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Abstract
In this paper, we study some interesting identities of Frobenius-Euler polynomials
arising from umbral calculus.

1 Introduction
Let C be the complex number field, and let F be the set of all formal power series in the
variable t over C with

F =

{
f (t) =

∞∑
k=

ak

k!
tk

∣∣∣ak ∈ C

}
.

We use notation P = C[x] and P
* denotes the vector space of all linear functional on P.

Also, 〈L|p(x)〉 denotes the action of the linear functional L on the polynomial p(x), and
we remind that the vector space operations on P

* is defined by

〈
L + M|p(x)

〉
=

〈
L|p(x)

〉
+

〈
M|p(x)

〉
,〈

cL|p(x)
〉

= c
〈
L|p(x)

〉
(see []),

where c is any constant in C.
The formal power series

f (t) =
∞∑

k=

ak

k!
tk ∈ F (see [, ]), ()

defines a linear functional on P by setting

〈
f (t)|xn〉 = an, for all n ≥ . ()

In particular,

〈
tk|xn〉 = n!δn,k , ()

where δn,k is the Kronecker symbol. If fL(t) =
∑∞

k=
〈L|xk〉

k! tk , then we get 〈fL(t)|xn〉 = 〈L|xn〉
and so as linear functionals L = fL(t) (see [, ]).
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In addition, the map L �–→ fL(t) is a vector space isomorphism from P
* onto F (see [, ]).

Henceforth, F will denote both the algebra of formal power series in t and the vector space
of all linear functionals on P, and so an element f (t) of F will be thought of as both a formal
power series and a linear functional. We shall call F the umbral algebra (see [, ]).

Let us give an example. For y in C the evaluation functional is defined to be the power
series eyt . From (), we have 〈eyt|xn〉 = yn and so 〈eyt|p(x)〉 = p(y) (see [, ]). Notice that for
all f (t) in F,

f (t) =
∞∑

k=

〈f (t)|xt〉
k!

tk ()

and for all polynomial p(x)

p(x) =
∑
k≥

〈tk|p(x)〉
k!

xk (see [, ]). ()

For f(t), f(t), . . . , fm(t) ∈ F, we have

〈
f(t)f(t) · · · fm(t)|xn〉

=
∑(

n
i, . . . , im

)〈
f(t)|xi

〉 · · · 〈fn(t)|xim
〉
,

where the sum is over all nonnegative integers i, i, . . . , im such that i + · · · + im = n (see
[, ]). The order o(f (t)) of the power series f (t) 	=  is the smallest integer k for which
ak does not vanish. We define o(f (t)) = ∞ if f (t) = . We see that o(f (t)g(t)) = o(f (t)) +
o(g(t)) and o(f (t) + g(t)) ≥ min{o(f (t)), o(g(t))}. The series f (t) has a multiplicative inverse,
denoted by f (t)– or 

f (t) , if and only if o(f (t)) = . Such series is called an invertible series.
A series f (t) for which o(f (t)) =  is called a delta series (see [, ]). For f (t), g(t) ∈ F, we
have 〈f (t)g(t)|p(x)〉 = 〈f (t)|g(t)p(x)〉.

A delta series f (t) has a compositional inverse f̄ (t) such that f (f̄ (t)) = f̄ (f (t)) = t.
For f (t), g(t) ∈ F, we have 〈f (t)g(t)|p(x)〉 = 〈f (t)|g(t)p(x)〉.
From (), we have

p(k)(x) =
dkp(x)

dxk =
∞∑
l=k

〈tl|p(x)〉
l!

l(l – ) · · · (l – k + )xl–k .

Thus, we see that

p(k)() =
〈
tk|p(x)

〉
=

〈
|p(k)(x)

〉
. ()

By (), we get

tkp(x) = p(k)(x) =
dk(p(x))

dxk (see [, ]). ()

By (), we have

eytp(x) = p(x + y) (see [, ]). ()
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Let Sn(x) be a polynomial with deg Sn(x) = n.
Let f (t) be a delta series, and let g(t) be an invertible series. Then there exists a unique

sequence Sn(x) of polynomials such that 〈g(t)f (t)k|Sn(x)〉 = n!δn,k for all n, k ≥ . The
sequence Sn(x) is called the Sheffer sequence for (g(t), f (t)) or that Sn(t) is Sheffer for
(g(t), f (t)).

The Sheffer sequence for (, f (t)) is called the associated sequence for f (t) or Sn(x) is
associated to f (t). The Sheffer sequence for (g(t), t) is called the Appell sequence for g(t)
or Sn(x) is Appell for g(t) (see [, ]). The umbral calculus is the study of umbral algebra
and the modern classical umbral calculus can be described as a systemic study of the class
of Sheffer sequences. Let p(x) ∈ P. Then we have

〈
eyt – 

t

∣∣∣p(x)
〉

=
∫ y


p(u) du, ()

〈
f (t)|xp(x)

〉
=

〈
∂t f (t)|p(x)

〉
=

〈
f ′(t)|p(x)

〉
, ()

and

〈
eyt – |p(x)

〉
= p(y) – p() (see [, ]). ()

Let Sn(x) be Sheffer for (g(t), f (t)). Then

h(t) =
∞∑

k=

〈h(t)|Sk(x)〉
k!

g(t)f (t)k , h(t) ∈ F, ()

p(x) =
∑
k≥

〈g(t)f (t)k|p(x)〉
k!

