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Abstract

In this paper, we give some recurrence formula and new and interesting
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identities for the poly-Bernoulli numbers and polynomials which are

derived from umbral calculus.

1 Introduction

The classical polylogarithmic function Lis(x) are

Lis(x) =

∞∑
k=1

xk

ks
, s ∈ Z, (see [3, 5]). (1)

In [5], poly-Bernoulli polynomials are defined by the generating function to be

Lik (1 − e−t)

1 − e−t
ext = eB(k)(x)t =

∞∑
n=0

B(k)
n (x)

tn

n!
, (see [3, 5]), (2)

with the usual convention about replacing
(
B(k)(x)

)n
by B

(k)
n (x).

As is well known, the Bernoulli polynomials of order r are defined by the

generating function to be(
t

et − 1

)r

ext =
∞∑

n=0

B
(r)
n (x)

tn

n!
, (see [7, 9]). (3)

In the special case, r = 1, B
(r)
n (x) = Bn(x) is called the n-th ordinary Bernoulli

polynomial. Here we denote higher-order Bernoulli polynomials as B
(r)
n to avoid

conflict of notations.

If x = 0, then B
(k)
n (0) = B

(k)
n is called the n-th poly-Bernoulli number. From

(2), we note that

B(k)
n (x) =

n∑
l=0

(
n

l

)
B

(k)
n−lx

l =
n∑

l=0

(
n

l

)
B

(k)
l xn−l. (4)

Let F be the set of all formal power series in the variable t over C as follows:

F =

{
f(t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣∣ak ∈ C

}
, (5)

and let P = C[x] and P
∗ denote the vector space of all linear functionals

on P. 〈L|p(x)〉 denotes the acition of linear functional L on the polynomial

p(x), and it is well known that the vector space oprations on P
∗ are defined
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by 〈L + M |p(x)〉 = 〈L|p(x)〉 + 〈M |p(x)〉, 〈cL|p(x)〉 = c 〈L|p(x)〉, where c is a

complex constant (see [6, 9]).

For f(t) ∈ F , let
〈
f(t)

∣∣xn
〉

= an. Then, by (5), we easily get〈
tk
∣∣xn
〉

= n!δn,k, (n, k ≥ 0), (see [1, 4, 6, 9, 10]), (6)

where δn,k is the Kronecker’s symbol.

Let us assume that fL(t) =
∑∞

k=0

〈
L
∣∣xk
〉

tk

k!
. Then, by (6), we see that〈

fL(t)
∣∣xn
〉

=
〈
L
∣∣xn
〉
. That is, fL(t) = L. Additionally, the map L �−→ fL(t) is

a vector space isomorphism from P
∗ onto F . Henceforth, F denotes both the

algebra of the formal power series in t and the vector space of all linear func-

tionals on P, and so an element f(t) of F will be thought as a formal power

series and a linear functional. F is called the umbral algebra. The umbral

calculus is the study of umbral algebra. The order O (f(t)) of the power series

f(t) 	= 0 is the smallest integer for which ak does not vanish. If O(f(t)) = 0,

then f(t) is called an invertible series. If O(f(t)) = 1, then f(t) is called a

delta series. For f(t), g(t) ∈ F , we have

〈f(t)g(t)|p(x)〉 = 〈f(t)|g(t)p(x)〉 = 〈g(t)|f(t)p(x)〉 . (7)

Let f(t) ∈ F and p(x) ∈ P. Then we have

f(t) =

∞∑
k=0

〈
f(t)

∣∣xk
〉 tk

k!
, p(x) =

∞∑
k=0

〈
tk
∣∣p(x)

〉 xk

k!
, (see [6, 9]). (8)

From (8), we can easily derive

p(k)(x) =
dkp(x)

dxk
=

∞∑
l=k

〈
tl
∣∣p(x)

〉
(l − k)!

xl−k. (9)

Thus, by (8) and (9), we get

p(k)(0) =
〈
tk
∣∣p(x)

〉
=
〈
1
∣∣p(k)(x)

