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We derive some interesting identities and arithmetic properties of Bernoulli and Euler polynomials
from the orthogonality of Hermite polynomials. Let Pn = {p(x) ∈ Q[x] | deg p(x) ≤ n} be the
(n + 1)-dimensional vector space over Q. Then we show that {H0(x),H1(x), . . . ,Hn(x)} is a good
basis for the space Pn for our purpose of arithmetical and combinatorial applications.

1. Introduction

As is well known, the Euler polynomials, En(x), are defined by the generating function as
follows:

2
et + 1

ext = eE(x)t =
∞∑

n=0

En(x)
tn

n!
(1.1)

(see [1–8]), with the usual convention about replacing En(x) by En(x).
In the special case, x = 0, En(0) = En is called the nth Euler number. From (1.1) and

definition of Euler numbers, we note that

En(x) = (E + x)n =
n∑

l=0

(
n
l

)
Elx

n−l =
n∑

l=0

(
n
l

)
En−lxl (1.2)

with the usual convention about replacing En by En.
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The Bernoulli numbers are defined as

B0 = 1, (B + 1)n − Bn = δ1,n (1.3)

(see [9–14]), where δk,n is a Kronecker symbol.
As is well known, Bernoulli polynomials are also defined by

Bn(x) = (B + x)n =
n∑

l=0

(
n
l

)
Blx

n−l =
n∑

l=0

(
n
l

)
Bn−lxl (1.4)

with the usual convention about replacing Bn by Bn (see [1, 15–18]).
The Hermite polynomials are defined by the generating function as follows:

e2xt−t
2
= eH(x)t =

∞∑

n=0

Hn(x)
tn

n!
(1.5)

(see [5, 19]), with the usual convention about replacing Hn(x) by Hn(x).
From (1.5), we can derive the following identities:

Hn(x) =
(

∂

∂t

)n

e2xt−t
2
∣∣∣∣
t=0

= ex
2
(

∂

∂t

)n

e−(x−t)
2
∣∣∣∣
t=0

= (−1)nex2
(

∂

∂x

)n

e−(x−t)
2
∣∣∣∣
t=0

= (−1)nex2
(

dn

dxn
e−x

2
)
.

(1.6)

Let us consider two operators as follows:

f �−→ O1f = −
(
ex

2 d

dx
e−x

2
)
f = 2xf − df

dx
,

f �−→ O2f =
(
ex

2/2
(
x − d

dx

)
e−x

2/2
)
f = 2xf − df

dx
.

(1.7)

By (1.7), we get O1 = O2. In particular, if we take f = 1, then we have

−ex2
(

d

dx
e−x

2
)

= ex
2/2
(
x − d

dx

)
e−x

2/2. (1.8)

We note that

(−1)nex2
(

dn

dxn
e−x

2
)

=
(
−ex2 d

dx
e−x

2
)n

. (1.9)
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From (1.8), we note that

(−1)nex2

(
dne−x

2

dxn

)
=

(
−ex2 de−x

2

dx

)n

=
(
ex

2/2
(
x − d

dx

)
e−x

2/2
)n

= ex
2/2
(
x − d

dx

)n

e−x
2/2.

(1.10)

Thus, by (1.10), we get

Hn(x) = ex
2/2
(
x − d

dx

)n

e−x
2/2 (1.11)

(see [5, 19–23]). In the special case, x = 0, Hn(0) = Hn are called the Hermite numbers.
From (1.5), we can derive the following identities:

Hn(x) = (H + 2x)n =
n∑

l=0

(
n
l

)
Hn−l2lxl (1.12)

(cf. [5, 19]), with the usual convention about replacing Hn byHn. It is easy to show that

∞∑

n=0

Hn
tn

n!
= e−t

2
=

∞∑

l=0

(−1)n
n!

t2n. (1.13)

By comparing coefficients on the both sides of (1.13), we get

H2n = (−1)n2n(2n − 1) · · · (n + 1) =
(−1)n(2n)!

n!
, H2n−1 = 0, (1.14)

where n ∈ N. From (1.12), we have

dHn(x)
dx

= 2nHn−1(x) (n ∈ N). (1.15)

Let Pn = {p ∈ Q[x] | deg p(x) ≤ n} be the (n + 1)-dimensional vector space over Q. Probably,
{1, x, x2, . . . , xn} is the most natural basis for this space. But {H0(x),H1(x),H2(x), . . . ,Hn(x)}
is also a good basis for the space Pn, for our purpose of arithmetical and combinatorial
applications.

