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1 Introduction
Let F be the set of all formal power series in the variable t over C with

F =
{
f (t) =

∞∑
k=

ak
k! t

k
∣∣∣ak ∈C

}
. (.)

Let us assume that P is the algebra of polynomials in the variable x over C and P
* is

the vector space of all linear functionals on P. 〈L|p(x)〉 denotes the action of the linear
functional L on a polynomial p(x), and we remind that the vector space structure on P

* is
defined by

〈
L +M|p(x)〉 = 〈

L|p(x)〉 + 〈
M|p(x)〉,〈

cL|p(x)〉 = c
〈
L|p(x)〉,

where c is a complex constant (see [–]).
The formal power series

f (t) =
∞∑
k=

ak
k! t

k ∈F (.)

defines a linear functional on P by setting

〈
f (t)|xn〉 = an, for all n ∈ Z+ =N∪ {}. (.)

Thus, by (.) and (.), we get

〈
tk|xn〉 = n!δn,k (n,k ≥ ), (.)

where δn,k is the Kronecker symbol (see []).
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For fL(t) =
∑∞

k=
〈L|xk〉
k! tk , from (.), we have

〈
fL(t)|xn

〉
=

〈
L|xn〉, n≥ . (.)

By (.), we get L = fL(t). Themap L �→ fL(t) is a vector space isomorphism from P
* ontoF .

So,F denotes both the algebra of formal power series in t and the vector space of all linear
functionals on P, and so an element f (t) of F is thought of as both a formal power series
and a linear functional (see [–]). We call F the umbral algebra, and the study of umbral
algebra is called umbral calculus (see [–]).
The order o(f (t)) of the nonzero power series f (t) is the smallest integer k for which the

coefficient of tk does not vanish. If o(f (t)) = , then f (t) is called a delta series. If o(f (t)) = ,
then f (t) is called an invertible series (see []).
Let Sn(x) be polynomials in the variable xwith degree n, and let o(f (t)) =  and o(g(t)) = .

Then there exists a unique sequence Sn(x) such that 〈g(t)f (t)k|Sn(x)〉 = n!δn,k , where
n,k ≥ . The sequence Sn(x) is called the Sheffer sequence for (g(t), f (t)), which is denoted
by Sn(x)∼ (g(t), f (t)) (see []).
For f (t), g(t) ∈F , we have

f (t) =
∞∑
k=

〈f (t)|xk〉
k! tk , p(x) =

∞∑
k=

〈tk|p(x)〉
k! xk , (.)

and

〈
f (t)g(t)|p(x)〉 = 〈

f (t)|g(t)p(x)〉 = 〈
g(t)|f (t)p(x)〉 (see []). (.)

By (.), we get

dkp(x)
dxk

∣∣∣∣
x=

= p(k)() =
〈
tk|p(x)〉 and

〈
|p(k)(x)〉 = p(k)(). (.)

Thus, from (.), we have

tkp(x) = p(k)(x) = dkp(x)
dxk (see [–]). (.)

For Sn(x)∼ (g(t), f (t)), the following equations from (.) to (.) are well known in []:

h(t) =
∞∑
k=

〈h(t)|Sk(x)〉
k! g(t)f (t)k , h(t) ∈F , (.)

p(x) =
∞∑
k=

〈g(t)f (t)k|p(x)〉
k! Sk(x), p(x) ∈ P, (.)

f (t)Sn(x) = nSn–(x),
〈
h(t)|p(αx)〉 = 〈

h(αt)|p(x)〉, (.)


g(f̄ (t))

eyf̄ (t) =
∞∑
k=

Sk(y)
k! , for all y ∈C, (.)
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where f̄ (t) is the compositional inverse of f (t), and

Sn(x + y) =
n∑

k=

(n
k

)
pk(y)Sn–k(x) =

n∑
k=

(n
k

)
pk(x)Sn–k(y), (.)

where pk(y) = g(t)Sk(y)∼ (, f (t)).
The Euler polynomials of order r are defined by the generating function to be

(


et + 

)r
ext = eE(r)(x)t =

∞∑
n=

E(r)n (x)
n! tn (see [–, –]) (.)

with the usual convention about replacing (E(r)(x))n by E(r)n (x). In the special case, x = ,
E(r)n () = E(r)n are called the Euler numbers of order r.
As is well known, the higher-order Bernoulli polynomials are also defined by the gener-

ating function to be

( t
et – 

)r
ext = eB(r)(x)t =

∞∑
n=

B(r)n (x)
n! tn (see [–, –]) (.)

with the usual convention about replacing (B(r)(x))n by B(r)n (x). In the special case, x = ,
B(r)n () = B(r)n are called the Bernoulli numbers of order r.
Recently, several researchers have studied the umbral calculus related to special polyno-

mials. In this paper, we derive some interesting identities related to Bernoulli, Euler, and
Abel polynomials arising from umbral calculus.

