbers, respectively. We also study on λ-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define λ-partial zeta function and interpolation function.

Introduction, definitions and notations

Throughout this paper, $\mathbb{Z}, \mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will be denoted by the ring of rational integers, the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_{p}, respectively. Let ν_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-\nu_{p}(p)}=\frac{1}{p}$, (cf. [2, 3, 4, $5,6,7,8,9,16,17,20,26])$.

When one talks of q-extension, q considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, as p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$ one normally assumes that $|q|<1$. If $q \in \mathbb{C}_{p}$, we normally assume that $|q-1|_{p}<p^{-\frac{1}{p-1}}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. We use the following

[^0]notations:
$$
[x]=[x: q]=\frac{1-q^{x}}{1-q} \quad(\text { cf. }[3,4,5,6,8,9,24,26,28])
$$

Observe that when $\lim _{q \rightarrow 1}[x]=x$, for any x with $|x|_{p} \leq 1$ in the present p-adic case $[x: a]=\frac{1-a^{x}}{1-a}$.

Let d be a fixed integer and let p be a fixed prime number. For any positive integer N, we set

$$
\begin{aligned}
& \mathbb{X}=\lim _{\breve{N}}\left(\mathbb{Z} / d p^{N} \mathbb{Z}\right) \\
& \mathbb{X}^{*}=\cup_{0<a<d p,(a, p)=1}\left(a+d p \mathbb{Z}_{p}\right) \\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in \mathbb{X} \mid x \equiv a \quad\left(\bmod d p^{n}\right)\right\}
\end{aligned}
$$

where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{N}$. We assume that $u \in \mathbb{C}_{p}$ with $|1-u|_{p} \geq 1$. (cf. $[3,4,5,6,7,8,24,26]$).

For $x \in \mathbb{Z}_{p}$, we say that g is a uniformly differentiable function at point $a \in \mathbb{Z}_{p}$, and write $g \in U D\left(\mathbb{Z}_{P}\right)$, the set of uniformly differentiable functions, if the difference quotients,

$$
F_{g}(x, y)=\frac{g(y)-g(x)}{y-x}
$$

have a limit $l=g^{\prime}(a)$ as $(x, y) \rightarrow(a, a)$. For $f \in U D\left(\mathbb{Z}_{p}\right)$, the q-deformed bosonic p-adic integral was defined as

$$
\begin{align*}
I_{q}(f) & =\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x) \\
& =\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x) \mu_{q}\left(x+p^{N} \mathbb{Z}_{p}\right) \tag{A}\\
& \left.=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x) \frac{q^{x}}{\left[p^{N}\right]}, \text { ccf. }[4,5,9]\right) .
\end{align*}
$$

By Eq- (A), we have

$$
\lim _{q \rightarrow-q} I_{q}(f)=I_{-q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)
$$

This integral, $I_{-q}(f)$, give the q-deformed integral expression of fermioinc. The classical Euler numbers were defined by means of the following generating function:

$$
\frac{2}{e^{t}+1}=\sum_{m=0}^{\infty} E_{m} \frac{t^{m}}{m!}, \quad|t|<\pi \quad(\text { cf. }[6,7,20,21])
$$

Let u be algebraic in complex number field. Then Frobenius-Euler polynomials $[6,7,20,21]$ were defined by

$$
\begin{equation*}
\frac{1-u}{e^{t}-u} e^{x t}=e^{H(u, x) t}=\sum_{m=0}^{\infty} H_{m}(u, x) \frac{t^{m}}{m!} \tag{A1}
\end{equation*}
$$

where we use technical method's notation by replacing $H^{m}(u, x)$ by $H_{m}(u, x)$ symbolically. In case $x=0, H_{m}(u, 0)=H_{m}(u)$, which is called Frobenius-Euler number. The Frobenius-Euler polynomials of order r, denoted by $H_{n}^{(r)}(u, x)$, were defined by

$$
\left(\frac{1-u}{e^{t}-u}\right)^{r} e^{t x}=\sum_{n=0}^{\infty} H_{n}^{(r)}(u, x) \frac{t^{n}}{n!} \quad(\mathrm{cf.}[7,10,25,26])
$$

The values at $x=0$ are called Frobenius-Euler numbers of order r. When $r=1$, these numbers and polynomials are reduced to ordinary Frobenius-Euler numbers and polynomials. In the usual notation, the n-th Bernoulli polynomial were defined by means of the following generating function:

$$
\left(\frac{t}{e^{t}-1}\right) e^{t x}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}
$$

For $x=0, B_{n}(0)=B_{n}$ are said to be the n-th Bernoulli numbers. The Bernoulli polynomials of order r were defined by

$$
\left(\frac{t}{e^{t}-1}\right)^{r} e^{t x}=\sum_{n=0}^{\infty} B_{n}^{(r)}(x) \frac{t^{n}}{n!}
$$

and $B_{n}^{(r)}(0)=B_{n}^{(r)}$ are called the Bernoulli numbers of order r. Let x, w_{1}, w_{2}, \ldots, w_{r} be complex numbers with positive real parts. When the generalized Bernoulli numbers and polynomials were defined by means of the following generating function:

$$
\frac{w_{1} w_{2} \cdots w_{r} t^{r} e^{x t}}{\left(e^{w_{1} t}-1\right)\left(e^{w_{2} t}-1\right) \cdots\left(e^{w_{r} t}-1\right)}=\sum_{n=0}^{\infty} B_{n}^{(r)}\left(x \mid w_{1}, w_{2}, \ldots, w_{r}\right) \frac{t^{n}}{n!}
$$

and $B_{n}^{(r)}\left(0 \mid w_{1}, w_{2}, \ldots, w_{r}\right)=B_{n}^{(r)}\left(w_{1}, w_{2}, \ldots, w_{r}\right)($ cf. $[13,15])$.
The Hurwitz zeta function is defined by

$$
\zeta(s, x)=\sum_{n=0}^{\infty} \frac{1}{(x+n)^{s}}
$$

$\zeta(s, 1)=\zeta(s)$, which is the Riemann zeta function. The multiple zeta functions $[12,26]$ were defined by

$$
\begin{equation*}
\zeta_{r}(s)=\sum_{0<n_{1}<n_{2}<\cdots<n_{r}} \frac{1}{\left(n_{1}+\cdots+n_{r}\right)^{s}} \tag{C}
\end{equation*}
$$

We summarize our paper as follows:

In section 1, by using q-deformed bosonic p-adic integral, the generating functions of λ-Bernoulli numbers and polynomials are given. From these generating functions, we derive many new interesting identities related to these numbers and polynomials and we prove Gauss multiplicative formula for λ Bernoulli numbers. Witt's type formula of λ-Bernoulli polynomials is given.