〉
. (10)

Hence, from (10), we have

tkp(x) = p(k)(x) =
dkp(x)

dxk
, (see [1, 6, 9]). (11)

It is easy to show that

eytp(x) = p(x + y),
〈
eyt
∣∣p(x)

〉
= p(y). (12)
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Let O(f(t)) = 1 and O(g(t)) = 0. Then there exists a unique sequence sn(x)

of polynomials such that
〈
g(t)f(t)k

∣∣sn(x)
〉

= n!δn,k, for n, k ≥ 0. The se-

quence sn(x) is called a Sheffer sequence for (g(t), f(t)) which is denoted by

sn(x) ∼ (g(t), f(t)). The Sheffer sequence sn(x) for (g(t), t) is called the Appell

sequence for g(t). For p(x) ∈ P, f(t) ∈ F , we have

〈f(t)|xp(x)〉 = 〈∂tf(t)|p(x)〉 = 〈f ′(t)|p(x)〉 , (see [9, 10]). (13)

Let sn(x) ∼ (g(t), f(t)). Then the following equations are known:

h(t) =
∞∑

k=0

〈
h(t)

∣∣sk(x)
〉

k!
g(t)f(t)k, p(x) =

∞∑
k=0

〈
g(t)f(t)k

∣∣p(x)
〉

k!
sk(x), (14)

where h(t) ∈ F , p(x) ∈ P,

1

g
(
f̄(t)

)eyf̄(t) =
∞∑

k=0

sk(y)
tk

k!
, for all y ∈ C, (15)

where f̄(t) is the compositional inverse for f(t) with f̄ (f(t)) = t, and

f(t)sn(x) = nsn−1(x). (16)

As is well known, the Stirling numbers of the second kind are also defined by

the generating function to be

(
et − 1

)m
= m!

∞∑
l=m

S2(l, m)
tl

l!
=

∞∑
l=0

m!

(l + m)!
S2(l + m,m)tl+m. (17)

Let sn(x) ∼ (g(t), t). Then the Appell identity is given by

sn(x + y) =

n∑
k=0

(
n

k

)
sk(y)xn−k =

n∑
k=0

(
n

k

)
sn−k(y)xk, (see [6, 9]), (18)

and

sn+1(x) =

(
x − g′(t)

g(t)

)
sn(x), (see [6.9]). (19)

For sn(x) ∼ (g(t), f(t)), rn(x) ∼ (h(t), l(t)), we have

sn(x) =
n∑

m=0

rm(x)cn,m, (20)
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where

cn,m =
1

m!

〈
h
(
f̄(t)

)
g
(
f̄(t)

) l (f̄(t)
)m ∣∣∣∣∣xn

〉
, (see [9]). (21)

The equations (20) and (21) are important in deriving our main results of this

paper.

In this paper, we give some recurrence formula and new and interesting iden-

tities for the poly-Bernoulli numbers and polynomials which are derive from

umbral calculus.

2 Poly-Bernoulli numbers and polynomials

Let gk(t) = 1−e−t

Lik(1−e−t)
. Then, by (2) and (15), we get

B(k)
n (x) ∼ (gk(t), t) . (22)

That is, poly-Bernoulli polynomial B
(k)
n (x) is an Appell sequence.

By (1), we easily get

d

dx
Lik(x) =

1

x
Lik−1(x), tB(k)

n (x) =
d

dx
B(k)

n (x) = nB
(k)
n−1(x). (23)

From (2) and (15), we have

B(k)
n (x) =

1

gk(t)
xn =

Lik (1 − e−t)

1 − e−t
xn. (24)

Let k ∈ Z and n ≥ 0. Then we have

B(k)
n (x) =

Lik (1 − e−t)

1 − e−t
xn =

∞∑
m=1

(1 − e−t)
m−1

mk
xn (25)

=

∞∑
m=0

1

(m + 1)k

(
1 − e−t

)m
xn =

∞∑
m=0

1

(m + 1)k

m∑
j=0

(−1)j

(
m

j

)
e−jtxn

=
n∑

m=0

1

(m + 1)k

m∑
j=0

(−1)j

(
m

j

)
(x − j)n.
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By (17) and (25), we get

B(k)
n (x) =

n∑
m=0

1

(m + 1)k

∞∑
a=0

(−1)a m!

