RESEARCH Open Access

Some identities for the product of two Bernoulli and Euler polynomials

Dae San Kim¹, Taekyun Kim^{2*}, Sang-Hun Lee³ and Young-Hee Kim³

Abstract

Let \mathbb{P}_n be the space of polynomials of degree less than or equal to n. In this article, using the Bernoulli basis $\{B_0(x), \ldots, B_n(x)\}$ for \mathbb{P}_n consisting of Bernoulli polynomials, we investigate some new and interesting identities and formulae for the product of two Bernoulli and Euler polynomials like Carlitz did.

1 Introduction

The Bernoulli and Euler polynomials are defined by means of

$$\frac{t}{e^t - 1}e^{xt} = \sum_{n=0}^{\infty} B_n(x)\frac{t^n}{n!}, \ \frac{2}{e^t + 1}e^{xt} = \sum_{n=0}^{\infty} E_n(x)\frac{t^n}{n!}.$$
 (1)

In the special case, x = 0, $B_n(0) = B_n$ and $E_n(0) = E_n$ are called the *n*-th Bernoulli and Euler numbers (see [1-17]).

From (1), we note that

$$B_n(x) = \sum_{l=0}^n \binom{n}{l} B_l x^{n-l}, E_n(x) = \sum_{l=0}^n \binom{n}{l} E_l x^{n-l}.$$
 (2)

For $n \ge 0$, we have

$$\frac{d}{dx}B_{n}(x) = nB_{n-1}(x), \frac{d}{dx}E_{n}(x) = nE_{n-1}(x),$$
(3)

(see [7,8]).

By (1), we get the following recurrence for the Bernoulli and the Euler numbers:

$$B_0 = 1$$
, $B_n(1) - B_n = \delta_{1,n}$ and $E_0 = 1$, $E_n(1) + E_n = 2\delta_{0,n}$, (4)

where $\delta_{k, n}$ is the Kronecker symbol (see [1-17]).

Thus, from (3) and (4), we have

$$\int_{0}^{1} B_{n}(x)dx = \frac{\delta_{0,n}}{n+1}, \int_{0}^{1} E_{n}(x)dx = -\frac{2E_{n+1}}{n+1}.$$
 (5)

^{*} Correspondence: taekyun64@hotmail.com ²Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea Full list of author information is available at the end of the article

It is known [12] that

$$\int_{0}^{A} B_{m_{1}}\left(\frac{x}{a_{1}}\right) \dots B_{m_{n}}\left(\frac{x}{a_{n}}\right) dx = a_{1}^{1-m_{1}} \dots a_{n}^{1-m_{n}} \int_{0}^{1} B_{m_{1}}(x) \dots B_{m_{n}}(x) dx, \tag{6}$$

where a_1, a_2, \ldots, a_n are positive integers that are relatively prime in pairs $A = a_1 a_2 \ldots a_n$. For n = 2, there is the formula

$$\int_{0}^{1} B_{p}(x)B_{q}(x)dx = (-1)^{p+1} \frac{B_{p+q}}{\binom{p+q}{q}},$$
(7)

where $p + q \ge 2$ (see [3,4]). In [3,4], we can find the following formula for a product of two Bernoulli polynomials:

$$B_m(x)B_n(x) = \sum_r \left[\binom{m}{2r} n + \binom{n}{2r} m \right] \frac{B_{2r}B_{m+n-2r}(x)}{m+n-2r} + (-1)^{m+1} \frac{B_{m+n}}{\binom{m+n}{n}}, \text{ for } m+n \ge 2.$$
 (8)

Assume m, n, $p \ge 1$. Then, by (7) and (8), we get

$$\int_{0}^{1} B_{m}(x)B_{n}(x)B_{p}(x)dx = (-1)^{p+1}p! \sum_{r} \left[\binom{m}{2r} n + \binom{n}{2r} m \right] \frac{(m+n-2r-1)!}{(m+n+p-2r)!} B_{2r}B_{m+n+p-2r}, \tag{9}$$

(see [4]).

In [8], it is known that for $n \in \mathbb{Z}_+$,

$$B_n(x) = \sum_{\substack{k=0\\k\neq 1}}^{n} \binom{n}{k} B_k E_{n-k}(x)$$
 (10)

and

$$E_n(x) = -2\sum_{l=0}^n \binom{n}{l} \frac{E_{l+1}}{l+1} B_{n-l}(x).$$
 (11)

Let $\mathbb{P}_n = \{\Sigma_i a_i x^i | a_i \in \mathbb{Q}\}$ be the space of polynomials of degree less than or equal to n. In this article, using the Bernoulli basis $\{B_0(x), \ldots, B_n(x)\}$ for \mathbb{P}_n consisting of Bernoulli polynomials, we investigate some new and interesting identities and formulae for the product of two Bernoulli and Euler polynomials like Carlitz did.