2 Some identities of special polynomials
It is known [] that

xB(na)n– (x)∼
(
,

(et – 
t

)a
t
)
, xn ∼ (, t), (.)

where n ∈N and a �= . From (.), we have

xn = x
(et – 

t

)an
x–xB(na)n– (x) = x

(et – 
t

)an
B(na)n– (x)

= x
∞∑
l=

(an)!
(l + an)!S(l + an,an)tlB(na)n– (x)

= x
n–∑
l=

(an)!
(l + an)!S(l + an,an)(n – )lB(na)n––l(x), (.)

where S(n, l) is the Stirling number of the second kind. Therefore, by (.), we obtain the
following theorem.

Theorem . For n ∈N and a �= , we have

xn– =
n–∑
l=

(an)!
(l + an)!S(l + an,an)(n – )lB(na)n––l(x),

where (a)n = a(a – ) · · · (a – n + ).
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Kim et al. Advances in Difference Equations 2013, 2013:15 Page 4 of 8
http://www.advancesindifferenceequations.com/content/2013/1/15

In [], we note that

Sn(x) =
n∑
k=

(
–an
n – k

)
(n – )n–kxk ∼ (

, t( + t)a
)
, (.)

and

φn(x) =
n∑

k=
S(n,k)xk ∼ (

, log( + t)
)
, (.)

where a �= .
For n≥ , we have

φn(x) = x
( t( + t)a

log( + t)

)n
x–Sn(x)

= x
( t( + t)a

log( + t)

)n n∑
l=

(
–an
n – l

)
(n – )n–lxl–. (.)

The Bernoulli polynomials bn(x) of the second kind are defined by the generating func-
tion to be

t
log( + t) ( + t)x =

∞∑
k=

bk(x)
tk
k! (see []). (.)

By (.) and (.), we get

φn(x) =
n∑
l=

(
–an
n – l

)
(n – )n–lx

( t( + t)a
log( + t)

)n
xl–

=
n∑
l=

(
–an
n – l

)
(n – )n–lx

( ∞∑
k=

bk(a)
k! tk

)n

xl–

=
∞∑
l=

(
–an
n – l

)
(n – )n–lx

∞∑
k=

( ∑
l+···+ln=k

( k
l, . . . , ln

)
bl (a) · · ·bln (a)

) tk
k!x

l–

=
n∑
l=

(
–an
n – l

)
(n – )n–lx

l–∑
k=

( ∑
l+···+ln=k

( k
l, . . . , ln

)
bl (a) · · ·bln (a)

)
(l – )k

k! xl––k

=
n∑
l=

l–∑
k=

∑
l+···+ln=k

(
–an
n – l

)
(n – )n–l

(l – 
k

)( k
l, . . . , ln

)
bl (a) · · ·bln (a)xl–k

=
n∑
l=

l∑
m=

∑
l+···+ln=l–m

(
–an
n – l

)
(n – )n–l

( l – 
m – 

)( l –m
l, . . . , ln

)
bl (a) · · ·bln (a)xm

=
n∑

m=

{ n∑
l=m

∑
l+···+ln=l–m

(
–an
n – l

)
(n – )n–l

( l – 
m – 

)( l –m
l, . . . , ln

)

× bl (a) · · ·bln (a)
}
xm. (.)

Therefore, by (.) and (.), we obtain the following theorem.
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Theorem . For a �= , n≥  with ≤ m ≤ n, we have

S(n,m) =
n∑

l=m

∑
l+···+ln=l–m

(
–an
n – l

)
(n – )n–l

( l – 
m – 

)( l –m
l, . . . , ln

)
bl (a) · · ·bln (a).

It is well known (see []) that

( t
log( + t)

)n
( + t)x– =

∞∑
k=

B(k–n+)k (x) t
k

k! . (.)

Thus, by (.), we get

( t( + t)a
log( + t)

)n
=

∞∑
k=

B(k–n+)k (an + ) t
k

k! , (.)

and
( t( + t)a

log( + t)

)n
=

∞∑
k=

( ∑
l+···+ln=k

( k
l, . . . , ln

)
bl (a) · · ·bln (a)

) tk
k! . (.)