For p(x) ∈ Pn,

p(x) =
n∑

k=0

CkHk(x), (1.16)

for some uniquely determined bl ∈ Q.
The purpose of this paper is to develop methods for computing Ck from the

information of p(x). By using these methods, we define some interesting identities.
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2. Properties of Hermite Polynomials

From (1.5) and (1.13), we note that

1 =

( ∞∑

m=0

Hmt
m

m!

)( ∞∑

l=0

t2l

l!

)

=

( ∞∑

m=0

H2m
t2m

(2m)!

)( ∞∑

l=0

(2l)(2l − 1) · · · (l + 1)
(2l)!

t2l
)

=
∞∑

n=0

(
n∑

l=0

(2l)(2l − 1) · · · (l + 1)
(2l)!(2n − 2l)!

H2n−2l(2n)!

)
t2n

(2n)!

=
∞∑

n=0

(
n∑

l=0

l!
(
2l
l

)(
2n
2l

)
H2n−2l

)
t2n

(2n)!
.

(2.1)

Thus, by (2.1), we obtain the following recurrence formula.

Proposition 2.1. For n ∈ Z+ = N ∪ {0}, one has

n∑

l=0

l!
(
2l
l

)(
2n
2l

)
H2n−2l =

{
1, if n = 0

0, if n /= 0
. (2.2)

By, (1.5), we get

∞∑

n=0

Hn(−x) t
n

n!
= e2t(−x)−t

2
= e2x(−t)−(−t)

2
=

∞∑

n=0

Hn(x)(−1)n t
n

n!
. (2.3)

From (2.3), we can derive the following reflection symmetric identity of Hn(x):

Hn(−x) = (−1)nHn(x). (2.4)

By (1.5), we easily see that

∂

∂t

(
e2xt−t

2
)
= (2x − 2t)e2xt−t

2
. (2.5)
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Thus, by (1.5) and (2.5), we get

∂

∂t

( ∞∑

n=0

Hn(x)
tn

n!

)
= (2x − 2t)

( ∞∑

n=0

Hn(x)
tn

n!

)
. (2.6)

LHSof (2.5) =
∞∑

n=1

Hn(x)
tn−1

(n − 1)!
=

∞∑

n=0

Hn+1(x)
tn

n!
, (2.7)

RHSof (2.5) =
∞∑

n=0

(
2xHn(x)

tn

n!

)
−

∞∑

n=0

2Hn(x)
tn+1

n!

=
∞∑

n=0

(
2xHn(x)

tn

n!

)
−

∞∑

n=1

2Hn−1(x)
tn

(n − 1)!

=
∞∑

n=0
(2xHn(x))

tn

n!
−

∞∑

n=1

2nHn−1(x)
tn

n!
.

(2.8)

Thus, by (2.6) and (2.7), we get

Hn+1(x) = 2xHn(x) − 2nHn−1(x), (n ∈ N). (2.9)

From (1.15) and (2.9), we note that

Hn+1(x) − 2xHn(x) +H ′
n(x) = 0. (2.10)

Differentiating on both sides, we have

2(n + 1)Hn(x) − 2Hn(x) − 2xH ′
n(x) +H ′

n(x) = 0. (2.11)

Thus, we have

H ′′
n(x) − 2xH ′

n(x) + 2nHn(x) = 0. (2.12)

From (2.12), we note thatHn(x) is a solution of the following second-order linear differential
equation:

u′′ − 2xu′ + 2nu = 0. (2.13)

From (1.5), we note that

∞∑

m=0

Hn(x)
tn

n!
= e2tx−t

2
=

( ∞∑

l=0

(2x)l

l!
tl
)( ∞∑

k=0

(−1)k
k!

t2k
)

=
∞∑

n=0

(
[n/2]∑

k=0

(−1)kn!(2x)n−2k
k!(n − 2k)!

)
tn

n!
.

(2.14)
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Thus, by (2.14), we get

Hn(x) =
[n/2]∑

k=0

(−1)kn!
k!(n − 2k)!