2 Bernoulli identities arising from Bernoulli basis polynomials

From (1), we note that

$$e^{xt} = \frac{1}{t} \left(\frac{t(e^t - 1)}{e^t - 1} \right) e^{xt} = \frac{1}{t} \sum_{n=0}^{\infty} \left(B_n(x+1) - B_n(x) \right) \frac{t^n}{n!}$$

$$= \frac{1}{t} \sum_{n=1}^{\infty} \left(B_n(x+1) - B_n(x) \right) \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \left(\frac{B_{n+1}(x+1) - B_{n+1}(x)}{n+1} \right) \frac{t^n}{n!}.$$
(12)

Thus, from (12), we have

$$x^{n} = \frac{1}{n+1} (B_{n+1}(x+1) - B_{n+1}(x)) = \frac{1}{n+1} \sum_{l=0}^{n} {n+1 \choose l} B_{l}(x).$$
 (13)

From (13), we note that $\{B_0(x), B_1(x), \dots, B_n(x)\}$ spans \mathbb{P}_n . For $p(x) \in \mathbb{P}_n$, let $p(x) = \sum_{k=0}^n a_k B_k(x)$ and g(x) = p(x+1) - p(x). Then we have

$$g(x) = \sum_{k=0}^{n} a_k (B_k(x+1) - B_k(x)) = \sum_{k=0}^{n} k a_k x^{k-1}.$$
 (14)

From (14), we can derive the following Equation (15):

$$g^{(r)}(x) = \sum_{k=r+1}^{n} k(k-1) \dots (k-r) a_k x^{k-r-1},$$
(15)

where $g^{(r)}(x) = \frac{d^r g(x)}{dx^r}$ and $r = 0, 1, 2, \ldots, n$. Let us take x = 0 in (15). Then we have

$$g^{(r)}(0) = (r+1)!a_{r+1}. (16)$$

By (16), we get, for r = 1, 2, ..., n,

$$a_r = \frac{g^{(r-1)}(0)}{r!} = \frac{1}{r!} (p^{(r-1)}(1) - p^{(r-1)}(0)). \tag{17}$$

Let $0 = p(x) = \sum_{k=0}^{n} a_k B_k(x)$. Then, from (17), we have

$$a_r = \frac{1}{r!} g^{(r-1)}(0) = \frac{1}{r!} (p^{(r-1)}(1) - p^{(r-1)}(0)) = 0.$$
 (18)

From (18), we note that $\{B_0(x), B_1(x), \ldots, B_n(x)\}$ is a linearly independent set. Therefore, we obtain the following theorem.

Proposition 1 *The set of Bernoulli polynomials* $\{B_0(x), B_1(x), \ldots, B_n(x)\}$ *is a basis for* \mathbb{P}_n . Let us consider polynomial $p(x) \in \mathbb{P}_n$ as a linear combination of Bernoulli basis polynomials with

$$p(x) = C_0 B_0(x) + C_1 B_1(x) + \dots + C_n B_n(x). \tag{19}$$

We can write (19) as a dot product of two variables:

$$p(x) = (B_0(x), B_1(x), \dots, B_n(x)) \begin{pmatrix} C_0 \\ C_1 \\ \vdots \\ C_n \end{pmatrix}.$$
 (20)

From (20), we can derive the following equation:

$$p(x) = (1, x, x^{2}, ..., x^{n}) \begin{pmatrix} 1 & b_{12} & b_{13} & \cdots & b_{1n+1} \\ 0 & 1 & b_{23} & \cdots & b_{2n+1} \\ 0 & 0 & 1 & \cdots & b_{3n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b_{nn+1} \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} C_{0} \\ C_{1} \\ C_{2} \\ \vdots \\ C_{n} \end{pmatrix},$$

$$(21)$$

where b_{ij} are the coefficients of the power basis that are used to determine the respective Bernoulli polynomials. It is easy to show that

$$B_0(x) = 1$$
, $B_1(x) = x - \frac{1}{2}$, $B_2(x) = x^2 - x + \frac{1}{6}$, $B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x$, ...

In the quadratic case (n = 2), the matrix representation is

$$p(x) = (1, x, x^2) \begin{pmatrix} 1 - \frac{1}{2} \frac{1}{6} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix}.$$
 (22)

In the cubic case (n = 3), the matrix representation is

$$p(x) = (1, x, x^{2}, x^{3}) \begin{pmatrix} 1 - \frac{1}{2} \frac{1}{6} & 0 \\ 0 & 1 & -1 & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{3}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} C_{0} \\ C_{1} \\ C_{2} \\ C_{3} \end{pmatrix}.$$
(23)

In many applications of Bernoulli polynomials, a matrix formulation for the Bernoulli polynomials seems to be useful.

There are many ways of obtaining polynomial identities in general. Here, in Theorems 2-9, we use the Bernoulli basis in order to express certain polynomials as linear combinations of that basis and hence to get some new and interesting polynomial identities.

