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Abstract. In this paper, we study some properties of umbral calculus
related with Frobenius-type Eulerian polynomials. From our results of this
paper, we can derive many interesting identities with respect to Frobenius-
type Eulerian polynomials.
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1. Introduction

Let C be the complex number field. Throughout this paper, we assume that
λ ∈ C with λ �= 1. The Frobenius-type Eulerian polynomials of order r are
given by (

1 − λ

e(λ−1)t − λ

)r

ext =

∞∑
n=0

A(r)
n (x|λ)

tn

n!
, (see [1,7,8]). (1.1)

In the special case, x = 0, A
(r)
n (0|λ) = A

(r)
n (λ) are called the Frobenius-type

Eulerian numbers. By (1.1), we easily get

A(r)
n (x|λ) =

∞∑
k=0

(
n

k

)
A

(r)
k (λ)xn−k, (see [1,3,9,11]). (1.2)

Let P be the algebra of polynomials in the single variable x over C and P∗

be the vector space of all linear functionals on P. The action of the linear func-
tional on a polynomial p(x) is denoted by 〈L|p(x)〉. The action 〈L|p(x)〉 satis-
fies 〈L + M |p(x)〉 = 〈L|p(x)〉 + 〈M |p(x)〉 and 〈cL|p(x)〉 = c 〈L|p(x)〉, where c
is a complex constant (see [10, 13, 14]).

Let F denote the algebra of all formal power series in the single variable t
over C with

F =

{
f(t) =

∞∑
k=0

ak

k!
tk

∣∣∣∣∣ ak ∈ C

}
. (1.3)

For f(t) ∈ F , we define a linear functional on P by setting

〈f(t)|xn〉 = an, (n ≥ 0) (see [10,13,14]). (1.4)

By (1.3) and (1.4), we get〈
tk|xn

〉
= n!δn,k (n, k ≥ 0), (1.5)

where δn,k is the Kronecker’s symbol.

Let fL(t) =
∑∞

k=0

〈L|xk〉
k!

tk. Then, by (1.5), we easily get 〈fL(t)|xn〉 = 〈L|xn〉
and fL(t) = L, (n ≥ 0). The map L �→ fL(t) is a vector space isomorphism
from P

∗ onto F . Henceforth, F is thought of as both a formal power series
and a linear functional. We call F the umbral algebra. The umbral calculus is
the study of umbral algebra (see [5, 10, 13, 14]).

The order o(f(t)) of the non-zero power series f(t) is the smallest integer
k for which the coefficient of tk does not vanish. If o(f(t)) = 1, then f(t) is
called a delta series. If o(f(t)) = 0, then f(t) is called an invertible series
(see [5, 10, 13, 14]). Let o(f(t)) = 1 and o(g(t)) = 0. Then there exists a
unique sequence Sn(x) of polynomials such that

〈
g(t)f(t)k|Sn(x)

〉
= n!δn,k,
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where n, k ≥ 0. The sequence Sn(x) is called Sheffer sequence for (g(t), f(t)),
which is denoted by Sn(x) ∼ (g(t), f(t)) (see [10, 13, 14]). From (1.5), we note
that 〈eyt| p(x)〉 = p(y). Let us assume thatf(t) ∈ F and p(x) ∈ P. Then, we
have

f(t) =

∞∑
k=0

〈
f(t)|xk

〉
k!

tk, p(x) =

∞∑
k=0

〈
tk|p(x)

〉
k!

xk (see [5,10,13,14]). (1.6)

From (1.6), we note that

p(k)(0) =
〈
tk|p(x)

〉
,
〈
1
∣∣p(k)(x)

〉
= p(k)(0). (1.7)

By (1.7), we get

tkp(x) = p(k)(x) =
dkp(x)

dxk
, (k ≥ 0), (see [5,10,13,14]). (1.8)

Let Sn(x) ∼ (g(t), f(t)). Then we have

1

g(f̄(t))
eyf̄(t) =

∞∑
k=0

Sk(y)

k!
tk, for all y ∈ C, (1.9)

where f̄(t) is the compositional inverse of f(t) (see [5, 10, 13, 14]).
The purpose of this paper is to study some properties of Frobenius-type

Eulerian polynomials arising from umbral calculus. By using our results of this
paper, we can obtain many interesting identities of Frobenius-type Eulerian
polynomials.

2. Frobenius-type Eulerian polynomails and umbral calculus

In this section, we assume that r ∈ Z. From (1.1) and (1.9), we note that

A(r)
n (x|λ) ∼

((
et(λ−1) − λ

1 − λ

)r

, t

)
. (2.1)

Let Pn = {p(x) ∈ C[x] | deg p(x) ≤ n}. Then Pn is the (n+1)-dimensional vec-

tor space over C. It is easy to show that
{

A
(r)
0 (x|λ), A

(r)
1 (x|λ), . . . , A

(r)
n (x|λ)

}
is a good basis for Pn (see [1-17]).