(2x)n−2k

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n/2∑
l=0

(−1)n/2−ln!22l
(n/2 − l)!(2l)!

x2l, ifn ≡ 0 (mod2),

(n−1)/2∑
l=0

(−1)(n−1)/2−ln!22l+1
((n − 1)/2 − l)!(2l + 1)!

x2l+1, ifn ≡ 1 (mod2).

(2.15)

3. Main Results

By (1.6), we easily get

∫∞

−∞
e−x

2
Hn(x)Hm(x)dx = (−1)n

∫∞

−∞

(
dn

dxn
e−x

2
)
Hm(x)dx. (3.1)

From (3.1), we note that

∫∞

−∞
e−x

2
Hn(x)Hm(x)dx = 2nn!

√
πδm,n. (3.2)

It is easy to show that

∫∞

−∞
e−x

2
xldx =

⎧
⎪⎪⎨

⎪⎪⎩

0 if l ≡ 1 (mod2),

l!
√
π

2l(l/2)!
if l ≡ 0 (mod2),

(3.3)

where l ∈ Z+ = N ∪ {0}. By (3.3), we get

∫∞

−∞

(
dne−x

2

dxn

)
xmdx =

⎧
⎪⎪⎨

⎪⎪⎩

0 ifn > m orn ≤ mwithn −m ≡ 1 (mod 2),

m!(−1)n√π

2m−n((m − n)/2)!
ifn ≤ mwithn −m ≡ 0 (mod 2).

(3.4)

From (3.2), we note that H0(x),H1(x), . . . ,Hn(x) are orthogonal basis for the space Pn =
{p(x) ∈ Q[x] | deg p(x) ≤ n}with respect to the inner product

〈
p(x), q(x)

〉
=
∫∞

−∞
e−x

2
p(x)q(x)dx. (3.5)
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For p(x) ∈ Pn, the polynomial p(x) is given by

p(x) =
∞∑

k=0

CkHk(x), (3.6)

where

Ck =
1

2kk!
√
π

〈
p(x),Hk(x)

〉

=
(−1)k

2kk!
√
π

∫∞

−∞

(
dke−x

2

dxk

)
p(x)dx.

(3.7)

Let us take p(x) = xn ∈ Pn. For n ≡ 0 (mod 2), we compute Ck in (3.6) as follows

Ck =
(−1)k

2kk!
√
π

∫∞

−∞

(
dke−x

2

dxk

)
xndx

=

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k
2kk!

√
π

× (−1)kn!√π

2n−k((n − k)/2)!
if k ≡ 0 (mod 2),

0 if k ≡ 1 (mod 2).

(3.8)

Let n ≡ 1 (mod 2). Then we have

Ck =
(−1)k

2kk!
√
π

∫∞

−∞

(
dke−x

2

dxk

)
xndx

=

⎧
⎪⎨

⎪⎩

n!
2nk!((n − k)/2)!

if k ≡ 1 (mod 2),

0 if k ≡ 0 (mod 2).

(3.9)

Therefore, by (3.6), (3.8), and (3.9), we obtain the following proposition.

Proposition 3.1. One has

x2n =
(2n)!
22n

n∑

k=0

1
(2k)!(n − k)!

H2k(x),

x2n+1 =
(2n + 1)!
22n+1

n∑

k=0

1
(2k + 1)!(n − k)!

H2k+1(x).

(3.10)

Let us take p(x) = Bn(x). From (3.4), P(x) can be rewritten by

Bn(x) =
n∑

k=0

CkHk(x), (3.11)
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where

Ck =
(−1)k

2kk!
√
π

∫∞

−∞

(
dke−x

2

dxk

)
Bn(x)dx. (3.12)

By integrating by parts, we get

∫∞

−∞

(
dke−x

2

dxk

)
Bn(x) = (−n)(−(n − 1)) · · · (−(n − k + 1))

∫∞

−∞
e−x

2
Bn−k(x)dx

= (−1)k n!
(n − k)!

n−k∑

l=0

(
n − k
l

)
Bn−k−l

∫∞

−∞
e−x

2
xldx

=
(−1)kn!
(n − k)!

∑

0≤l≤n−k
l≡0 (mod 2)

(n − k)!Bn−k−l
l!(n − k − l)!

× l!
√
π

2l(l/2)!