Let $I_{m,n} = \int_0^1 B_m(x)B_n(x)dx$ for $m, n \in \mathbb{Z}_+$. Then, by integration by parts, we get

$$I_{0,n} = I_{m,0} = 0, \ I_{m,n} = (-1)^{m+n} \frac{B_{m+n}}{\binom{m+n}{m}}, \ (m, \ n \ge 2).$$
 (24)

For $n \in \mathbb{Z}_+$ with $n \ge 2$, let us consider the following polynomials in \mathbb{P}_n :

$$p(x) = \sum_{k=0}^{n} B_k(x) B_{n-k}(x) \in \mathbb{P}_n.$$
 (25)

Then, from (25), we have

$$p^{(r)}(x) = \frac{(n+1)!}{(n-r+1)!} \sum_{k=r}^{n} B_{k-r}(x) B_{n-k}(x), \tag{26}$$

where r = 0, 1, 2, ... n.

By Proposition 1, we see that p(x) can be written as

$$p(x) = \sum_{k=0}^{n} a_k B_k(x).$$
 (27)

From (25) and (27), we note that

$$a_0 = \int_0^1 p(t)dt = \sum_{k=0}^n I_{k,n-k} = B_n \sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{\binom{n}{k}} = B_n \frac{(1+(-1)^n)}{n+2} = \frac{2}{n+2} B_n.$$

By (18) and (26), we get

$$a_{r+1} = \frac{1}{(r+1)!} (p^{(r)}(1) - p^{(r)}(0))$$

$$= \frac{(n+1)!}{(r+1)!(n-r+1)!} \sum_{k=r}^{n} (B_{k-r}(1)B_{n-k}(1) - B_{k-r}B_{n-k})$$

$$= \frac{1}{n+2} \binom{n+r}{r+1} \sum_{k=r}^{n} \{ (\delta_{1,k-r} + B_{k-r})(\delta_{1,n-k} + B_{n-k}) - B_{k-r}B_{n-k} \}$$

$$= \frac{1}{n+2} \binom{n+2}{r+1} (B_{n-r-1} + B_{n-r-1} + \delta_{r,n-2})$$

$$= \begin{cases} \frac{2}{n+2} \binom{n+2}{r+1} B_{n-r-1} & \text{if } r \neq n-2. \\ 0 & \text{if } r=n-2. \end{cases}$$
(28)

Therefore, by (25), (27) and (28), we obtain the following theorem.

Theorem 2 For $n \in \mathbb{Z}_+$ with $n \ge 2$, we have

$$\sum_{k=0}^{n} B_k(x) B_{n-k}(x) = \frac{2}{n+2} \sum_{k=0}^{n-2} {n+2 \choose k} B_{n-k} B_k(x) + (n+1) B_n(x).$$

For $n \in \mathbb{Z}_+$ with $n \ge 2$, let us take polynomial p(x) in \mathbb{P}_n as follows:

$$p(x) = \sum_{k=0}^{n} \frac{1}{k!(n-k)!} B_k(x) B_{n-k}(x) \in \mathbb{P}_n.$$
 (29)

From Proposition 1, we note that p(x) is given by means of Bernoulli basis polynomials:

$$p(x) = \sum_{k=0}^{n} a_k B_k(x) \in \mathbb{P}_n.$$
(30)

By (24), (29) and (30), we get

$$a_{0} = \int_{0}^{1} p(t)dt = \sum_{k=0}^{n} \frac{1}{k!(n-k)!} I_{k,n-k} = \frac{2I_{0,n}}{n!} + \sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{k!(n-k)!} B_{n}$$

$$= \frac{B_{n}}{n!} \sum_{k=1}^{n-1} (-1)^{k-1} = \frac{B_{n}}{n!} \frac{(1+(-1)^{n})}{2} = \frac{B_{n}}{n!}.$$
(31)

From (29), we have that for r = 0, 1, 2, ..., n,

$$p^{(r)}(x) = 2^r \sum_{k=r}^n \frac{B_{k-r}(x)B_{n-k}(x)}{(k-r)!(n-k)!}.$$
(32)

By (18), we get

$$a_{r+1} = \frac{1}{(r+1)!} (p^{(r)}(1) - p^{(r)}(0))$$

$$= \frac{2^r}{(r+1)!} \sum_{k=r}^n \frac{1}{(k-r)!(n-k)!} (B_{k-r}(1)B_{n-k}(1) - B_{k-r}B_{n-k})$$

$$= \frac{2^r}{(r+1)!} \left(\frac{2B_{n-r-1}}{(n-1-r)!} + \sum_{k=r}^n \delta_{1,k-r}\delta_{1,n-k} \right)$$

$$= \begin{cases} \frac{2^{r+1}}{n!} \binom{n}{r+1} B_{n-r-1} & \text{if } r \neq n-2, \\ 0 & \text{if } r = n-2. \end{cases}$$
(33)

Therefore, from (29), (30) and (33), we obtain the following theorem.