In section 2, by using derivative operator $\left.\left(\frac{d}{d t}\right)^{k}\right|_{t=0}$ to the generating function of the λ-Bernoulli numbers, we construct Hurwitz' type λ-zeta function, which interpolates λ-Bernoulli polynomials at negative integers.

In section 3, by using same method of section 2, we give Dirichlet type λ - L-function which interpolates generalized λ-Bernoulli numbers.

In section 4, the generating functions of λ-Bernoulli numbers of order r are obtained. From these generating generating functions, we derive some interesting relations between multiple zeta functions and λ-Bernoulli numbers of order r.

In section 5, we give some important identities related to generalized λ Bernoulli numbers of order r.

In section 6, we study on λ-Bernoulli numbers and polynomials in the space of locally constant. In this section, we also define λ-partial zeta function which interpolates λ-Bernoulli numbers at negative integers.

In section 7 , we give p-adic interpolation functions.

1. λ-Bernoulli numbers

In this section, by using $\operatorname{Eq}-(A)$, we give integral equation of bosonic p adic integral. By using this integral equation we define generating function of λ-Bernoulli polynomials. We give fundamental properties of the λ-Bernoulli numbers and polynomials. We also give some new identities related to λ Bernoulli numbers and polynomials. We prove Gauss multiplicative formula for λ-Bernoulli numbers as well. Witt's type formula of λ-Bernoulli polynomials is given.

To give the expression of bosonic p-adic integral in $\operatorname{Eq}-(A)$, we consider the limit

$$
\begin{equation*}
I_{1}(f)=\lim _{q \rightarrow 1} I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{1}(x) \quad(\text { cf. }[16,17,18,21]) \tag{0}
\end{equation*}
$$

in the sense of bosonic p-adic integral on \mathbb{Z}_{p} ($=p$-adic invariant integral on \mathbb{Z}_{p}). From this p-adic invariant integral on \mathbb{Z}_{p}, we derive the following integral equation:

$$
\begin{equation*}
I_{1}\left(f_{1}\right)=I_{1}(f)+f^{\prime}(0) \quad(\text { cf. }[17]) \tag{1}
\end{equation*}
$$

where $f_{1}(x)=f(x+1)$. Let $C_{p^{n}}$ be the space of primitive p^{n}-th root of unity,

$$
C_{p^{n}}=\left\{\zeta \mid \zeta^{p^{n}}=1\right\}
$$

Then, we denote

$$
T_{p}=\lim _{n \rightarrow \infty} C_{p^{n}}=\underset{n \geq 0}{\rightarrow} \cup C_{p^{n}}
$$

For $\lambda \in \mathbb{Z}_{p}$, we take $f(x)=\lambda^{x} e^{t x}$, and $f_{1}(x)=e^{t} \lambda f(x)$. Thus we have

$$
\begin{equation*}
f_{1}(x)-f(x)=\left(\lambda e^{t}-1\right) f(x) \tag{2}
\end{equation*}
$$

By substituting (2) into (1), we get

$$
\begin{equation*}
\left(\lambda e^{t}-1\right) I_{1}(f)=f^{\prime}(0),(\operatorname{cf.}[4,21]) \tag{2a}
\end{equation*}
$$

Consequently, we have

$$
\begin{equation*}
\frac{\log \lambda+t}{\lambda e^{t}-1}:=\sum_{n=0}^{\infty} B_{n}(\lambda) \frac{t^{n}}{n!},(\text { cf. }[4]) \tag{3}
\end{equation*}
$$

By using Eq-(3), we obtain

$$
\lambda(B(\lambda)+1)^{n}-B_{n}(\lambda)= \begin{cases}\log \lambda, & \text { if } n=0 \\ 1, & \text { if } n=1 \\ 0, & \text { if } n>1\end{cases}
$$

with the usual convention of replacing $B_{n}(\lambda)$ by $B^{n}(\lambda)$, (cf. [4, 17, 18, 21]). From this result, we derive the values of some $B_{n}(\lambda)$ numbers as follows:

$$
B_{0}(\lambda)=\frac{\log \lambda}{\lambda-1}, \quad B_{1}(\lambda)=\frac{\lambda-1-\lambda \log \lambda}{(\lambda-1)^{2}}, \ldots, \quad(c f .[4,17,21])
$$

We note that, if $\lambda \in T_{p}$, for some $n \in \mathbb{N}$, then $\operatorname{Eq}-(2 a)$ is reduced to the following generating function:

$$
\begin{equation*}
\frac{t}{\lambda e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(\lambda) \frac{t^{n}}{n!}(\text { cf. [4]). } \tag{3a}
\end{equation*}
$$

If $\lambda=e^{2 \pi i / f}, f \in \mathbb{N}$ and $\lambda \in \mathbb{C}$, then Eq-(3) is reduced to (3a). Eq-(3a) is obtained by Kim [3]. Let $u \in \mathbb{C}$, then by substituting $x=0$ into Eq- $(A 1)$, we set

$$
\begin{equation*}
\frac{1-u}{e^{t}-u}=\sum_{n=0}^{\infty} H_{n}(u) \frac{t^{n}}{n!} \quad(\text { cf. }[4,17,18,21]) \tag{3b}
\end{equation*}
$$

$H_{n}(u)$ is denoted Frobenius-Euler numbers. Relation between $H_{n}(u)$ and $B_{n}(\lambda)$ is given by the following theorem:
Theorem 1. Let $\lambda \in \mathbb{Z}_{p}$. Then

$$
\begin{align*}
B_{n}(\lambda) & =\frac{\log \lambda}{\lambda-1} H_{n}\left(\lambda^{-1}\right)+\frac{n H_{n-1}\left(\lambda^{-1}\right)}{\lambda-1} \tag{4}\\
B_{0}(\lambda) & =\frac{\log \lambda}{\lambda-1} H_{0}\left(\lambda^{-1}\right)
\end{align*}
$$

Proof. By using Eq-(3), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n}(\lambda) \frac{t^{n}}{n!} & =\frac{\log \lambda+t}{\lambda e^{t}-1}=\frac{\log \lambda}{\lambda e^{t}-1}+\frac{t}{\lambda e^{t}-1} \\
& =\frac{1-\lambda^{-1}}{\left(1-\lambda^{-1}\right) \lambda} \cdot\left(\frac{\log \lambda}{e^{t}-\lambda^{-1}}\right)-\frac{\left(1-\lambda^{-1}\right)}{\left(e^{t}-\lambda^{-1}\right)} \cdot \frac{t}{\lambda\left(1-\lambda^{-1}\right)} \\
& =\frac{\log \lambda}{\lambda-1} \sum_{n=0}^{\infty} H_{n}\left(\lambda^{-1}\right) \frac{t^{n}}{n!}+\frac{t}{\lambda-1} \sum_{n=0}^{\infty} H_{n}\left(\lambda^{-1}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

the next to the last step being a consequence of Eq-(3b). After some elementary calculations, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n}(\lambda) \frac{t^{n}}{n!}= & \frac{\log \lambda}{\lambda-1} H_{0}\left(\lambda^{-1}\right) \\
& +\sum_{n=1}^{\infty}\left(\frac{\log \lambda}{\lambda-1} H_{n}\left(\lambda^{-1}\right)+\frac{n}{\lambda-1} H_{n-1}\left(\lambda^{-1}\right)\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

By comparing coefficient $\frac{t^{n}}{n!}$ in the above, then we obtain the desired result.
Observe that, if $\lambda \in T_{p}$ in Eq-(4), then we have, $B_{0}(\lambda)=0$ and $B_{n}(\lambda)=$ $\frac{n H_{n-1}\left(\lambda^{-1}\right)}{\lambda-1}, n \geq 1$.