(a + m)!
S2(a + m,m)ta+mxn (26)

=

n∑
m=0

1

(m + 1)k

n−m∑
a=0

(−1)a m!

(a + m)!
S2(a + m,m)(n)a+mxn−a−m

=
n∑

l=0

{
n−l∑
m=0

(−1)n−m−l

(m + 1)k

(
n

l

)
m!S2(n − l, m)

}
xl,

where (a)n = a(a − 1)(a − 2) · · · (a − n + 1).

Now, we use the well-known transfer formula for Appell sequences (see equation

(19)).

By (19) and (22), we get

B
(k)
n+1(x) =

(
x − g′

k(t)

gk(t)

)
B(k)

n (x), (27)

where

g′
k(t)

gk(t)
= (log gk(t))

′ =
(
log
(
1 − e−t

)− log Lik
(
1 − e−t

))′
(28)

=
e−t

1 − e−t

{
1 − Lik−1 (1 − e−t)

Lik (1 − e−t)

}

=
1

et − 1

(
Lik (1 − e−t) − Lik−1 (1 − e−t)

Lik (1 − e−t)

)
.

From (27) and (28), we have

B
(k)
n+1(x) = xB(k)

n (x) − g′
k(t)

gk(t)
B(k)

n (x) (29)

= xB(k)
n (x) −

(
t

et − 1

)(
Lik (1 − e−t) − Lik−1 (1 − e−t)

t (1 − e−t)

)
xn.

Here, we note that

Lik (1 − e−t) − Lik−1 (1 − e−t)

1 − e−t
=

∞∑
m=2

(
1

mk
− 1

mk−1

)(
1 − e−t

)m−1
(30)

=

(
1

2k
− 1

2k−1

)
t + · · ·
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is a delta series.

For any delta series f(t), we observe that

f(t)

t
xn = f(t)

xn+1

n + 1
. (31)

By (29), (30) and (31), we get

B
(k)
n+1(x) = xB(k)

n (x) −
(

t

et − 1

)(
1

n + 1

Lik (1 − e−t) − Lik−1 (1 − e−t)

1 − e−t
xn+1

)

= xB(k)
n (x) − 1

n + 1

∞∑
l=0

Bl

l!
tl
{
B

(k)
n+1(x) − B

(k−1)
n+1 (x)

}

= xB(k)
n (x) − 1

n + 1

n+1∑
l=0

(
n + 1

l

)
Bl

{
B

(k)
n+1−l(x) − B

(k−1)
n+1−l(x)

}
. (32)

Therefore, by (32), we obtain the following theorem.

Theorem 1. For k ∈ Z, n ≥ 0, we have

B
(k)
n+1(x) = xB(k)

n (x) − 1

n + 1

n+1∑
l=0

(
n + 1

l

)
Bl

{
B

(k)
n+1−l(x) − B

(k−1)
n+1−l(x)

}
,

where Bn is the n-th ordinary Bernoulli number.

It is easy to show that

txB(k)
n (x) = t

n∑
l=0

(
n

l

)
B

(k)
n−lx

l+1 =
n∑

l=0

(
n

l

)
B

(k)
n−l(l + 1)xl (33)

= nx
n−1∑
l=0

(
n − 1

l

)
B

(k)
n−1−lx

l +
n∑

l=0

(
n

l

)
B

(k)
n−lx

n

= nxB
(k)
n−1(x) + B(k)

n (x).

Applying to t on both sides of Theorem 1, by (33), we get

(n + 1)B(k)
n (x) = nxB

(k)
n−1(x) + B(k)

n (x) −
n∑

l=0

(
n

l

)
Bn−l

{
B

(k)
l (x) − B

(k−1)
l (x)

}
.