Theorem 3 For $n \in \mathbb{Z}_+$ with $n \ge 2$, we have

$$\sum_{k=0}^{n} \binom{n}{k} B_k(x) B_{n-k}(x) = \sum_{\substack{k=0\\k\neq n-1}}^{n} 2^k \binom{n}{k} B_{n-k} B_k(x).$$

Let $n \in \mathbb{Z}_+$ with $n \ge 2$. Then we consider polynomial p(x) in \mathbb{P}_n with

$$p(x) = \sum_{k=1}^{n-1} \frac{1}{k(n-k)} B_k(x) B_{n-k}(x).$$

By Proposition 1, we see that p(x) is written as

$$p(x) = \sum_{k=0}^{n} a_k B_k(x). \tag{34}$$

From (34), we have

$$a_0 = \int_0^1 p(t)dt = \sum_{k=1}^{n-1} \frac{1}{k(n-k)} \int_0^1 B_k(t)B_{n-k}(t)dt$$
$$= \sum_{k=1}^{n-1} \frac{1}{k(n-k)} \frac{(-1)^{k-1}}{\binom{n}{k}} B_n = \left(\frac{1+(-1)^n}{n^2}\right) B_n = \frac{2B_n}{n^2}.$$

It is easy to show that for $r = 1, 2, \ldots, n - 1$,

$$p^{(r)}(x) = 2C_r B_{n-r}(x) + (n-1)\cdots(n-r) \sum_{k=r+1}^{n-1} \frac{B_{k-r}(x)B_{n-k}(x)}{(k-r)(n-k)},$$
(35)

where
$$C_r = \frac{1}{n-r} \sum_{j=1}^r (n-1) \dots (n-j+1)(n-j-1) \dots (n-r)$$
.

By (17), we get

$$a_{r+1} = \frac{1}{(r+1)!} (p^{(r)}(1) - p^{(r)}(0))$$

$$= \frac{1}{(r+1)!} \left\{ 2C_r (B_{n-r}(1) - B_{n-r}) + (n-1) \dots (n-r) \sum_{k=r+1}^{n-1} \frac{B_{k-r}(1)B_{n-k}(1) - B_{k-r}B_{n-k}}{(k-r)(n-k)} \right\}$$

$$= \frac{2C_r}{(r+1)!} \delta_{r,n-1} + \frac{1}{n} \binom{n}{r+1} \sum_{k=r+1}^{n-1} \frac{B_{k-r}\delta_{1,n-k} + \delta_{1,k-r}B_{n-k} + \delta_{1,k-r}\delta_{1,n-k}}{(k-r)(n-k)}$$

$$= \begin{cases} \frac{2}{n(n-r-1)} \binom{n}{r+1} B_{n-r-1} & \text{if } 0 \le r \le n-3, \\ 0 & \text{if } r=n-2, \\ \frac{2}{n-1} C_{n-1} & \text{if } r=n-1. \end{cases}$$
(36)

From the definition of C_r , we have

$$\frac{2}{n!}C_{n-1} = \frac{2}{n!} \sum_{i=1}^{n-1} \frac{(n-1)!}{n-i} = \frac{2}{n} \sum_{i=1}^{n-1} \frac{1}{i} = \frac{2}{n} H_{n-1},$$
(37)

where $H_n = \sum_{i=1}^n \frac{1}{i}$.

Therefore, by (34), (36) and (37), we obtain the following theorem.

Theorem 4 For $n \in \mathbb{Z}_+$ with $n \ge 2$, we have

$$\sum_{k=1}^{n-1} \frac{B_k(x)B_{n-k}(x)}{k(n-k)} = \frac{2}{n} \sum_{k=0}^{n-2} \frac{1}{n-k} \binom{n}{k} B_{n-k}B_k(x) + \frac{2}{n} H_{n-1}B_n(x).$$

Let $J_{m,n} = \int_0^1 E_m(t) E_n(t) dt$, for $m, n \in \mathbb{Z}_+$. Then we see that

$$J_{m,n} = \frac{2(-1)^{m-1}}{(n+m+1)\binom{n+m}{m}} E_{n+m+1}, \text{ (see [3,4,7,8])}.$$
(38)

Let us take polynomials p(x) in \mathbb{P}_n with $p(x) = \sum_{k=0}^n E_k(x)E_{n-k}(x)$. Then, by Proposition 1, p(x) is written as $p(x) = \sum_{k=0}^n a_k B_k(x)$.

It is not difficult to show that

$$a_0 = \int_0^1 p(t)dt = \sum_{k=0}^n J_{k,n-k} = \frac{2E_{n+1}}{n+1} \sum_{k=0}^n \frac{(-1)^{k-1}}{\binom{n}{k}} = -2E_{n+1} \left(\frac{1+(-1)^n}{n+2}\right) = \frac{-4E_{n+1}}{n+2}$$

and

$$p^{(r)}(x) = \frac{(n+1)!}{(n+1-r)!} \sum_{k=r}^{n} E_{k-r}(x) E_{n-k}(x), \quad (r=0,1,2,\ldots,n).$$
 (39)

By (17) and (39), we get

$$a_{k} = \frac{1}{k!} (p^{(k-1)}(1) - p^{(k-1)}(0))$$

$$= \frac{(n+1)!}{k!(n-k+2)!} \sum_{l=k-1}^{n} (E_{l-k+1}(1)E_{n-l}(1) - E_{l-k+1}E_{n-l})$$

$$= \frac{\binom{n+2}{k}}{n+2} \sum_{l=k-1}^{n} \{ (-E_{l-k+1} + 2\delta_{0,l-k+1})(-E_{n-l} + 2\delta_{0,n-l}) - E_{l-k+1}E_{n-l} \}$$

$$= -\frac{4\binom{n+2}{k}}{n+2} E_{n-k+1},$$

$$(40)$$

where $k = 0, 1, 2, \ldots, n$. Therefore, by (40), we obtain the following theorem.