For p(x) ∈ Pn, let us assume that

p(x) =
n∑

k=0

ckA
(r)
k (x|λ), (n ≥ 0). (2.2)

Then, by (2.1) and (2.2), we get〈(
et(λ−1) − λ

1 − λ

)r

tk
∣∣∣∣ p(x)

〉
=

n∑
l=0

cl

〈(
et(λ−1) − λ

1 − λ

)r

tk
∣∣∣∣A(r)

l (x|λ)

〉

=
n∑

l=0

cll!δl,k = k!ck.

(2.3)
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Thus, from (2.3), we have

ck =
1

k!

〈(
et(λ−1) − λ

1 − λ

)r

tk
∣∣∣∣ p(x)

〉
=

1

k!

〈(
et(λ−1) − λ

1 − λ

)r∣∣∣∣Dkp(x)

〉

=
1

k!(1 − λ)r

r∑
j=0

(
r

j

)
(−λ)r−j

〈
ej(λ−1)t

∣∣Dkp(x)
〉

=
1

k!(1 − λ)r

r∑
j=0

(
r

j

)
(−λ)r−j

〈
t0
∣∣Dkp(x + j(λ − 1))

〉
.

(2.4)

Therefore, by (2.2) and (2.4), we obtain the following theorem.

Theorem 2.1. For r ∈ Z+, p(x) ∈ Pn, let

p(x) =

n∑
k=0

ckA
(r)
k (x|λ).

Then we have

ck =
1

k!(1 − λ)r

r∑
j=0

(
r

j

)
(−λ)r−jDkp(j(λ − 1)),

where Dp(x) = dp(x)
dx

.

By Theorem 2.1, we get

p(x) =
1

(1 − λ)r

n∑
k=0

{
r∑

j=0

1

k!

(
r

j

)
(−λ)r−jDkp(j(λ − 1))

}
A

(r)
k (x|λ). (2.5)

Let us define λ-difference operator Δλ as follows:

Δλf(x) = f(x + λ − 1) − λf(x), (2.6)

and

Tλ(f) =
1

1 − λ
Δλf(x) =

1

1 − λ
{f(x + λ − 1) − λf(x)} . (2.7)

From (2.7), we have

Tλ

(
A(r)

n (x|λ)
)

=
1

1 − λ

{
A(r)

n (x + λ − 1|λ) − λA(r)
n (x|λ)

}
. (2.8)

By (1.1), we easily get
∞∑

n=0

{
A(r)

n (x + λ − 1|λ) − λA(r)
n (x|λ)

} tn

n!

=

(
1 − λ

et(λ−1) − λ

)r

e(x+λ−1)t − λ

(
1 − λ

et(λ−1) − λ

)r

ext

=(1 − λ)

(
1 − λ

et(λ−1) − λ

)r−1

ext = (1 − λ)

∞∑
n=0

A(r−1)
n (x|λ)

tn

n!
.

(2.9)
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Thus, by (2.9), we see that

Tλ

(
A(r)

n (x|λ)
)

=
1

1 − λ

{
A(r)

n (x + λ − 1|λ) − λA(r)
n (x|λ)

}
= A(r−1)

n (x|λ).

(2.10)

From (2.10), we have

T r
λ

(
A(r)

n (x|λ)
)

= T r−1
λ

(
A(r−1)

n (x|λ)
)

= · · · = A(0)
n (x|λ) = xn. (2.11)

By (2.11), we get

T r
λ(xn) = T r

λ

(
A(0)

n (x|λ)
)

= A(−r)
n (x|λ) = T 2r

λ

(
A(r)

n (x|λ)
)
. (2.12)

For s ∈ Z+, from (2.12), we note that

T s
λ

(
A(r)

n (x|λ)
)

= A(r−s)
n (x|λ). (2.13)

On the other hand, by (2.13), we get

T s
λ

(
A(r)

n (x|λ)
)

=

(
et(λ−1) − λ

1 − λ

)s (
A(r)

n (x|λ)
)

=
1

(1 − λ)s

(
(1 − λ) +

∞∑
k=1

(λ − 1)ktk

k!

)s

A(r)
n (x|λ)

=
s∑

m=0

(
s
m

)
(1 − λ)m

∞∑
l=m

( ∑
k1+···+km=l

1

k1! · · · km!

)
tl(λ − 1)lA(r)

n (x|λ)

=
s∑

m=0

(
s
m

)
(1 − λ)m

∞∑
l=m

(λ − 1)l

l!