By Eq-(3) and Eq-(4), we obtain the following formula:
For $n \geq 0, \lambda \in \mathbb{Z}_{p}$
(4a) $\quad \int_{\mathbb{Z}_{p}} \lambda^{x} x^{n} d \mu_{1}(x)= \begin{cases}\frac{\log \lambda}{\lambda-1} H_{0}\left(\lambda^{-1}\right), & n=0 \\ \frac{\log \lambda}{\lambda-1} H_{n}\left(\lambda^{-1}\right)+\frac{n}{\lambda-1} H_{n-1}\left(\lambda^{-1}\right), & n>0\end{cases}$
and

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \lambda^{x} x^{n} d \mu_{1}(x)=B_{n}(\lambda), \quad n \geq 0 . \tag{4b}
\end{equation*}
$$

Now, we define λ-Bernoulli polynomials, we use these polynomials to give the sums powers of consecutive. The λ-Bernoulli polynomials are defined by means of the following generating function:

$$
\begin{equation*}
\frac{\log \lambda+t}{\lambda e^{t}-1} e^{t x}=\sum_{n=0}^{\infty} B_{n}(\lambda ; x) \frac{t^{n}}{n!} \tag{5}
\end{equation*}
$$

By Eq-(3) and Eq-(5), we have

$$
B_{n}(\lambda ; x)=\sum_{k=0}^{n}\binom{n}{k} B_{k}(\lambda) x^{n-k}
$$

The Witt's formula for $B_{n}(\lambda ; x)$ is given by the following theorem:

Theorem 2. For $k \in \mathbb{N}$ and $\lambda \in \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
B_{n}(\lambda ; x)=\int_{\mathbb{Z}_{p}}(x+y)^{n} \lambda^{y} d \mu_{1}(y) \tag{6}
\end{equation*}
$$

Proof. By substituting $f(y)=e^{t(x+y)} \lambda^{y}$ into Eq-(1), we have

$$
\int_{\mathbb{Z}_{p}} e^{t(x+y)} \lambda^{y} d \mu_{1}(y)=\sum_{n=0}^{\infty} B_{n}(\lambda ; x) \frac{t^{n}}{n!}=\frac{(\log \lambda+t) e^{t x}}{\lambda e^{t}-1}
$$

By using Taylor expansion of $e^{t x}$ in the left side of the above equation, after some elementary calculations, we obtain the desired result.

We now give the distribution of the λ-Bernoulli polynomials.
Theorem 3. Let $n \geq 0$, and let $d \in \mathbb{Z}^{+}$. Then we have

$$
\begin{equation*}
B_{n}(\lambda ; x)=d^{n-1} \sum_{a=0}^{d-1} \lambda^{a} B_{n}\left(\lambda^{d} ; \frac{x+a}{d}\right) . \tag{7}
\end{equation*}
$$

Proof. By using Eq-(6),

$$
\begin{aligned}
B_{n}(x ; \lambda) & =\int_{\mathbb{Z}_{p}}(x+y)^{n} \lambda^{y} d \mu_{1}(y) \\
& =\lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{y=0}^{d p^{N}-1}(x+y)^{n} \lambda^{y} \\
& =\lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{a=0}^{d-1} \sum_{y=0}^{p^{N}-1}(a+d y+x)^{n} \lambda^{a+d y} \\
& =d^{n-1} \lim _{N \rightarrow \infty} \frac{1}{p^{N}} \sum_{a=0}^{d-1} \lambda^{a} \sum_{y=0}^{p^{N}-1}\left(\frac{a+x}{d}+y\right)^{n}\left(\lambda^{d}\right)^{y} \\
& =d^{n-1} \frac{1}{p^{N}} \sum_{a=0}^{d-1} \lambda^{a} \int_{\mathbb{Z}_{p}}\left(\frac{a+x}{d}+y\right)^{n}\left(\lambda^{d}\right)^{y} .
\end{aligned}
$$

Thus, we have the desired result.
By substituting $x=0$ into Eq-(7), we have the following corollary:
Corollary 1. For $m, n \in \mathbb{N}$, we have

$$
\begin{equation*}
m B_{n}(\lambda)=\sum_{j=0}^{n}\binom{n}{j} B_{j}\left(\lambda^{m}\right) m^{j} \sum_{a=0}^{m-1} \lambda^{a} a^{n-j} \tag{8}
\end{equation*}
$$

(Gauss multiplicative formula for λ-Bernoulli numbers).
By Eq-(8), we have

Theorem 4. For $m, n \in \mathbb{N}$ and $\lambda \in \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
m B_{n}(\lambda)-m^{n}[m]_{\lambda} B_{n}\left(\lambda^{m}\right)=\sum_{j=0}^{n-1}\binom{n}{j} B_{j}\left(\lambda^{m}\right) m^{j} \sum_{k=1}^{m-1} \lambda^{k} k^{n-j} . \tag{9}
\end{equation*}
$$

Theorem 5. Let $k \in \mathbb{Z}$, with $k>1$. Then we have

$$
\begin{equation*}
B_{l}(\lambda ; k)-\lambda^{-k} B_{l}(\lambda)=\lambda^{-k} l \sum_{n=0}^{k-1} \lambda^{n} n^{l-1}+\left(\lambda^{-k} \log \lambda\right) \sum_{n=0}^{k-1} n^{l} \lambda^{l} . \tag{10}
\end{equation*}
$$