Theorem 5 For $n \in \mathbb{Z}_+$, we have

$$\sum_{k=0}^{n} E_k(x) E_{n-k}(x) = -\frac{4}{n+2} \sum_{k=0}^{n} {n+2 \choose k} E_{n-k+1} B_k(x).$$

Let us take the polynomial p(x) in \mathbb{P}_n as follows:

$$p(x) = \sum_{k=0}^{n} \frac{1}{k!(n-k)!} E_k(x) E_{n-k}(x). \tag{41}$$

Then, by (41), we get

$$p^{(r)}(x) = 2^r \sum_{k=r}^n \frac{E_{k-r}(x)E_{n-k}(x)}{(k-r)!(n-k)!},$$
(42)

where r = 0, 1, 2, ..., n.

By Proposition 1, we see that p(x) can be written as

$$p(x) = \sum_{k=0}^{n} a_k B_k(x). \tag{43}$$

From (41), (42) and (43), we have

$$a_{0} = \int_{0}^{1} p(t)dt = \sum_{k=0}^{n} \frac{1}{k!(n-k)!} J_{k,n-k}$$

$$= \frac{2E_{n+1}}{(n+1)!} \sum_{k=0}^{n} (-1)^{k-1} = -\frac{2E_{n+1}}{(n+1)!} \left(\frac{1+(-1)^{n}}{2}\right) = \frac{-2E_{n+1}}{(n+1)!}$$
(44)

and

$$a_{r} = \frac{1}{r!} (p^{(r-1)}(1) - p^{(r-1)}(0))$$

$$= \frac{2^{r-1}}{r!} \sum_{k=r-1}^{n} \frac{E_{k-r+1}(1)E_{n-k}(1) - E_{k-r+1}E_{n-k}}{(k-r+1)!(n-k)!}$$

$$= \frac{2^{r-1}}{r!} \left(-\frac{2E_{n-r+1}}{(n-r+1)!} - \frac{2E_{n-r+1}}{(n-r+1)!} + 4\delta_{n+1,r} \right)$$

$$= -\frac{2^{r+1}}{(n+1)!} {n+1 \choose r} E_{n-r+1},$$
(45)

where r = 1, 2, ..., n.

Therefore, by (41), (43) and (45), we obtain the following theorem.

Theorem 6 For $n \in \mathbb{Z}_+$, we have

$$\sum_{k=0}^{n} \binom{n}{k} E_k(x) E_{n-k}(x) = -\frac{2}{n+1} \sum_{k=0}^{n} 2^k \binom{n+1}{k} E_{n-k+1} B_k(x).$$

Let us take

$$p(x) = \sum_{k=1}^{n-1} \frac{1}{k(n-k)} E_k(x) E_{n-k}(x)$$

in \mathbb{P}_n . Then, by Proposition 1, p(x) is given by means of basis polynomials:

$$p(x) = \sum_{k=0}^{n} a_k B_k(x). \tag{46}$$

It is easy to show that

$$a_0 = \int_0^1 p(t)dt = \sum_{k=1}^{n-1} \frac{1}{k(n-k)} J_{k,n-k}$$

$$= \frac{2E_{n+1}}{n+1} \sum_{k=1}^{n-1} \frac{1}{k(n-k)} \frac{(-1)^{k-1}}{\binom{n}{k}} = \frac{2(1+(-1)^n)}{n^2(n+1)} E_{n+1} = \frac{4E_{n+1}}{n^2(n+1)}$$

and

$$p^{(k)}(x) = 2C_k E_{n-k}(x) + (n-1) \dots (n-k) \sum_{l=k+1}^{n-1} \frac{E_{l-k}(x) E_{n-l}(x)}{(l-k)(n-l)}, (k=1,2,\ldots,n-1)$$

where
$$C_k = \frac{1}{(n-k)} \sum_{j=1}^k (n-1) \dots (n-j+1) (n-j-1) \dots (n-k)$$
.