(34)

Therefore, by (34), we obtain the following corollary.
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Corollary 2. For k ∈ Z and n ≥ 1, we have

(n + 1)B(k)
n (x) − n

(
x +

1

2

)
B

(k)
n−1(x) +

n−2∑
l=0

(
n

l

)
Bn−lB

(k)
l (x)

=

n∑
l=0

(
n

l

)
Bn−lB

(k−1)
l (x).

From (2) and (6), we note that

B(k)
n (y) =

〈
Lik (1 − e−t)

1 − e−t
eyt

∣∣∣∣∣xn

〉
=

〈
Lik (1 − e−t)

1 − e−t
eyt

∣∣∣∣∣xxn−1

〉
(35)

=

〈
∂t

(
Lik (1 − e−t)

1 − e−t
eyt

) ∣∣∣∣∣xn−1

〉

=

〈
∂t

(
Lik (1 − e−t)

1 − e−t

)
eyt

∣∣∣∣∣xn−1

〉
+ y

〈
Lik (1 − e−t)

1 − e−t
eyt

∣∣∣∣∣xn−1

〉

=

〈
Lik−1 (1 − e−t) − Lik (1 − e−t)

(1 − e−t)2 e(y−1)t

∣∣∣∣∣xn−1

〉
+ yB

(k)
n−1(y).

Now, we observe that

Lik−1 (1 − e−t) − Lik (1 − e−t)

(1 − e−t)2 =
1

(1 − e−t)2

∞∑
m=1

{
(1 − e−t)

m

mk−1
− (1 − e−t)

m

mk

}

(36)

=
∞∑

m=2

{
1

mk−1
− 1

mk

}(
1 − e−t

)m−2

=
∞∑

m=0

{
1

(m + 2)k−1
− 1

(m + 2)k

}(
1 − e−t

)m
.

Thus, by (36), we get〈
Lik−1 (1 − e−t) − Lik (1 − e−t)

(1 − e−t)2 e(y−1)t

∣∣∣∣∣xn−1

〉
(37)

=
∞∑

m=0

{
1

(m + 2)k−1
− 1

(m + 2)k

}〈(
1 − e−t

)m
e(y−1)t

∣∣xn−1
〉

=
n−1∑
m=0

(
1

(m + 2)k−1
− 1

(m + 2)k

)〈(
1 − e−t

)m ∣∣ (x + y − 1)n−1〉

=
n−1∑
m=0

(
1

(m + 2)k−1
− 1

(m + 2)k

) n−1∑
a=0

(
n − 1

a

)
(y − 1)n−1−a

〈(
1 − e−t

)m ∣∣xa
〉
.
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From (6) and (7), we have

〈(
1 − e−t

)m ∣∣xa
〉

= (−1)a+mm!S2(a, m). (38)

From (37) and (38), wehave〈
Lik−1 (1 − e−t) − Lik−1 (1 − e−t)

(1 − e−t)2 e(y−1)t

∣∣∣∣∣xn−1

〉
(39)

=
n−1∑
m=0

n−1∑
a=0

(−1)a+m

(
n − 1

a

)
m!

(
1

(m + 2)k−1
− 1

(m + 2)k

)

× S2(a, m)(y − 1)n−1−a

=

n−1∑
m=0

n−1∑
l=0

(−1)n−1−l+m

(
n − 1

l

)
m!

(
1

(m + 2)k−1
− 1

(m + 2)k

)

× S2(n − 1 − l, m)(y − 1)l.

Therefore, by (35) and (39), we obtain the following theorem.

Theorem 3. For k ∈ Z and n ≥ 1, we have

B(k)
n (x) = xB

(k)
n−1(x) +

n−1∑
l=0

(−1)n−1−l

(
n − 1

l

)

×
{

n−1∑
m=0

(−1)m (m + 1)!

(m + 2)k
S2(n − 1 − l, m)

}
(x − 1)l.