Proof. We set

$$
\begin{align*}
-\sum_{n=0}^{\infty} e^{(n+k) t} \lambda^{n}+\sum_{n=0}^{\infty} e^{n t} \lambda^{n-k} & =\sum_{n=0}^{k-1} e^{n t} \lambda^{n-k} \\
& =\sum_{l=0}^{\infty}\left(\lambda^{-k} \sum_{n=0}^{k-1} n^{l} \lambda^{n}\right) \frac{t^{l}}{l!} \tag{10a}\\
& =\sum_{l=1}^{\infty}\left(\lambda^{-k} l \sum_{n=0}^{k-1} n^{l-1} \lambda^{n}\right) \frac{t^{l-1}}{l!} .
\end{align*}
$$

Multiplying $(t+\log \lambda)$ both side of Eq-(10a), then by using Eq-(3) and Eq-(5), after some elementary calculations, we have

$$
\begin{align*}
& \sum_{l=0}^{\infty}\left(B_{l}(\lambda ; k)-\lambda^{-k} B_{l}(\lambda) \frac{t^{l}}{l!}\right. \\
= & \sum_{l=0}^{\infty}\left(\lambda^{-k} l \sum_{n=0}^{k-1} \lambda^{n} n^{l-1}+\lambda^{-k} \log \lambda \sum_{n=0}^{k-1} n^{l} \lambda^{l}\right) \frac{t^{l}}{l!} . \tag{10b}
\end{align*}
$$

By comparing coefficient $\frac{t^{l}}{l!}$ in both sides of Eq-(10b). Thus we arrive at the Eq-(10). Thus we complete the proof of theorem.

Observe that $\lim _{\lambda \rightarrow 1} B_{l}(\lambda)=B_{l}$. For $\lambda \rightarrow 1$, then Eq-(10) reduces the following:

$$
B_{l}(k)-B_{l}=l \sum_{n=0}^{k-1} n^{l-1} .
$$

If $\lambda \in T_{p}$, then Eq-(10) reduces to the following formula:

$$
B_{l}(\lambda ; k)-\lambda^{-k} B_{l}(\lambda)=\lambda^{-k} l \sum_{n=0}^{k-1} \lambda^{n} n^{l-1} .
$$

Remark. Garrett and Hummel [2] proved combinatorial proof of q-analogue of

$$
\sum_{k=1}^{n} k^{3}=\binom{n+1}{k}^{2}
$$

as follows:

$$
\sum_{k=1}^{n} q^{k-1}[k]_{q}^{2}\left(\left[\begin{array}{c}
k-1 \\
2
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
k+1 \\
2
\end{array}\right]_{q^{2}}\right)=\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]_{q}^{2}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\prod_{j=1}^{k} \frac{[n+1-j]_{q}}{[j]_{q}}, q$-binomial coefficients. In [12], Kim constructed the following formula

$$
\begin{aligned}
S_{n, q^{h}}(k) & =\sum_{l=0}^{k-1} q^{h^{l}}[l]^{n} \\
& =\frac{1}{n+1} \sum_{j=0}^{n}\binom{n+1}{j} \beta_{j, q} q^{k j}[k]^{n+1-j}-\frac{\left(1-q^{(n+1) k}\right) \beta_{n+1, q}}{n+1},
\end{aligned}
$$

where $\beta_{j, q}$ are the q-Bernoulli numbers which were defined by

$$
e^{\frac{t}{1-q}} \frac{q-1}{\log q}-t \sum_{n=0}^{\infty} q^{n+x} e^{[n+x] t}=\sum_{n=0}^{\infty} \frac{\beta_{n, q}(x)}{n!} t^{n}, \quad|q|<1,|t|<1
$$

$\beta_{n, q}(0)=\beta_{n, q}(c f .[11,12])$.
Schlosser [22] gave for $n=1,2,3,4,5$ the value of $S_{n, q^{h}}[k]$. In [27], the authors also gave another proof of $S_{n, q}(k)$ formula.

2. Hurwitz's type λ-zeta function

In this section, by using generating function of λ-Bernoulli polynomials, we construct Hurwitz's type λ-zeta function, which is interpolate λ-Bernoulli polynomials at negative integers. By Eq-(5), we get

$$
\begin{aligned}
F_{\lambda}(t ; x) & =\frac{\log \lambda+t}{\lambda e^{t}-1} e^{x t}=-(\log \lambda+t) \sum_{n=0}^{\infty} \lambda^{n} e^{(n+x) t} \\
& =\sum_{n=0}^{\infty} B_{n}(\lambda) \frac{t^{n}}{n!}
\end{aligned}
$$

By using $\frac{d^{k}}{d t^{k}}$ derivative operator to the above, we have

$$
\begin{aligned}
& B_{k}(\lambda ; x)=\left.\frac{d^{k}}{d t^{k}} F_{\lambda}(t ; x)\right|_{t=0} \\
& B_{k}(\lambda ; x)=-\log \lambda \sum_{n=0}^{\infty} \lambda^{n}(n+x)^{k}-k \sum_{n=0}^{\infty}(n+x)^{k-1} \lambda^{n}
\end{aligned}
$$

Thus we arrive at the following theorem:

Theorem 6. For $k \geq 0$, we have

$$
-\frac{1}{k} B_{k}(\lambda ; x)=\frac{\log \lambda^{k}}{k} \sum_{n=0}^{\infty} \lambda^{n}(n+x)^{k}+\sum_{n=0}^{\infty} \lambda^{n}(n+x)^{k-1} .
$$

Consequently, we define Hurwitz type zeta function as follows:
Definition 1. Let $s \in \mathbb{C}$. Then we define

$$
\begin{equation*}
\zeta_{\lambda}(s, x)=\frac{\log \lambda}{1-s} \sum_{n=0}^{\infty} \frac{\lambda^{n}}{(n+x)^{s-1}}+\sum_{n=0}^{\infty} \frac{\lambda^{n}}{(n+x)^{s}} . \tag{11}
\end{equation*}
$$

Note that $\zeta_{\lambda}(s, x)$ is analytic continuation, except for $s=1$, in whole complex plane. By Definition 1 and Theorem 6, we have the following:

Theorem 7. Let $s=1-k, k \in \mathbb{N}$. Then

$$
\begin{equation*}
\zeta_{\lambda}(1-k, x)=-\frac{B_{k}(\lambda, x)}{k} . \tag{12}
\end{equation*}
$$

3. Generalized λ-Bernoulli numbers associated with Dirichlet type λ - L-functions

By using Eq-(0), we define

$$
\begin{equation*}
I_{1}\left(f_{d}\right)=I_{1}(f)+\sum_{j=0}^{d-1} f^{\prime}(j) \tag{12}
\end{equation*}
$$

where $f_{d}(x)=f(x+d), \int_{\mathbb{X}} f(x) d \mu(x)=I_{1}(f)$.
Let χ be a Dirichlet character with conductor $d \in \mathbb{N}^{+}, \lambda \in \mathbb{Z}_{p}$.
By substituting $f(x)=\lambda^{x} \chi(x) e^{t x}$ into Eq-(12), then we have

$$
\begin{align*}
\int_{\mathbb{X}} \chi(x) \lambda^{x} e^{t x} d \mu_{1}(x) & =\sum_{j=0}^{d-1} \frac{\chi(j) \lambda^{j} e^{t j}(\log \lambda+t)}{\lambda^{d} e^{d t}-1} \tag{12a}\\
& =\sum_{n=0}^{\infty} B_{n, \chi}(\lambda) \frac{t^{n}}{n!} .
\end{align*}
$$