= (−1)kn!√π
∑

0≤l≤n−k
l≡0 (mod 2)

Bn−k−l
(n − k − l)!2l(l/2)!

.

(3.13)

Thus, from (3.11) and (3.13), we have

Ck =
n!
2kk!

∑

0≤l≤n−k
l≡0 (mod 2)

Bn−k−l
(n − k − l)!2l(l/2)!

. (3.14)

Therefore, by (3.11) and (3.14), we obtain the following theorem.

Theorem 3.2. For n ∈ Z+, one has

Bn(x) = n!
n∑

k=0

∑

0≤l≤n−k
l≡0 (mod 2)

Bn−k−l
2k+lk!(n − k − l)!(l/2)!

Hk(x). (3.15)

Remark 3.3. Let us take p(x) = En(x). Then, by the same method, we obtain the following
identity:

En(x) = n!
n∑

k=0

∑

0≤l≤n−k
l≡0 (mod2)

En−k−l
2k+lk!(n − k − l)!(l/2)!

Hk(x). (3.16)

Now, we consider p(x) = Hn(x). From (3.6), we note that p(x) can be rewritten as

Hn(x) =
n∑

k=0

CkHk(x), (3.17)
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where

Ck =
(−1)k

2kk!
√
π

∫∞

−∞

(
dke−x

2

dxk

)
Hn(x)dx. (3.18)

By integrating by parts, we get

∫∞

−∞

(
dke−x

2

dxk

)
Hn(x)dx = (−2n) · · · (−2(n − k + 1))

∫∞

−∞
e−x

2
Hn−k(x)dx

=
(−1)k2kn!
(n − k)!

n−k∑

l=0

(
n − k
l

)
2lHn−k−l

∫∞

−∞
e−x

2
xldx

=
(−1)k2kn!
(n − k)!

n−k∑

l=0
l≡0 (mod2)

2l(n − k)!
l!(n − k − l)!

Hn−k−l
l!
√
π

2l(l/2)!

= (−1)k2kn!√π
n−k∑

l=0
l≡0 (mod2)

Hn−k−l
(n − k − l)!(l/2)!

.

(3.19)

From (3.17) and (3.19), we note that

Ck =

(
(−1)k

2kk!
√
π

)
×

⎛
⎜⎜⎝(−1)k2kn!√π

∑

0≤l≤n−k
l≡0 (mod 2)

Hn−k−l
(n − k − l)!(l/2)!

⎞
⎟⎟⎠

=
n!
k!

∑

0≤l≤n−k
l≡0 (mod 2)

Hn−k−l
(n − k − l)!(l/2)!

.

(3.20)

Therefore, by (3.17) and (3.20), we obtain the following theorem.

Theorem 3.4. For n ∈ Z+, one has

Hn(x) = n!
n∑

k=0

∑

0≤l≤n−k
l≡0 (mod 2)

Hn−k−l
k!(n − k − l)!(l/2)!

Hk(x). (3.21)

From Theorem 3.4, we note that

Hn(x) = n!
n−1∑

k=0

∑

0≤l≤n−k
l≡0 (mod 2)

Hn−k−l
k!(n − k − l)!(l/2)!

Hk(x) +
n!Hn(x)

n!
. (3.22)
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Thus, we have, for 0 ≤ k ≤ n − k,

∑

0≤l≤n−k
l≡0 (mod 2)

Hn−k−l
(n − k − l)!(l/2)!

= 0. (3.23)

Let l, k ∈ Z+ with k ≤ l. Then we easily see that

∫∞

−∞

(
dke−x

2

dxk

)
Bl(x)dx = (−1)kl!√π

∑

0≤ j ≤ l−k
j ≡ 0 (mod2)

Bl−k−j(
l − k − j

)
!2j
(
j/2
)
!
, (3.24)

∫∞

−∞

(
dke−x

2

dxk

)
El(x)dx = (−1)kl!√π

∑

0≤j≤l−k
j≡0 (mod 2)

El−k−j(
l − k − j

)
!2j
(
j/2
)
!
. (3.25)

Let us consider the following polynomial of degree n in Pn:

p(x) =
n∑

k=0

Bk(x)Bn−k(x). (3.26)

From (3.6), we note that p(x) can be rewritten as

p(x) =
n∑

k=0

CkHk(x), (3.27)

where

Ck =
(−1)k

2kk!
√
π

∫∞

−∞

(
dke−x

2

dxk

)
p(x)dx. (3.28)

In [15], it is known that

p(x) =
n∑

k=0

Bk(x)Bn−k(x)

=
2

n + 2

n−2∑

l=0

(
n + 2
l

)
Bn−lBl(x) + (n + 1)Bn(x).