Therefore, by (.) and (.), we obtain the following lemma.

Lemma . For n,k ∈ Z+, we have

∑
l+···+ln=k

( k
l, . . . , ln

)
bl (a) · · ·bln (a) = B(k–n+)k (an + ).

Let us consider the following sequences:

Sn(x)∼
(
,

(et + 


)a
t
)

(a ∈R),

xn ∼ (, t) (n≥ ).
(.)

Then from (.), we have

Sn(x) = x
(


et + 

)an
x–xn = x

(


et + 

)an
xn–

= xE(an)n– (x). (.)

Therefore, by (.), we obtain the following proposition.

Proposition . For a ∈R, n ∈N, we have

xE(an)n– (x)∼
(
,

(et + 


)a
t
)
.

The Abel sequence is given by

An(x;b) = x(x – bn)n– ∼ (
, tebt

)
(b �= ). (.)
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By Proposition . and (.), we get

xE(na)n– (x) = x
( tebt

( et+ )at

)n
x–An(x;b)

= x
(


et + 

)an
ebntx–An(x;b)

= x
( ∞∑

k=

E(an)(bn)
k! tk

)
(x – bn)n–

= x
n–∑
k=

(n – 
k

)
E(an)k (bn)(x – bn)n––k . (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n ∈N and a ∈R, we have

E(an)n– (x) =
n–∑
k=

(n – 
k

)
E(an)k (bn)(x – bn)n––k

=
n–∑
k=

(n – 
k

)
E(an)n––k(bn)(x – bn)k .

Let us consider the following Sheffer sequences:

Gn(x;a,b)∼
(
, eat

(
ebt – 

))
(b �= ),

An(x; c + a)∼ (
, te(c+a)t

)
(c + a �= ).

(.)

By (.), we note that

Gn(x;a,b) =
x
b

(x – an
b – 

)
n–

. (.)

For n≥ , from (.), we have

An(x; c + a) = x
(eat(ebt – )

te(c+a)t
)n

x–Gn(x;a,b)

= x
(ebt – 

tect
)n

x–Gn(x;a,b), (.)

and

(et – )n
etxtn =


tn

(
n!

∞∑
j=n

S(j,n)
tj
j!

)( ∞∑
l=

(–)l

l! xltl
)

=
(
n!

∞∑
j=

S(j + n,n) tj
(j + n)!

)( ∞∑
l=

(–)lxl
l! tl

)

=
∞∑
k=

( k∑
j=

S(j + n,n)
(–)k–j

(k
j
)

(j+n
j
) xk–j

)
tk
k! . (.)
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From (.), we can derive the following equation (.):

(ebt – )n

ebt( cb n)(bt)n
=

∞∑
k=

( k∑
j=

(–)k–j
(k
j
)
S(j + n,n)(j+n

j
) ( c

bn
)k–j

)
(bt)k
k! . (.)

Thus, by (.), we get

(ebt – 
tect

)n
= bn

∞∑
k=

( k∑
j=

(–cn)k–j
(k
j
)
S(j + n,n)(j+n

j
) bj

)
tk
k! . (.)

From (.), (.), and (.), we can derive the following equation (.):

An(x; c + a)

= bn–
n–∑
k=

( k∑
j=

(–cn)k–j
(k
j
)
S(j + n,n)bj(j+n

j
)

)
x t

k

k!

(x – an
b – 

)
n–

, (.)

and

(x – an
b – 

)
n–

=
n–∑
l=

S(n – , l)
(x – an

b – 
)l
, (.)

where S(n, l) is the Stirling number of the first kind. By (.), we get

tk
k!

(x – an
b – 

)
n–

=
n–∑
l=k

S(n – , l)
( l
k

)(x – an
b – 

)l–k
b–k . (.)

Thus, by (.) and (.), we get

An(x; c + a)

= bn–
n–∑
k=

k∑
j=

n–∑
l=k

(
–
cn
b

)k–j
(k
j
)( l

k
)
S(j + n,n)S(n – , l)(j+n

j
) x

(x – an
b – 

)l–k
. (.)

From (.), we have

An(x; c + a) = x
(
x – (c + a)n

)n–. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n≥ , b �= , c + a �= , we have
(
x – (c + a)n

)n–
= bn–

n–∑
k=

k∑
j=

n–∑
l=k

(
–
cn
b

)k–j
(k
j
)( l

k
)
S(j + n,n)S(n – , l)(j+n

j
) (x – an

b – 
)l–k

.
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