∑
k1+···+km=l, ki≥1

(
l

k1, . . . , km

)
DlA(r)

n (x|λ)

=

min{s,n}∑
m=0

(
s
m

)
(1 − λ)m

n∑
l=m

(
n

l

)
(λ − 1)l

∑
k1+···+km=l, ki≥1

(
l

k1, . . . , km

)
A

(r)
n−l(x|λ)

=

min{s,n}∑
l=0

(
n

l

) l∑
m=0

(
s
m

)
(1 − λ)m−l

∑
k1+···+km=l, ki≥1

(
l

k1, . . . , km

)
A

(r)
n−l(x|λ)

+

n∑
l=min{s,n}+1

(
n

l

)min{s,n}∑
m=0

(
s
m

)
(1 − λ)m−l

∑
k1+···+km=l, ki≥1

(
l

k1, . . . , km

)
A

(r)
n−l(x|λ).

(2.14)

Therefore, by (2.13) and (2.14), we obtain the following theorem.
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Theorem 2.2. For r, s ∈ Z+, we have

A(r−s)
n (x|λ) =

min{s,n}∑
l=0

l∑
m=0

∑
k1+···+km=l, ki≥1

(
n
l

)(
s
m

)(
l

k1,... ,km

)
(1 − λ)m−l

A
(r)
n−l(x|λ)

+

n∑
l=min{s,n}+1

min{s,n}∑
m=0

∑
k1+···+km=l, ki≥1

(
n
l

)(
s
m

)(
l

k1,... ,km

)
(1 − λ)m−l

A
(r)
n−l(x|λ).

Let us take r = s. Then, by Theorem 2.2, we get

xn =

min{r,n}∑
l=0

l∑
m=0

∑
k1+···+km=l, ki≥1

(
l

k1,... ,km

)(
n
l

)(
r
m

)
(1 − λ)m−l

A
(r)
n−l(x|λ)

+

n∑
l=min{r,n}+1

min{r,n}∑
m=0

∑
k1+···+km=l, ki≥1

(
l

k1,... ,km

)(
r
m

)(
n
l

)
(1 − λ)m−l

A
(r)
n−l(x|λ).

From (2.6), we can derive the following equation:

Δn
λf(0) =

n∑
k=0

(
n

k

)
(−λ)n−kf((λ − 1)k). (2.15)

Let s = 2r. Then, by (2.12) and Theorem 2.2, we get

T r
λ(xn) =A(−r)

n (x|λ) = T 2r
λ

(
A(r)

n (x|λ)
)

=

min{2r,n}∑
l=0

l∑
m=0

∑
k1+···+km=l, ki≥1

(
l

k1,... ,km

)(
n
l

)(
2r
m

)
(1 − λ)m−l

A
(r)
n−l(x|λ)

+

n∑
l=min{2r,n}+1

min{2r,n}∑
m=0

∑
k1+···+km=l, ki≥1

(
l

k1,... ,km

)(
n
l

)(
2r
m

)
(1 − λ)m−l

A
(r)
n−l(x|λ).

(2.16)

By (2.7), we easily get

T r
λ(xn) =

Δr
λx

n

(1 − λ)r
=

r∑
j=0

(
r

j

)
(−λ)r−j(x + (λ − 1)j)n. (2.17)

For n, k ≥ 0, let us define λ-analogue of the Stirling number of the second kind
as follows:

S2(n, k|λ) =
1

k!

k∑
j=0

(
k

j

)
(−λ)k−jjn. (2.18)

From (2.18), we note that S2(n, k|1) = S2(n, k) where S2(n, k) is the Striling
number of the second kind. Therefore, by (2.16), (2.17) and (2.18), we obtain
the following theorem.
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Theorem 2.3. For n, k ≥ 0, we have

r∑
j=0

(
r

j

)
(−λ)r−j (x + (λ − 1)j)n

=

min{2r,n}∑
l=0

l∑
m=0

∑
k1+···+km=l, ki≥1

(
2r
m

)(
l

k1,... ,km

)(
n
l

)
(1 − λ)m−l

A
(r)
n−l(x|λ)

+

n∑
l=min{2r,n}+1

min{2r,n}∑
m=0

∑
k1+···+km=l, ki≥1

(
l

k1,... ,km

)(
n
l

)(
2r
m

)
(1 − λ)m−l

A
(r)
n−l(x|λ).

Moreover,

(λ − 1)nS2(n, r|λ)

=
1

r!

min{2r,n}∑
l=0

l∑
m=0

∑
k1+···+km=l, ki≥1

(
l

k1,... ,km

)(
n
l

)(
2r
m

)
(1 − λ)m−l

A
(r)
n−l(λ)

+
1

r!

n∑
l=min{2r,n}+1

min{2r,n}∑
m=0

∑
k1+···+km=l, ki≥1

(
l

k1,... ,km

)(
n
l

)(
2r
m

)
(1 − λ)m−l

A
(r)
n−l(λ).
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