By Eq-(12a), we easily see that

$$
\begin{equation*}
B_{n, \chi}(\lambda)=\int_{\mathbb{X}} \chi(x) x^{n} \lambda^{x} d \mu_{1}(x) \tag{12b}
\end{equation*}
$$

From Eq-(12a), we define generating function of generalized Bernoulli number by

$$
\begin{equation*}
F_{\lambda, \chi}(t)=\sum_{j=0}^{d-1} \frac{\chi(j) \lambda^{j} e^{t j}(\log \lambda+t)}{\lambda^{d} e^{d t}-1}=\sum_{n=0}^{\infty} B_{n}(\lambda) \frac{t^{n}}{n!} \tag{12c}
\end{equation*}
$$

Observe that if $\lambda \in T_{p}$, then the above formula reduces to

$$
F_{\lambda, \chi}(t)=\sum_{j=0}^{d-1} \frac{\chi(j) \lambda^{j} e^{t j} t}{\lambda^{d} e^{d t}-1}=\sum_{j=0}^{\infty} B_{n}(\lambda) \frac{t^{n}}{n!}
$$

(for detail see cf. [3, 16, 18, 22, 23, 24]).
From the above, we easily see that

$$
F_{\lambda, \chi}(t)=-(\log \lambda+t) \sum_{m=1}^{\infty} \chi(m) \lambda^{m} e^{t m}=\sum_{n=0}^{\infty} B_{n, \chi}(\lambda) \frac{t^{n}}{n!} .
$$

By applying $\left.\frac{d^{k}}{d t^{k}}\right|_{t=0}$ derivative operator both sides of the above equation, we arrive at the following theorem:

Theorem 8. Let $k \in \mathbb{Z}^{+}, \lambda \in \mathbb{Z}_{p}$ and let χ be a Derichlet character with conductor d. Then we have

$$
\begin{equation*}
\sum_{m=1}^{\infty} \chi(m) \lambda^{m} m^{k-1}+\frac{\log \lambda}{k} \sum_{m=1}^{\infty} \lambda^{m} \chi(m) m^{k}=-\frac{B_{k, \chi}(\lambda)}{k} \tag{13}
\end{equation*}
$$

Definition 2 (Dirichlet type $\lambda-L$ function). For $\lambda, s \in \mathbb{C}$, we define

$$
\begin{equation*}
L_{\lambda}(s, \chi)=\sum_{m=1}^{\infty} \frac{\lambda^{m} \chi(m)}{m^{s}}-\frac{\log \lambda}{s-1} \sum_{m=1}^{\infty} \frac{\lambda^{m} \chi(m)}{m^{s-1}} \tag{14}
\end{equation*}
$$

Relation between $L_{\lambda}(s, \chi)$ and $\zeta_{\lambda}(s, y)$ is given by the following theorem :
Theorem 9. Let $s \in \mathbb{C}$ and $d \in \mathbb{Z}^{+}$. Then we have

$$
L_{\lambda}(s, \chi)=d^{-s} \sum_{a=1}^{d} \lambda^{a} \chi(a) \zeta_{\lambda^{d}}\left(s, \frac{a}{d}\right) .
$$

Proof. By substituting $m=a+d k, a=1,2, \ldots, d, k=0,1, \ldots, \infty$, into Eq(14), we have

$$
\begin{aligned}
L_{\lambda}(s, \chi) & =\sum_{a=1}^{d} \sum_{k=0}^{\infty} \frac{\lambda^{a+d k} \chi(a+d k)}{(a+d k)^{s}}-\frac{\log \lambda}{s-1} \sum_{a=1}^{d} \sum_{k=0}^{\infty} \frac{\lambda^{a+d k} \chi(a+d k)}{(a+d k)^{s-1}} \\
& =d^{-s} \sum_{a=1}^{d}\left(\lambda^{a} \chi(a)\right)\left[\sum_{k=0}^{\infty} \frac{\left(\lambda^{d}\right)^{k}}{\left(k+\frac{a}{d}\right)^{s}}-\frac{\log \lambda^{d}}{s-1} \sum_{k=0}^{\infty} \frac{\left(\lambda^{d}\right)^{k}}{\left(k+\frac{a}{d}\right)^{s-1}}\right] .
\end{aligned}
$$

By using Eq-(11) in the above we obtain the desired result.
Theorem 10. For $k \in \mathbb{Z}^{+}$, we have

$$
L_{\lambda}(1-k, \chi)=-\frac{1}{k} B_{k, \chi}(\lambda), \quad k>0 .
$$

Proof. By substituting $s=1-k$ in Definition 2 and using Eq-(13), we easily obtain the desired result.

Remark. If $\lambda \in T_{p}$, then from Definition 2, we have

$$
L_{\lambda}(s, \chi)=\sum_{m=1}^{\infty} \frac{\lambda^{m} \chi(m)}{m^{s}}
$$

In [21, 18], Kim studied on the λ-Euler numbers and he gave interesting many relations on λ-Euler numbers and polynomials. λ-Bernoulli numbers and polynomials are corresponding to λ-Euler numbers and polynomials (see [21]). In $[17,18]$, Kim et al gave $\lambda-(h, q)$ zeta function and $\lambda-(h, q) L$-function. These functions interpolate $\lambda-(h, q)$-Bernoulli numbers at negative integer. Observe that, if we take $s=1-k$ in Theorem 9, and then using Eq-(12) in Theorem 7, we get another proof of Theorem 10 .

