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Abstract
Let Pn = {p(x) ∈ Q[x]|degp(x) ≤ n} be the (n + 1)-dimensional vector space over Q.
From the property of the basis B(r)0 ,B

(r)
1 , . . . ,B(r)n for the space Pn, we derive some

interesting identities of higher-order Bernoulli polynomials.

1 Introduction
Let N = {, , , . . .} and Z+ = N ∪ {}. For a fixed r ∈ Z+, the nth Bernoulli polynomials are
defined by the generating function to be

(
t

et – 

)r

ext = eB(r)(x)t =
∞∑

n=

B(r)
n (x)tn

n!
(
see [–]

)
()

with the usual convention about replacing (B(r)(x))n by B(r)
n (x). In the special case, x = ,

B(r)
n () = B(r)

n are called the nth Bernoulli numbers of order r.
From (), we note that

B(r)
n (x) =

n∑
k=

(
n
k

)
B(r)

k xn–k =
n∑

k=

(
n
k

)
B(r)

n–kxk

=
∑

n+···+nr+nr+=n

(
n

n, . . . , nr , nr+

)
Bn · · ·Bnr xnr+ . ()

Thus, by () we get the Euler-type sums of products of Bernoulli numbers as follows:

B(r)
n =

∑
n+···+nr=n

(
n

n, . . . , nr

)
Bn Bn · · ·Bnr

(
see [–]

)
. ()

By () and (), we see that B(r)
n (x) is a monic polynomial of degree n with coefficients in Q.

From (), we note that

(
B(r)

n (x)
)′ =

d
dx

B(r)
n (x) = nB(r)

n–(x)
(
see [–]

)
()

and

B(r)
n (x + ) – B(r)

n (x) = nB(r–)
n– (x). ()
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Let � denote the space of real-valued differential functions on (–∞,∞) = R. Now, we
define three linear operators I , �, D on � as follows:

If (x) =
∫ x+

x
f (t) dt, �f (x) = f (x + ) – f (x), Df (x) = f ′(x). ()

Then we see that (i) DI = ID = �, (ii) �I = I�, (iii) �D = D�.
Let Pn = {p(x) ∈ Q(x)|deg p(x) ≤ n} be the (n + )-dimensional vector space over Q.

Probably, {, x, . . . , xn} is the most natural basis for this space. But {B(r)
 (x), B(r)

 (x), B(r)
 (x),

. . . , B(r)
n (x)} is also a good basis for the space Pn for our purpose of arithmetical and com-

binatorial applications.
Let p(x) ∈ Pn. Then p(x) can be generated by B(r)

 (x), B(r)
 (x), B(r)

 (x), . . . , B(r)
n (x) as follows:

p(x) =
n∑

k=

akB(r)
k (x).

In this paper, we develop methods for uniquely determining ak from the information
of p(x). From those methods, we derive some interesting identities of higher-order
Bernoulli polynomials.

2 Higher-order Bernoulli polynomials
For r = , by (), we get B()

n = xn (n ∈ Z+). Let p(x) ∈ Pn.
For a fixed r ∈ Z+, p(x) can be generated by B(r)

 (x), B(r)
 (x), B(r)

 (x), . . . , B(r)
n (x) as follows:

p(x) =
n∑

k=

akB(r)
k (x). ()

From () and (), we can derive the following identities:

IB(r)
n (x) =

∫ x+

x
B(r)

n (x) dx

=


n + 
(
B(r)

n+(x + ) – B(r)
n+(x)

)
. ()

By () and (), we get

IB(r)
n (x) =

n + 
n + 

B(r–)
n (x) = B(r–)

n (x). ()

It is easy to show that

�B(r)
n (x) = B(r)

n (x + ) – B(r)
n (x) = nB(r–)

n– (x), ()

and

DB(r)
n (x) = nB(r)

n–(x). ()
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By () and (), we get

Irp(x) =
n∑

k=

akB()
k (x) =

n∑
k=

akxk . ()

From () and (), we note that

DkIrp(x) =
n∑

l=k

al
l!

(l – k)!
xl–k . ()

Thus, by () we get

DkIrp() = k!ak . ()

Hence, from () we have

ak =
DkIrp()

k!
. ()

Case . Let r > n. Then r > k for all k = , , , . . . , n.
By (), we get

ak =

k!

DkIkIr–kp() =

k!

(DI)kIr–kp()

=

k!

�kIr–kp() =

k!

k∑
j=

(
k
j

)
(–)k–jIr–kp(j). ()

Case . Assume that r ≤ n.
(i) For  ≤ k ≤ r, by () we get

ak =

k!

k∑
j=

(–)k–j
(

k
j

)
Ir–kp(j). ()

(ii) For r ≤ k ≤ n, by () we see that

ak =

k!

Dk–rDrIrp() =

k!

Dk–r(DI)rp() =

k!

Dk–r�rp()

=

k!

�rDk–rp() =

k!

r∑
j=

(
r
j

)
(–)r–jDk–rp(j). ()

Therefore, by (), (), () and (), we obtain the following theorem.