Now, we try to compute
〈
Lik (1 − e−t)

∣∣xn+1
〉

in two ways. On the one hand,

〈
Lik

(
1 − e−t

) ∣∣xn+1
〉

=

〈(
1 − e−t

) Lik (1 − e−t)

1 − e−t

∣∣∣∣∣xn+1

〉
(40)

=

〈
Lik (1 − e−t)

1 − e−t

∣∣∣∣∣ (1 − e−t
)
xn+1

〉

=

〈
Lik (1 − e−t)

1 − e−t

∣∣∣∣∣xn+1 − (x − 1)n+1

〉

=
n∑

m=0

(
n + 1

m

)
(−1)n−m

〈
1

∣∣∣∣∣Lik (1 − e−t)

1 − e−t
xm

〉

=
n∑

m=0

(
n + 1

m

)
(−1)n−mB(k)

m .
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On the other hand,

〈
Lik

(
1 − e−t

) ∣∣xn+1
〉

=

〈∫ t

0

(
Lik

(
1 − e−s

))′
ds

∣∣∣∣∣xn+1

〉
(41)

=

〈∫ t

0

e−s Lik−1 (1 − e−s)

1 − e−s
ds

∣∣∣∣∣xn+1

〉

=

〈∫ t

0

( ∞∑
a=0

(−s)a

a!

)( ∞∑
m=0

B
(k−1)
m

m!
sm

)
ds

∣∣∣∣∣xn+1

〉

=

〈 ∞∑
l=0

(
l∑

m=0

(
l

m

)
(−1)l−mB(k−1)

m

)
1

l!

∫ t

0

slds

∣∣∣∣∣xn+1

〉

=

n∑
l=0

l∑
m=0

(
l

m

)
(−1)l−m B

(k−1)
m

(l + 1)!
(n + 1)!δn+1,l+1 =

n∑
m=0

(
n

m

)
(−1)n−mB(k−1)

m .

By (40) and (41), we get

n∑
m=0

(−1)n−m

(
n

m

)
B(k−1)

m =

n∑
m=0

(
n + 1

m

)
(−1)n−mB(k)

m . (42)

By (2) and (3), we see that

B(k)
n (x) ∼

(
1 − e−t

Lik (1 − e−t)
, t

)
, B

(r)
n (x) ∼

((
et − 1

t

)r

, t

)
, r ≥ 0. (43)

From (20), (21) and (43), we have

B(k)
n (x) =

n∑
m=0

Cn,mB
(r)
m (x), (44)

where

Cn,m =
1

m!

〈 (et−1
t

)r

1−e−t

Lik(1−e−t)

tm

∣∣∣∣∣xn

〉
(45)

=
1

m!

〈
Lik (1 − e−t)

1 − e−t

(
et − 1

t

)r
∣∣∣∣∣tmxn

〉

=

(
n

m

)〈
Lik (1 − e−t)

1 − e−t

∣∣∣∣∣
(

et − 1

t

)r

xn−m

〉
.

By (17), we easily get(
et − 1

t

)r

=
∞∑
l=0

r!

(l + r)!
S2(l + r, r)tl. (46)
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Thus, from (46), we have(
et − 1

t

)r

xn−m =

n−m∑
l=0

r!

(l + r)!
S2(l + r, r)(n − m)lx

n−m−l. (47)

By (45) and (47), we get

Cn,m =

(
n

m

) n−m∑
l=0

r!

(l + r)!
S2(l + r, r)(n − m)l

〈
Lik (1 − e−t)

1 − e−t

∣∣∣∣∣xn−m−l

〉
(48)

=

(
n

m

) n−m∑
l=0

r!

(l + r)!
S2(l + r, r)(n − m)l

〈
t0

∣∣∣∣∣Lik (1 − e−t)

1 − e−t
xn−m−l

〉

=

(
n

m

) n−m∑
l=0

r!

(l + r)!
S2(l + r, r)(n − m)lB

(k)
n−m−l.

Therefore, by (44) and (48), we obtain the following theorem.