4. λ-Bernoulli numbers of order r associated with multiple zeta function

In this section, we define generating function of λ-Bernoulli numbers of order r. By using Mellin transforms and Cauchy residue theorem, we obtain multiple zeta function which is given in $\operatorname{Eq}-(C)$. We also gave relations between λ Bernoulli polynomials of order r and multiple zeta function at negative integers. This relation is important and very interesting. Let $r \in \mathbb{Z}^{+}$. Generating function of λ-Bernoulli numbers of order r is defined by

$$
\begin{equation*}
F_{\lambda}^{(r)}(t)=\left(\frac{\log \lambda+t}{\lambda e^{t}-1}\right)^{r}=\sum_{n=0}^{\infty} B_{n}^{(r)}(\lambda) \frac{t^{n}}{n!} . \tag{15}
\end{equation*}
$$

Generating function of λ-Bernoulli polynomials of order r is defined by

$$
F_{\lambda}^{(r)}(t, x)=F_{\lambda}^{(r)}(t) e^{t x}=\sum_{n=0}^{\infty} B_{n}^{(r)}(\lambda) \frac{t^{n}}{n!}
$$

Observe that when $r=1$, Eq-(15) reduces to Eq-(3). By applying Mellin transforms to the Eq-(15) we get

$$
\begin{aligned}
& \frac{1}{\Gamma(s)} \int_{0}^{\infty} \lambda^{r} e^{-t r} F_{\lambda}^{(r)}(-t)(t-\log \lambda)^{s-r-1} d t \\
= & \sum_{n_{1}, \ldots, n_{r}=0}^{\infty} \frac{1}{\left(n_{1}+n_{2}+\cdots+n_{r}+r\right)^{s}} .
\end{aligned}
$$

Thus, we get, by (C)

$$
\zeta_{r}(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \lambda^{r} e^{-t r} F_{\lambda}^{(r)}(-t)(t-\log \lambda)^{s-r-1} d t
$$

By using the above relation, we obtain the following theorem:
Theorem 11. Let $r, m \in \mathbb{Z}^{+}$. Then we have

$$
\begin{equation*}
\zeta_{r}(-m)=(-\lambda)^{r} m!\sum_{j=0}^{\infty}\binom{-m-r-1}{j}(\log \lambda)^{j} \frac{B_{m+r+j}(\lambda ; r)}{(m+r+j)!} \tag{D1}
\end{equation*}
$$

Remark. If $\lambda \rightarrow 1$, the above theorem reduces to

$$
\begin{equation*}
\zeta_{r}(-m)=(-1)^{r} m!\frac{B_{m+r}(1 ; r)}{(m+r)!} \tag{D2}
\end{equation*}
$$

which is given Theorem 6 in [13].
By $(D 1)$ and ($D 2$), we obtain relation between λ-Bernoulli polynomials of order r and ordinary Bernoulli polynomials of order r as follows:

$$
B_{m+r}(r)=\lambda^{r} \sum_{j=0}^{\infty}\binom{-m-r-1}{j}(\log \lambda)^{j} \frac{B_{m+r+j}(\lambda ; r)}{(m+r+j)!}(m+r)!,
$$

where $m, r \in \mathbb{Z}^{+}$.
We now give relations between $B_{n}^{(r)}(\lambda)$ and $H_{n}^{(r)}\left(\lambda^{-1}\right)$ as follows:
If $\lambda \in T_{p}$, then Eq-(15) reduces to the following equation

$$
\frac{t^{r}}{\left(\lambda e^{t}-1\right)^{r}}=\sum_{n=0}^{\infty} B_{n}^{(r)}(\lambda) \frac{t^{n}}{n!} .
$$

Thus by the above equation, we easily see that

$$
\begin{aligned}
t^{r} & =\left(\lambda e^{t}-1\right)^{r} e^{B^{(r)}(\lambda) t} \\
& =\sum_{l=0}^{r} \lambda^{l}(-1)^{r-l} e^{\left(B^{(r)}(\lambda)+l\right) t} \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{r} \lambda^{l}(-1)^{r-l}\left(B^{(r)}(\lambda)+l\right)^{n}\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

Consequently we have

$$
\sum_{l=0}^{r} \lambda^{l}(-1)^{r-l}\left(B^{(r)}(\lambda)+l\right)^{n}= \begin{cases}0 & \text { if } n \neq r \\ 1 & \text { if } n=r\end{cases}
$$

By Eq-(15) we obtain

$$
\sum_{n=0}^{\infty} B_{n}^{(r)}(\lambda) \frac{t^{n}}{n!}=\frac{t^{r}}{(\lambda-1)^{r}} \sum_{n=0}^{\infty} H_{n}^{(r)}\left(\lambda^{-1}\right) \frac{t^{n}}{n!}
$$

By comparing coefficient $\frac{t^{n}}{n!}$ in the both sides of the above equation, we have

$$
B_{n+r}^{(r)}(\lambda)=\frac{\Gamma(n+r+1)}{\Gamma(n+1)} \frac{1}{(\lambda-1)^{r}} H_{n}^{(r)}\left(\lambda^{-1}\right) .
$$

Observe that, if we take $r=1$, then the above identity reduce to Eq-(4), that is

$$
B_{n+1}(\lambda)=\frac{(n+1)}{\lambda-1} H_{n}\left(\lambda^{-1}\right) .
$$

5. λ-Bernoulli numbers and polynomials associated with multivariate \boldsymbol{p}-adic invariant integral

In this section, we give generalized λ-Bernoulli numbers of order r. Consider the multivariate p-adic invariant integral on \mathbb{Z}_{p} to define λ-Bernoulli numbers and polynomials.

$$
\begin{align*}
& \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} \lambda^{w_{1} x_{1}+\cdots+w_{r} x_{r}} e^{\left(w_{1} x_{1}+\cdots+w_{r} x_{r}\right) t} d \mu_{1}\left(x_{1}\right) \cdots d \mu_{1}\left(x_{r}\right)}_{r-\text { times }} \\
= & \frac{\left(w_{1} \log \lambda+w_{1} t\right) \cdots\left(w_{r} \log \lambda+w_{r} t\right)}{\left(\lambda^{w_{1}} e^{w_{1} t}-1\right) \cdots\left(\lambda^{w_{r}} e^{w_{r} t}-1\right)} \tag{16}\\
= & \sum_{n=0}^{\infty} B_{n}^{(r)}\left(\lambda ; w_{1}, w_{2}, \ldots, w_{r}\right) \frac{t^{n}}{n!},
\end{align*}
$$

where we called $B_{n}^{(r)}\left(\lambda ; w_{1}, w_{2}, \ldots, w_{r}\right) \lambda$-extension of Bernoulli numbers. Substituting $\lambda=1$ into Eq-(16), λ-extension of Bernoulli numbers reduce to Barnes Bernoulli numbers as follows :

$$
\frac{\left(w_{1} t\right) \cdots\left(w_{r} t\right)}{\left(e^{w_{1} t}-1\right) \cdots\left(e^{w_{r} t}-1\right)}=\sum_{n=0}^{\infty} B_{n}^{(r)}\left(w_{1}, \ldots, w_{r}\right) \frac{t^{n}}{n!}
$$

where $B_{n}^{(r)}\left(w_{1}, \ldots, w_{r}\right)$ are denoted Barnes Bernoulli umbers and w_{1}, \ldots, w_{r} complex numbers with positive real parts [1, 7, 26]. Observe that when $w_{1}=$ $w_{2}=\cdots=w_{r}=1$ in Eq-(16), we obtain the λ-Bernoulli numbers of higher order as follows:

$$
\left(\frac{\log \lambda+t}{\lambda e^{t}-1}\right)^{r}=\sum_{n=0}^{\infty} B_{n}^{(r)}(\lambda) \frac{t^{n}}{n!}
$$