Theorem 
(a) For r > n, we have

p(x) =
n∑

k=

( k∑
j=


k!

(–)k–j
(

k
j

)
Ir–kp(j)

)
B(r)

k (x).
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(b) For r ≤ n, we have

p(x) =
r–∑
k=

( k∑
j=


k!

(–)k–j
(

k
j

)
Ir–kp(j)

)
B(r)

k (x)

+
n∑

k=r

( r∑
j=


k!

(–)r–jDk–rp(j)

)
B(r)

k (x).

Let us take p(x) = xn ∈ Pn. Then xn can be expressed as a linear combination of
B(r)

 , B(r)
 , . . . , B(r)

n . For r > n, we have

Ir–kxn =
n!

(n + r – k)!

r–k∑
l=

(–)r–k–l
(

r – k
l

)
(x + l)n+r–k . ()

Therefore, by Theorem  and (), we obtain the following corollary.

Corollary  For n, r ∈ Z+ with r > n, we have

xn =
n∑

k=

{ k∑
j=

r–k∑
l=

(–)r–j–l
n!

(k
j
)(r–k

l
)

k!(n + r – k)!
(j + l)n+r–k

}
B(r)

k (x).

Let us assume that r, n ∈ Z+ with r ≤ n. Observe that

Dk–rxn = n(n – ) · · · (n – k + r + )xn–k+r =
n!

(n – k + r)!
xn–k+r . ()

Thus, by Theorem  and (), we obtain the following corollary.

Corollary  For n, r ∈ Z+ with r ≤ n, we have

xn =
r–∑
k=

{ k∑
j=

r–k∑
l=

(–)r–j–l
n!

(k
j
)(r–k

l
)

k!(n + r – k)!
(j + l)n+r–k

}
B(r)

k (x)

+
n∑

k=r

{ r∑
j=

(–)r–j
n!

(r
j
)

k!(n + r – k)!
jn+r–k

}
B(r)

k (x).

Let us take p(x) = B(s)
n (x) ∈ Pn (s ∈ Z+). Then p(x) can be generated by {B(r)

 (x), B(r)
 (x),

. . . , B(r)
n (x)} as follows:

B(s)
n (x) =

n∑
k=

akB(r)
k (x). ()

For r > n, we have

Ir–kB(s)
n (x) = B(s–r+k)

n (x). ()

Thus, by Theorem  and (), we obtain the following theorem.
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Theorem  For r, n, s ∈ Z+ with r > n, we have

B(s)
n (x) =

n∑
k=

{ k∑
j=

(–)k–j 
k!

(
k
j

)
B(s+k–r)

n (j)

}
B(r)

k (x).

In particular, for r = s, we have

B(r)
n (x) = B(r)

 (x) + B(r)
 (x) + · · · + B(r)

n–(x) + B(r)
n (x)

=
n∑

k=

{ k∑
j=

(–)k–j 
k!

(
k
j

)
B(k)

n (j)

}
B(r)

k (x). ()

By comparing coefficients on the both sides of (), we get

k∑
j=

(–)k–j 
k!

(
k
j

)
B(k)

n (j) = δkn, for  ≤ k ≤ n. ()

Therefore, by (), we obtain the following corollary.

Corollary 
(a) For n, k ∈ Z+ with  ≤ k ≤ n – , we have

k∑
j=

(–)k–j
(

k
j

)
B(k)

n (j) = .

(b) In particular, k = n, we get

n∑
j=

(–)n–j
(

n
j

)
B(n)

n (j) = n!.

Let us assume that r ≤ n in (). Then we have

Dk–rB(s)
n (x) = n(n – ) · · · (n – k + r + )B(s)

n+r–k(x) =
n!

(n – k + r!)
B(s)

n+r–k(x). ()

Therefore, by Theorem , () and (), we obtain the following theorem.

Theorem  For r, n ∈ Z+ with r ≤ n, we have

B(s)
n (x) =

n–∑
k=

{ k∑
j=

(–)k–j 
k!

(
k
j

)
B(s+k–r)

n (j)

}
B(r)

k (x)

+
n∑

k=r

{ r∑
j=

(–)r–j
n!

(r
j
)

k!(n + r – k)!
B(s)

n+r–k(j)

}
B(r)

k (x).

Let p(x) = E(s)
n (x) (s ∈ Z+) be Euler polynomials of order s. Then E(s)

n can be expressed as
a linear combination of B(r)

 (x), B(r)
 (x), . . . , B(r)

n (x).
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Assume that r, n ∈ Z+ with r > n.
By (), we get

Ir–kE(s)
n (x) =


(n + ) · · · (n + r – k)

r–k∑
l=

(–)r–k–l
(

r – k
l

)
E(s)

n+r–k(x + l)

=
n!

(n + r – k)!

r–k∑
l=

(–)r–k–l
(

r – k
l

)
E(s)

n+r–k(x + l). ()

Therefore, by Theorem  and (), we obtain the following theorem.

Theorem  For r, n ∈ Z+ with r > n, we have

E(s)
n (x) =

n∑
k=

{ k∑
j=

r–k∑
l=

(–)r–j–l
n!