Theorem 4. For k ∈ Z and r ∈ Z≥0, we have

B(k)
n (x) =

n∑
m=0

{(
n

m

) n−m∑
l=0

r!(n − m)l

(l + r)!
S2(l + r, r)B

(k)
n−l−m

}
B

(r)
n (x).

For r ∈ Z≥0, the Euler polynomials of order r are defined by the generating

function to be (
2

et + 1

)r

ext =
∞∑

n=0

E(r)
n (x)

tn

n!
, (see [2, 6, 8]). (49)

By (2) and (49), we see that

B(k)
n (x) ∼

(
1 − e−t

Lik (1 − e−t)
, t

)
, E(r)

n (x) ∼
((

et + 1

2

)r

, t

)
. (50)

From (20), (21) and (50), we have

B(k)
n (x) =

n∑
m=0

Cn,mE(r)
m (x), (51)

where

Cn,m =
1

m!

〈
Lik (1 − e−t)

1 − e−t

(
et + 1

2

)r
∣∣∣∣∣tmxn

〉
(52)

=

(
n
m

)
2r

〈
Lik (1 − e−t)

1 − e−t

∣∣∣∣∣ (et + 1
)r

xn−m

〉

=

(
n
m

)
2r

r∑
j=0

(
r

j

)〈
Lik (1 − e−t)

1 − e−t

∣∣∣∣∣ejtxn−m

〉
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=

(
n
m

)
2r

r∑
j=0

(
r

j

)〈
t0

∣∣∣∣∣Lik (1 − e−t)

1 − e−t
(x + j)n−m

〉

=

(
n
m

)
2r

r∑
j=0

(
r

j

)
B

(k)
n−m(j).

Therefore, by (51) and (52), we obtain the following theorem.

Theorem 5. For k ∈ Z and r ∈ Z≥0, we have

B(k)
n (x) =

1

2r

n∑
m=0

{(
n

m

) r∑
j=0

(
r

j

)
B

(k)
n−m(j)

}
E(r)

n (x).

Let λ ∈ C with λ 	= 1. For r ∈ Z≥0, the Frobenius-Euler polynomials are also

defined by the generating function to be(
1 − λ

et − λ

)r

ext =
∞∑

n=0

H(r)
n (x|λ)

tn

n!
, (see [2, 6, 7]). (53)

From (2), (15) and (53), we note that

B(k)
n (x) ∼

(
1 − e−t

Lik (1 − e−t)
, t

)
, H(r)

n (x|λ) ∼
((

et − λ

1 − λ

)r

, t

)
. (54)

By (20), (21) and (54), we get

B(k)
n (x) =

n∑
m=0

Cn,mH(r)
m (x|λ), (55)

where

Cn,m =
1

m!

〈
Lik (1 − e−t)

1 − e−t

(
et − λ

1 − λ

)r
∣∣∣∣∣tmxn

〉
(56)

=

(
n
m

)
(1 − λ)r

〈
Lik (1 − e−t)

1 − e−t

∣∣∣∣∣ (et − λ
)r

xn−m

〉

=

(
n
m

)
(1 − λ)r

r∑
j=0

(
r

j

)
(−λ)r−j

〈
Lik (1 − e−t)

1 − e−t

∣∣∣∣∣ejtxn−m

〉

=

(
n
m

)
(1 − λ)r

r∑
j=0

(
r

j

)
(−λ)r−j

〈
t0

∣∣∣∣∣Lik (1 − e−t)

1 − e−t
(x + j)n−m

〉

=

(
n
m

)
(1 − λ)r

r∑
j=0

(
r

j

)
(−λ)r−jB

(k)
n−m(j).

Therefore, by (55) and (56), we obtain the following theorem.
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Theorem 6. For k ∈ Z and r ∈ Z≥0, we have

B(k)
n (x) =

1

(1 − λ)r

n∑
m=0

{(
n

m

) r∑
j=0

(
r

j

)
(−λ)r−jB

(k)
n−m(j)

}
H(r)

m (x|λ).
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