By the same method, we get

$$a_{k} = \frac{1}{k!} (p^{(k-1)}(1) - p^{(k-1)}(0))$$

$$= \frac{1}{k!} \left\{ 2C_{k-1}(E_{n-k+1}(1) - E_{n-k+1}) + (n-1) \dots (n-k+1) \sum_{l=k}^{n-1} \frac{E_{l-k+1}(1)E_{n-l}(1) - E_{l-k+1}E_{n-l}}{(l-k+1)(n-l)} \right\}$$

$$= -\frac{4C_{k-1}}{k!} E_{n-k+1}.$$

From the construction of C_k , we note that

$$\frac{C_{k-1}}{k!} = \frac{1}{k!(n-k+1)} \sum_{j=1}^{k-1} (n-1) \dots (n-j+1)(n-j-1) \dots (n-k+1)$$

$$= \frac{1}{k!(n-k+1)} \sum_{j=1}^{k-1} \frac{(n-1)!}{(n-k)!(n-j)} = \frac{\binom{n}{k}}{n(n-k+1)} \sum_{j=1}^{k-1} \frac{1}{n-j}$$

$$= \frac{\binom{n}{k}}{n(n-k+1)} \left(\sum_{j=1}^{n-1} \frac{1}{j} - \sum_{j=1}^{n-k} \frac{1}{j} \right) = \frac{\binom{n}{k}}{n(n-k+1)} (H_{n-1} - H_{n-k}).$$

Therefore, by the same method, we obtain the following theorem.

Theorem 7 For $n \in \mathbb{Z}_+$ with $n \ge 2$, we have

$$\sum_{k=1}^{n-1} \frac{E_k(x)E_{n-k}(x)}{k(n-k)} = \frac{4E_{n+1}}{n^2(n+1)} - \frac{4}{n} \sum_{k=1}^{n} \frac{\binom{n}{k}}{n-k+1} (H_{n-1} - H_{n-k})E_{n-k+1}B_k(x).$$

Let

$$T_{m,n} = \int_{0}^{1} B_m(t) E_n(t) dt, \quad \text{for } m, n \in \mathbb{Z}_+.$$
 (47)

From (47), we have that

$$T_{m,0} = \int_{0}^{1} B_m(t)dt = \frac{\delta_{0,m}}{m+1}$$
 and $T_{0,n} = \int_{0}^{1} E_n(t)dt = -\frac{2E_{n+1}}{n+1}$.

For $m, n \in \mathbb{N}$, we have

$$T_{m,n} = \frac{2(-1)^m}{(m+n+1)\binom{m+n}{m}} \sum_{l=m+1}^{m+n} (-1)^l \binom{m+n+1}{l} B_l E_{n+m+1-l}.$$
(48)

Let us consider the following polynomial in \mathbb{P}_n :

$$p(x) = \sum_{k=0}^{n} B_k(x) E_{n-k}(x). \tag{49}$$

For $n \in \mathbb{N}$ with $n \ge 2$, by Proposition 1, p(x) is given by

$$p(x) = \sum_{k=0}^{n} a_k B_k(x).$$
 (50)

From (49) and (50), we note that

$$a_{0} = \int_{0}^{1} p(t)dt = T_{0,n} + \sum_{k=1}^{n-1} T_{k,n-k} + T_{n,0}$$

$$= -\frac{2E_{n+1}}{n+1} + \frac{2}{n+1} \sum_{k=1}^{n-1} \sum_{l=k+1}^{n} (-1)^{k+l} \frac{\binom{n+1}{l}}{\binom{n}{k}} B_{l} E_{n+1-l}.$$
(51)

For k = 0, 1, 2, ..., n, we have

$$p^{(k)}(x) = (n+1)n \dots (n+2-k) \sum_{l=k}^{n} B_{l-k}(x) E_{n-l}(x)$$

$$= \frac{(n+1)!}{(n-k+1)!} \sum_{l=k}^{n} B_{l-k}(x) E_{n-l}(x).$$
(52)

By (17), we get

$$a_{k} = \frac{1}{k!} (p^{(k-1)}(1) - p^{(k-1)}(0))$$

$$= \frac{(n+1)!}{k!(n-k+2)!} \sum_{l=k-1}^{n} (B_{l-k+1}(1)E_{n-l}(1) - B_{l-k+1}E_{n-l})$$

$$= \frac{\binom{n+2}{k}}{n+2} \sum_{l=k-1}^{n} \{(B_{l-k+1} + \delta_{1,l-k+1})(-E_{n-l} + 2\delta_{0,n-l}) - B_{l-k+1}E_{n-l}\}$$

$$= \frac{\binom{n+2}{k}}{n+2} \left(-2\sum_{l=k-1}^{n} B_{l-k+1}E_{n-l} - E_{n-k} + 2B_{n-k+1} + 2\delta_{n,k}\right).$$
(53)

Therefore, by (49), (50) and (53), we obtain the following theorem.