(3.29)

From (3.23) and (3.29), we have the following:

Ck =
(−1)k

2kk!
√
π

{
2

n + 2

n−2∑

l=0

(
n + 2
l

)∫∞

−∞

(
dke−x

2

dxk

)
Bl(x)dx + (n + 1)

∫∞

−∞

(
dke−x

2

dxk

)
Bn(x)dx

}
,

(3.30)
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By (3.24) and (3.30), we get

Cn =
(

(−1)n
2nn!

√
π

)
× (n + 1)

∫∞

−∞

(
dne−x

2

dxn

)
Bn(x)dx

=
(

(−1)n
2nn!

√
π

)
×
(
(n + 1)

(−1)nn!√πB0

0!200!

)
=

n + 1
2n

,

Cn−1 =

(
(−1)n−1

2n−1(n − 1)!
√
π

)
×
(
(n + 1)

∫∞

−∞

(
dn−1e−x

2

dxn−1

)
Bn(x)dx

)

=

(
(−1)n−1

2n−1(n − 1)!
√
π

)
×

⎛
⎜⎜⎝(n + 1)(−1)n−1n!√π

1∑

j=0
j≡0 (mod 2)

B1−j(
1 − j

)
!2j
(
j/2
)
!

⎞
⎟⎟⎠

=

(
(−1)n−1

2n−1(n − 1)!
√
π

)
×
(
(n + 1)(−1)n−1n!√πB1

)
=

−n(n + 1)
2n

.

(3.31)

For 0 ≤ k ≤ n − 2, we have

Ck

=
(−1)k

2kk!
√
π

{
2

n + 2

n−2∑

l=k

(
n + 2
l

)
Bn−l

∫∞

−∞

(
dke−x

2

dxk

)
Bl(x)dx + (n + 1)

∫∞

−∞

(
dke−x

2

dxk

)
Bn(x)dx

}

=
(−1)k

2kk!
√
π

⎧
⎪⎪⎨

⎪⎪⎩

2
n + 2

n−2∑

l=k

(
n + 2
l

)
Bn−l(−1)kl!

√
π ×

∑

0≤ j ≤ l−k
j≡0 (mod 2)

Bl−k−j(
l − k − j

)
!2j
(
j/2
)
!

+(n + 1)(−1)kn!√π
∑

0≤ j ≤n−k
j≡0 (mod 2)

Bn−k−j(
n − k − j

)
!2j
(
j/2
)
!

⎫
⎪⎪⎬

⎪⎪⎭

=
2

n + 2

n−2∑

l=k

∑

0≤ j ≤ l−k
j≡0 (mod 2)

(
n + 2
l

)
Bn−lBl−k−j l!

2k+jk!
(
l − k − j

)
!
(
j/2
)
!

+ (n + 1)!
∑

0≤ j ≤n−k
j≡0 (mod 2)

Bn−k−j
k!
(
n − k − j

)
!
(
j/2
)
!2k+j

.

(3.32)

Therefore, by (3.27) and (3.32), we obtain the following theorem.
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Theorem 3.5. For n ∈ Z+, one has

n∑

k=0

Bk(x)Bn−k(x)

=
n−2∑

k=0

⎧
⎪⎪⎨

⎪⎪⎩

2
n + 2

n−2∑

l=k

∑

0≤ j ≤n−k
j≡0 (mod 2)

(
n + 2
l

)
l!Bn−lBl−k−j

2k+jk!
(
l − k − j

)
!
(
j/2
)
!

+(n + 1)!
∑

0≤ j ≤n−k
j≡0 (mod 2)

Bn−k−j
2k+jk!

(
n − k − j

)
!
(
j/2
)
!

⎫
⎪⎪⎬

⎪⎪⎭
Hk(x)

− n(n + 1)
2n

Hn−1(x) +
n + 1
2n

Hn(x).

(3.33)
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