We note that $B_{n}^{(r)}(\lambda ; 1,1, \ldots, 1)=B_{n}^{(r)}(\lambda)$.
Consider

$$
\left(\frac{\log \lambda+t}{\lambda e^{t}-1}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(r)}(\lambda ; x) \frac{t^{n}}{n!} .
$$

Observe that

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n}^{(r)}(\lambda ; x) \frac{t^{n}}{n!} & =\left(\frac{\log \lambda+t}{\lambda e^{t}-1}\right)^{r} e^{(\log \lambda+t) x} \lambda^{-x} \\
& =\frac{1}{\lambda^{x}} \sum_{m=0}^{\infty} B_{m}^{(r)}(\lambda ; x) \frac{(t+\log \lambda)^{m}}{m!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\lambda^{x}} \sum_{m=0}^{\infty} \frac{B_{m}^{(r)}(\lambda ; x)}{m!} \sum_{l=0}^{m}\binom{m}{l}(\log \lambda)^{m} t^{m-l} \\
& =\sum_{m=0}^{\infty}\left(\frac{1}{\lambda^{x}} \sum_{l=0}^{\infty} \frac{B_{n+l}^{(r)}(\lambda ; x)}{l!}(\log \lambda)^{l}\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

Now, comparing coefficient $\frac{t^{n}}{n!}$ both sides of the above equation, we easily arrive at the following theorem:

Theorem 12. For $n, r \in \mathbb{N}$ and $\lambda \in \mathbb{Z}_{p}$, we have

$$
B_{n}^{(r)}(\lambda ; x)=\frac{1}{\lambda^{r}} \sum_{l=0}^{\infty} B_{n+l}^{(r)}(\lambda ; x) \frac{(\log \lambda)^{l}}{l!}
$$

where $0^{l}= \begin{cases}1 & \text { if } l=0 \\ 0 & \text { if } l \neq 0 .\end{cases}$
Remark. In Theorem 12, we see that

$$
\lim _{\lambda \rightarrow 1} B_{n}^{(r)}(\lambda ; x)= \begin{cases}B_{n}^{(r)}(x) & \text { if } l=0 \\ 0 & \text { if } l \neq 0\end{cases}
$$

6. λ-Bernoulli numbers and polynomials in the space of locally constant

In this section, we construct partial λ-zeta functions, we need this function in the following section. We need this function in the following section. By Eq-(3b), Frobenius-Euler polynomials are defined by means of the following generating function:

$$
\left(\frac{1-u}{e^{t}-u}\right) e^{x t}=\sum_{n=0}^{\infty} H_{n}(u, x) \frac{t^{n}}{n!} .
$$

As well known, we note that the Frobenius-Euler polynomials of order r were defined by

$$
\left(\frac{1-u}{e^{t}-u}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} H_{n}^{(r)}(u, x) \frac{t^{n}}{n!}
$$

The case $x=0, H_{n}^{(r)}(u, 0)=H_{n}^{(r)}(u)$, which are called Frobenius-Euler numbers of order r.

If $\lambda \in T_{p}$, then λ-Bernoulli polynomials of order r are given by

$$
\frac{t^{r}}{\left(\lambda e^{t}-1\right)^{r}} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(r)}(\lambda ; x) \frac{t^{n}}{n!} .
$$

Hurwitz type λ-zeta function is given by

$$
\begin{equation*}
\zeta_{\lambda}(s, x)=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{(n+x)^{s}}, \quad \lambda \in T_{p} \tag{17}
\end{equation*}
$$

Thus, from Theorem 7, we have

$$
\begin{equation*}
\zeta_{\lambda}(1-k, x)=-\frac{1}{k} B(\lambda ; x), \quad k \in \mathbb{Z}^{+} . \tag{17a}
\end{equation*}
$$

We now define λ-partial zeta function as follows

$$
\begin{equation*}
H_{\lambda}(s, a \mid F)=\sum_{m \equiv a} \frac{\lambda^{m}}{m^{s}} \tag{17b}
\end{equation*}
$$

From (17), we have

$$
\begin{equation*}
H_{\lambda}(s, a \mid F)=\frac{\lambda^{a}}{F^{s}} \zeta_{\lambda^{F}}\left(s, \frac{a}{F}\right) \tag{17c}
\end{equation*}
$$

where $\zeta_{\lambda^{F}}\left(s, \frac{a}{F}\right)$ is given by Eq-(17). By Eq-(17a) we have

$$
\begin{equation*}
H_{\lambda}(1-n, a \mid F)=-\frac{F^{n-1} \lambda^{a} B_{n}\left(\lambda^{F} ; \frac{a}{F}\right)}{n}, \quad n \in \mathbb{Z}^{+} \tag{18}
\end{equation*}
$$

If $\lambda \in T_{p}$, then by Eq-(14), we have

$$
L_{\lambda}(s, \chi)=\sum_{n=1}^{\infty} \frac{\lambda^{n} \chi(n)}{n^{s}}
$$

where $s \in \mathbb{C}$, χ be the primitive Dirichlet character with conductor $f \in \mathbb{Z}^{+}$. By Theorem 9, Eq-(17c) and Eq-(18) we easily see that

$$
L_{\lambda}(s, \chi)=\sum_{a=1}^{F} \chi(a) H_{\lambda}\left(s, \frac{a}{F}\right)
$$

and

$$
L_{\lambda}(1-k, \chi)=-\frac{B_{k, \chi}(\lambda)}{k}, \quad k \in \mathbb{Z}^{+}
$$

where $B_{k, \chi}(\lambda)$ is defined by

$$
\sum_{a=0}^{F-1} \frac{t \lambda^{a} \chi(a) e^{a t}}{\lambda^{F} e^{F t}-1}=\sum_{a=0}^{\infty} B_{n, \chi}(\lambda) \frac{t^{n}}{n!}, \quad \lambda \in T_{p}
$$

and F is multiple of f.
Remark.

$$
\frac{B_{m}(\lambda)}{m}=\frac{1}{\lambda-1} H_{n-1}\left(\lambda^{-1}\right), \quad \lambda \in T_{p}
$$

7. p-adic interpolation function

In this section we give p-adic λ - L function. Let w be the Teichimuller character and let $\langle x\rangle=\frac{x}{w(x)}$.