Theorem 8 For $n \in \mathbb{Z}_+$ with $n \ge 2$, we have

$$\sum_{k=0}^{n} B_{k}(x)E_{n-k}(x)$$

$$= -\frac{2E_{n+1}}{n+1} + \frac{2}{n+1} \sum_{k=1}^{n-1} \sum_{l=k+1}^{n} (-1)^{k+l} \frac{\binom{n+1}{l}}{\binom{n}{k}} B_{l}E_{n+1-l} + (n+1)B_{n}(x)$$

$$+ \frac{1}{n+2} \sum_{k=1}^{n-2} \binom{n+2}{k} \left(-2 \sum_{l=k-1}^{n} B_{l-k+1}E_{n-l} - E_{n-k} + 2B_{n-k+1}\right) B_{k}(x).$$

For $n \in \mathbb{N}$ with $n \ge 2$, let us take $p(x) = \sum_{k=0}^{n} \frac{B_k(x)E_{n-k}(x)}{k!(n-k)!}$ in \mathbb{P}_n . Then we have

$$p^{(k)}(x) = 2^k \sum_{l=k}^n \frac{1}{(l-k)!(n-l)!} B_{l-k}(x) E_{n-l}(x).$$
 (54)

From Proposition 1, we note that p(x) can be written as

$$p(x) = \sum_{k=0}^{n} a_k B_k(x).$$
 (55)

Thus, by (55), we get

$$a_{0} = \int_{0}^{1} p(t)dt = \sum_{k=0}^{n} \frac{1}{k!(n-k)!} T_{k,n-k}$$

$$= \frac{T_{0,n}}{n!} + \sum_{k=1}^{n-1} \frac{T_{k,n-k}}{k!(n-k)!} + \frac{T_{n,0}}{n!}$$

$$= -\frac{2E_{n+1}}{(n+1)!} + \frac{2}{(n+1)!} \sum_{k=1}^{n-1} \sum_{l=k+1}^{n} (-1)^{k+l} {n+1 \choose l} B_{l}E_{n+1-l}.$$
(56)

From (17), we note that

$$a_{k} = \frac{1}{k!} (p^{(k-1)}(1) - p^{(k-1)}(0))$$

$$= \frac{2^{k-1}}{k!} \sum_{l=k-1}^{n} \frac{B_{l-k+1}(1)E_{n-l}(1) - B_{l-k+1}E_{n-l}}{(l-k+1)!(n-l)!}$$

$$= \frac{2^{k-1}}{k!} \left(\sum_{l=k-1}^{n} \frac{-2B_{l-k+1}E_{n-l}}{(l-k+1)!(n-l)!} - \frac{E_{n-k}}{(n-k)!} + \frac{2B_{n-k+1}}{(n-k+1)!} + 2\delta_{n,k} \right).$$
(57)

Therefore, by (54), (55) and (57), we obtain the following theorem.

Theorem 9 For $n \in \mathbb{N}$ with $n \ge 2$, we have

$$\sum_{k=0}^{n} \binom{n}{k} B_k(x) E_{n-k}(x)$$

$$= -\frac{2E_{n+1}}{n+1} + \frac{2}{n+1} \sum_{k=1}^{n-1} \sum_{l=k+1}^{n} (-1)^{k+l} \binom{n+1}{l} B_l E_{n+1-l}$$

$$+ \sum_{k=1}^{n-2} \left(-\frac{2^k \binom{n+1}{k}}{n+1} \sum_{l=k-1}^{n} \binom{n-k+1}{n-l} B_{l-k+1} E_{n-l} - 2^{k-1} \binom{n}{k} E_{n-k} + \frac{2^k \binom{n+1}{k}}{n+1} B_{n-k+1} \right) B_k(x) + 2^n B_n(x).$$

For $n \in \mathbb{N}$ with $n \ge 2$, let us consider the polynomial $p(x) = \sum_{k=1}^{n-1} \frac{B_k(x)E_{n-k}(x)}{k(n-k)}$ in \mathbb{P}_n .

From Proposition 1, we note that p(x) can be written as $p(x) = \sum_{k=0}^{n} a_k B_k(x)$. Then the k-th derivative of p(x) is given by

$$p^{(k)}(x) = C_k(B_{n-k}(x) + E_{n-k}(x)) + (n-1)\dots(n-k)\sum_{l=k+1}^n \frac{B_{l-k}(x)E_{n-l}(x)}{(l-k)(n-l)},$$
 (58)

where k = 1, 2, ..., n - 1 and

$$C_k = \frac{1}{n-k} \sum_{j=1}^k (n-1)(n-2) \dots (n-j+1)(n-j-1) \dots (n-k).$$

In addition,

$$p^{(n)}(x) = \left(p^{(n-1)}(x)\right)' = \left(C_{n-1}(B_1(x) + E_1(x))\right)' = 2C_{n-1} = 2(n-1)!H_{n-1}.$$

From (17), we note that

$$a_{k} = \frac{1}{k!} (p^{(k-1)}(1) - p^{(k-1)}(0))$$

$$= \frac{C_{k-1}}{k!} \{ (B_{n-k+1}(1) - B_{n-k+1}) + (E_{n-k+1}(1) - E_{n-k+1}) \}$$

$$+ \frac{(n-1) \dots (n-k+1)}{k!} \sum_{l=k}^{n-1} \frac{1}{(l-k+1)(n-l)} (B_{l-k+1}(1)E_{n-l}(1) - B_{l-k+1}E_{n-l})$$

$$= \frac{C_{k-1}}{k!} (-2E_{n-k+1} + \delta_{1,n-k+1}) + \frac{\binom{n}{k}}{n} \left(\sum_{l=k}^{n-1} \frac{-2B_{l-k+1}E_{n-l}}{(l-k+1)(n-l)} - \frac{E_{n-k}}{n-k} \right).$$
(59)