(k
j
)(r–k

l
)

k!(n + r – k)!
E(s)

n+r–k(j + l)

}
B(r)

k (x).

For r, n ∈ Z+ with r ≤ n, we have

Dk–rE(s)
n (x) = n(n – ) · · · (n – k + r + )E(s)

n–k+r(x). ()

By Theorem  and (), we obtain the following theorem.

Theorem  For r, n ∈ Z+ with r ≤ n, we have

E(s)
n (x) =

r–∑
k=

{ k∑
j=

r–k∑
l=

(–)r–j–l
n!

(k
j
)(r–k

l
)

k!(n + r – k)!
E(s)

n+r–k(j + l)

}
B(r)

k (x)

+
n∑

k=r

{ r∑
j=

(–)r–j n!
(r

k
)

k!(n + r – k)!
E(s)

n+r–k(j)

}
B(r)

k (x).

Remarks (a) For r ≤ , by () we get

Irxn =
n!

(n + r)!

r∑
j=

(
r
j

)
(–)r–j(x + j)n+r =

(n+r
r

) 
r!

r∑
j=

(–)r–j
(

r
j

)
(x + j)n+r .

Thus, for x = , we have

Irxn|x= =
n!

(n + r)!

r∑
j=

(
r
j

)
(–)r–jjn+r =

(n+r
r

) 
r!

�rn+r =
S(n + r, r)(n+r

r
) , ()

where S(n, r) is the Stirling number of the second kind.
(b) Assume

n∑
k=

αkxk =
n∑

k=

akB(r)
k (x) (r ≥ ). ()
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Applying It on both sides (t ≥ ), we get

n∑
k=

akB(r–t)
k (x) =

n∑
k=

αkItxk =
n∑

k=

αk(
α+t

t
) 

t!

t∑
j=

(–)(t–j)
(

t
j

)
(x + j)k+t . ()

From () and (), we have

n∑
k=

akB(r–t)
k =

n∑
k=

αk(
α+t

t
)S(k + t, t).

Remark Let us define two operators d, d̃ as follows:

d = e–D =
∞∑

n=

(–)n

n!
Dn, d̃ = eD =

∞∑
n=

Dn

n!
. ()

From (), we note that

d̃xn =
n∑

l=

(
n
l

)
xn–l = (x + )n,

dxn =
n∑

l=

(
n
l

)
(–)lxn–l = (x – )n.

()

Thus, by () and (), we get

d̃B(r)
n (x) = B(r)

n (x + ), dB(r)
n (x) = B(r)

n (x – ), ()

and

d̃E(r)
n (x) = E(r)

n (x + ), dE(r)
n (x) = E(r)

n (x – ). ()

3 Further remarks
For any r, r, . . . , rn ∈ Z+, {B(r)

 (x), B(r)
 (x), . . . , B(rn)

 (x)} forms a basis for Pn. Let r =
max{ri|i = , , , . . . , n}. Let p(x) ∈ Pn. Then p(x) can be expressed as a linear combina-
tion of B(r)

 (x), B(r)
 (x), . . . , B(rn)

n (x) as follows:

p(x) = aB(r)
 (x) + aB(r)

 (x) + · · · + anB(rn)
n (x) =

n∑
l=

alB
(rl)
l (x). ()

Thus, by () and (), we get

Irp(x) =
n∑

l=

alIrB(rl)
l (x)

=
n∑

l=

alIr–rl Irl B(rl)
l (x) =

n∑
l=

alIr–rl B()
l (x)

=
n∑

l=

alIr–rl xl. ()
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Now, for each k = , , , . . . , n, by () we get

DkIrp(x) =
n∑

l=

alDkIr–rl xl =
n∑

l=

alIr–rl
(
Dkxl)

=
n∑

l=k

alIr–rl

(
l!

(l – k)!
xl–k

)
=

n∑
l=k

all!
(l – k)!

Ir–rl xl–k . ()

Let us take x =  in (). Then, by () and (), we get

DkIrp() =
n∑

l=k

l!al

(l – k)!
× S(l – k + r – rl, r – rl)(l–k+r–rl

r–rl

)
=

n∑
l=k

al(r – rl)!l!
(l – k)!

S(l – k + r – rl, r – rl). ()

Case . For r > n, we have

DkIrp() = DkIkIr–kp() = (DI)kIr–kp() = �kIr–kp()

=
k∑

j=

(–)k–j
(

k
j

)
Ir–kp(j). ()

Case . Let r ≤ n.
(i) For  ≤ k < r, we have

DkIrp() =
k∑

j=

(–)k–j
(

k
j

)
Ir–kp(j). ()

(ii) For r ≤ k ≤ n, we have

DkIrp() = Dk–rDrIrp() = Dk–r(DI)rp() = Dk–r�rp()

= �rDk–rp() =
r∑

j=

(–)r–j
(

r
j

)
Dk–rp(j). ()

Thus, by (), (), () and (), we can determine a, a, a, . . . , an.
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