When F is multiple of p and f and $(a, p)=1$, we define

$$
H_{p, \lambda}(s, a \mid F)=\frac{1}{s-1} \lambda^{a}\langle a\rangle^{1-s} \sum_{j=0}^{\infty}\binom{1-s}{j}\left(\frac{F}{a}\right)^{j} B_{j}\left(\lambda^{F}\right)
$$

From this we note that

$$
\begin{aligned}
H_{p, \lambda}(1-n, a \mid F) & =-\frac{1}{n} \frac{\lambda^{a}}{F}\langle a\rangle^{n} \sum_{j=0}^{n}\binom{n}{j}\left(\frac{F}{a}\right)^{j} B_{j}\left(\lambda^{F}\right) \\
& =-\frac{1}{n} F^{n-1} \lambda^{a} w^{-n}(a) B_{n}\left(\lambda^{F} ; \frac{a}{F}\right) \\
& =w^{-n}(a) H_{\lambda}\left(1-n ; \frac{a}{F}\right)
\end{aligned}
$$

since by Theorem 3 for $\lambda \in T_{p}$, Eq-(18).
By using this formula, we can consider p-adic λ - L-function for λ-Bernoulli numbers as follows:

$$
L_{p, \lambda}(s, \chi)=\sum_{\substack{a=1 \\(a, p)=1}}^{F} \chi(a) H_{p, \lambda}\left(s, \frac{a}{F}\right)
$$

By using the above definition, we have

$$
\begin{aligned}
L_{p, \lambda}(1-n, \chi) & =\sum_{\substack{a=1 \\
(a, p)=1}}^{F} \chi(a) H_{p, \lambda}\left(1-n, \frac{a}{F}\right) \\
& =-\frac{1}{n}\left(B_{n, \chi w^{-n}}(\lambda)-p^{n-1} \chi w^{-n}(p) B_{n, \chi w^{-n}}\left(\lambda^{p}\right)\right)
\end{aligned}
$$

Thus, we define the formula

$$
L_{p, \lambda}(s, \chi)=\frac{1}{F} \frac{1}{s-1} \sum_{a=1}^{F} \chi(a) \lambda^{a}\langle a\rangle^{1-s} \sum_{j=0}^{\infty}\binom{1-s}{j} B_{j}\left(\lambda^{F}\right)
$$

for $s \in \mathbb{Z}_{p}$.

References

[1] E. W. Barnes, On the theory of the multiple gamma functions, Trans. Camb. Philos. Soc. 19 (1904), 374-425.
[2] K. C. Garret and K. Hummel, A combinatorial proof of the sum of q-cubes, Electron. J. Combin. 11 (2004), no. 1, Research Paper 9.
[3] K. Iwasawa, Lectures on p-adic L-function, Annals of Mathematics Studies, No. 74. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972.
[4] L. C. Jang and H. K. Pak, Non-Archimedean integration associated with q-Bernoulli numbers, Proc. Jangjeon Math. Soc. 5 (2002), no. 2, 125-129.
[5] T. Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 (1994), no. 2, 21-26.
[6] \quad, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329.
[7] _ , q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
[8] _, An invariant p-adic integral associated with Daehee numbers, Integral Transforms Spec. Funct. 13 (2002), no. 1, 65-69.
[9] , On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267.
[10] , A note on multiple zeta functions, JP J. Algebra Number Theory Appl. 3 (2003), no. 3, 471-476.
[11] , Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli Polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91-98.
[12] , Remark on the multiple Bernoulli numbers, Proc. Jangjeon Math. Soc. 6 (2003), no. 2, 185-192.
[13] , Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 1, 15-18.
$[14]$, Analytic continuation of multiple q-zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004), no. 1, 71-76.
[15] , A note on multiple Dirichlet's q-L-function, Adv. Stud. Contemp. Math. (Kyungshang) 11 (2005), no. 1, 57-60.
[16] , Power series and asymptotic series associated with the q-analog of the twovariable p-adic L-function, Russ. J. Math. Phys. 12 (2005), no. 2, 186-196.
[17] , Multiple p-adic L-function, Russ. J. Math. Phys. 13 (2006), 151-157.
[18] , A new approach to p-adic q-L-functions, Adv. Stud. Contemp. Math. (Kyungshang) 12 (2006), no. 1, 61-72.
[19] __ On the analogs of Euler numbers and polynomials associated with p-adic q integral on \mathbb{Z}_{p} at $q=-1$, J. Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.09.027.
[20] , A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 13 (2006), 315-320.
[21] T. Kim, L. C. Jang, S.-H. Rim, and H.-K. Pak, On the twisted q-zeta functions and q-Bernoulli polynomials, Far East J. Appl. Math. 13 (2003), no. 1, 13-21.
[22] J. Satho, q-analogue of Riemann's ζ-function and q-Euler numbers, J. Number Theory 31 (1989), no. 3, 346-362.
[23] M. Schlosser, q-analogues of the sums of consecutive integers, squares, cubes, quarts and quints, Electron. J. Combin. 11 (2004), no. 1, Research Paper 71.
[24] K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985), no. 1, 113-125.
[25] Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 205-218.
[26] , Twisted (h, q)-Bernoulli numbers and polynomials related to (h, q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), 790-804.
[27] Y. Simsek, D. Kim, T. Kim, and S.-H. Rim, A note on the sums of powes of consecutive q-integers, J. Appl. Funct. Different Equat. 1 (2006), 63-70.
[28] Y. Simsek and S. Yang, Transformation of four Titchmarsh-type infinite integrals and generalized Dedekind sums associated with Lambert series, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 2, 195-202.
[29] H. M. Srivastava, T. Kim, and Y. Simsek, q-Bernoulli multiple q-zeta functions and basic L-series, Russ. J. Math. Phys. 12 (2005), no. 2, 241-268.

Taekyun Kim
Division of General Education-Mathematics
Kwangwoon University
Seoul 139-704, Korea
E-mail address: tkim64@hanmail.net
Seog-Hoon Rim
Department of mathematical Education
Kyungpook National University
Taegu 702-701, Korea
E-mail address: shrim@knu.ac.kr
Yilmaz Simsek
University of Akdeniz
Faculty of Art and Science
Department of Mathematics 07058 Antalya, Turkey
E-mail address: ysimsek@akdeniz.edu.tr
Daeyeoul Kim
National Institute for Mathematical Science
Daejeon 305-340, Korea
E-mail address: daeyeoul@chonbuk.ac.kr

[^0]: Received August 19, 2006.
 2000 Mathematics Subject Classification. 11S80, 11B68, 11M99, 32D30.
 Key words and phrases. Bernoulli numbers and polynomials, zeta functions.

 * This paper was supported by the Scientific Research Project Adminstration Akdeniz University and partially supported by Jangjeon Research Institute for Mathematical Science and Physics(JRMS-2006-C00001).