It is easy to show that

$$a_{0} = \int_{0}^{1} p(t)dt = \sum_{k=1}^{n-1} \frac{1}{k(n-k)} T_{k,n-k}$$

$$= \frac{2}{(n+1)n(n-1)} \sum_{k=0}^{n-2} \frac{(-1)^{k+1}}{\binom{n-2}{k}} \sum_{l=k+2}^{n} (-1)^{l} \binom{n+1}{l} B_{l} E_{n+1-l}.$$
(60)

Therefore, from (59) and (60), we have

$$\sum_{k=1}^{n-1} \frac{1}{k(n-k)} B_k(x) E_{n-k}(x)$$

$$= \frac{2}{n(n^2-1)} \sum_{k=0}^{n-2} \sum_{l=k+2}^{n} (-1)^{k+l+1} \frac{\binom{n+1}{l}}{\binom{n-2}{k}} B_l E_{n+1-l}$$

$$+ \sum_{k=1}^{n-2} \left\{ \frac{-2}{n(n-k+1)} \binom{n}{k} (H_{n-1} - H_{n-k}) E_{n-k+1} \right.$$

$$+ \frac{1}{n} \binom{n}{k} \left(-2 \sum_{l=k}^{n-1} \frac{B_{l-k+1} E_{n-l}}{(l-k+1)(n-l)} - \frac{E_{n-k}}{n-k} \right) \right\} B_k(x) + \frac{2}{n} H_{n-1} B_n(x).$$

Acknowledgements

The authors would like to express their deep gratitudes to the referees for their valuable suggestions and comments.

Author details

¹Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea ²Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea ³Division of General Education, Kwangwoon University, Seoul 139-701, Republic of Korea

Authors' contributions

All authors contributed equally to the manuscript and typed, read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests

Received: 10 April 2012 Accepted: 2 July 2012 Published: 2 July 2012

References

- Araci, S, Erdal, D, Seo, JJ: A study on the fermionic p-adics q-integral representation on

 ^ap associated with weighted q-Bernstein and q-Genocchi polynomials. Abstr Appl Anal 2011, 10 (2011). (Article ID 649248)
- 2. Bayad, A: Modular properties of elliptic Bernoulli and Euler functions. Adv Stud Contemp Math. 20(3):389-401 (2010)
- 3. Carlitz, L: Product of two Eulerian polynomials. Math Mag. 36, 37–41 (1963). doi:10.2307/2688134
- Carlitz, L: Note on the integral of the product of several Bernoulli polynomials. J Lond Math Soc. 34, 361–363 (1959). doi:10.1112/jlms/s1-34.3.361
- Cangul, IN, Kurt, V, Ozden, H, Simsek, Y: On the higher-order w-q-Genocchi numbers. Adv Stud Contemp Math. 19, 39–57 (2009)
- Cenkci, M, Simsek, Y, Kurt, V: Multiple two-variable p-adic q-L-function and its be-havior at s = 0. Russ J Math Phys. 15, 447–459 (2008). doi:10.1134/S106192080804002X
- Kim, DS, Kim, T: A study on the integral of the product of several Bernoulli polynomials. Rocky Mountain Journal of Mathematics. (in press)
- Kim, DS, Dolgy, DV, Kim, HM, Lee, SH, Kim, T: Integral formula of Bernoulli polynomials. Adv Stud Contemp Math. 22(2):190–199 (2012)
- 9. Kim, T: An identity of symmetry for the generalized Euler polynomials. J Comput Anal Appl. 13(7):1292–1296 (2011)
- Kim, T: Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv Stud Contemp Math. 20, 23–28 (2010)
- Kim, T: q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ J Math Phys. 15, 51–57 (2008)
- 12. Mordell, LJ: Integral formulas of arithmetic characters. J Lond Math Soc. 33, 371–375 (1957)
- 13. Ozden, H, Simsek, Y: A new extension of *q*-Euler numbers and polynomials related to their interpolation functions. Appl Math Lett. **21**(9):934–939 (2008). doi:10.1016/j.aml.2007.10.005
- Ryoo, CS: Some relations between twisted q-Euler numbers and Bernstein polynomials. Adv Stud Contemp Math. 21(2):217–223 (2011)
- Ryoo, CS: Some identities of the twisted q-Euler numbers and polynomials associated with q-Bernstein polynomials. Proc Jangjeon Math Soc. 14(2):239–248 (2011)
- Simsek, Y.: Complete sum of products of (h, q)-extension of Euler polynomials and numbers. J Diff Equ Appl. 16(11):1331–1348 (2010). doi:10.1080/10236190902813967

17. Simsek, Y: Theorems on twisted *L*-function and twisted Bernoulli numbers. Adv Stud Contemp Math. 11(2):205–218 (2005)

doi:10.1186/1687-1847-2012-95

Cite this article as: Kim *et al.*: Some identities for the product of two Bernoulli and Euler polynomials. *Advances in Difference Equations* 2012 **2012**:95.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com