Sk(x), p(x) ∈ P, ()


g(f̄ (t))

eyf̄ (t) =
∞∑

k=

Sk(y)
k!

tk , for all y ∈ C, ()

f (t)Sn(x) = nSn–(x). ()

For λ (	= ) ∈ C, we recall that the Frobenius-Euler polynomials are defined by the gener-
ating function to be

 – λ

et – λ
ext = eH(x|λ)t =

∞∑
n=

Hn(x|λ)
tn

n!
, ()

with the usual convention about replacing Hn(x|λ) by Hn(x|λ) (see []). In the special case,
x = , Hn(|λ) = Hn(λ) are called the nth Frobenius-Euler numbers. By (), we get

Hn(x|λ) =
(
H(λ) + x

)n =
n∑

l=

(
n
l

)
H (λ)

n–lx
l, ()

and

(
H(λ) + 

)n – λHn(λ) = ( – λ)δ,n (see [, –]). ()
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From (), we note that the leading coefficient of Hn(x|λ) is H(λ) = . So, Hn(x|λ) is a
monic polynomial of degree n with coefficients in Q(λ).

In this paper, we derive some new identities of Frobenius-Euler polynomials arising from
umbral calculus.

2 Applications of umbral calculus to Frobenius-Euler polynomials
Let Sn(x) be an Appell sequence for g(t). From (), we have


g(t)

xn = Sn(x) if and only if xn = g(t)Sn(x) (n ≥ ). ()

For λ (	= ) ∈ C, let us take gλ(t) = et–λ
–λ

∈ F.
Then we see that gλ(t) is an invertible series.
From (), we have

∞∑
k=

Hk(x|λ)
k!

tk =


gλ(t)
ext . ()

By (), we get


gλ(t)

xn = Hn(x|λ)
(
λ (	= ) ∈ C, n ≥ 

)
, ()

and by (), we get

tHn(x|λ) = H ′
n(x|λ) = nHn–(x|λ). ()

Therefore, by () and (), we obtain the following proposition.

Proposition  For λ (	= ) ∈ C, n ≥ , we see that Hn(x|λ) is the Appell sequence for gλ(t) =
et–λ
–λ

.

From (), we have

∞∑
k=

Hk(x|λ)
k!

ktk– =
xgλ(t)ext – g ′

λ(t)ext

gλ(t)

=
∞∑

k=

{
x


gλ(t)

xk –
g ′
λ(t)

gλ(t)


gλ(t)
xk

}
tk

k!
. ()

By () and (), we get

Hk+(x|λ) = xHk(x|λ) –
g ′
λ(t)

gλ(t)
Hk(x|λ). ()

Therefore, by () we obtain the following theorem.

Theorem  Let gλ(t) = et–λ
–λ

∈ F. Then we have

Hk+(x|λ) =
(

x –
g ′
λ(t)

gλ(t)

)
Hk(x|λ) (k ≥ ).
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From (), we have

∞∑
n=

(
Hn(x + |λ) – λHn(x|λ)

) tn

n!
=

 – λ

et – λ
e(x+)t – λ

 – λ

et – λ
ext = ( – λ)ext . ()

By (), we get

Hn(x + |λ) – λHn(x|λ) = ( – λ)xn. ()

From Theorem , we can derive the following equation ():

gλ(t)Hk+(x|λ) =
(
gλ(t)x – g ′

λ(t)
)
Hk(x|λ). ()

By (), we get

(
et – λ

 – λ

)
Hk+(x|λ) =

et – λ

 – λ
xHk(x|λ) –

et

 – λ
Hk(x|λ). ()

From () and (), we have

Hk+(x + |λ) – λHk+(x|λ) = (x + )Hk(x + |λ) – λxHk(x|λ) – Hk(x + |λ)

= xHk(x + |λ) – λxHk(x|λ).

Therefore, by (), we obtain the following theorem.

Theorem  For k ≥ , we have

Hk+(x + |λ) = λHk+(x|λ) + ( – λ)xk+.

From (), (), and (), we note that

∫ x+y

x
Hn(u|λ) du =


n + 

{
Hn+(x + y|λ) – Hn+(x|λ)

}

=


n + 

∞∑
k=

(
n + 

k

)
Hn+–k(x|λ)yk

=
∞∑

k=

n(n – ) · · · (n – k + )
k!

Hn+–k(x|λ)yk

=
∞∑

k=

yk

k!
tk–Hn(x|λ)

=

t

( ∞∑
k=

yk

k!
tk – 

)
Hn(x|λ)

=
eyt – 

t
Hn(x|λ). ()

Therefore, by (), we obtain the following theorem.



Kim and Kim Advances in Difference Equations 2012, 2012:196 Page 6 of 10
http://www.advancesindifferenceequations.com/content/2012/1/196

Theorem  For λ (	= ) ∈ C, n ≥ , we have

∫ x+y

x
Hn(u|λ) du =

eyt – 
t

Hn(x|λ).

By () and Proposition , we get

t
{


n + 

Hn+(x|λ)
}

= Hn(x|λ). ()

From (), we can derive equation ():

〈
eyt – 

∣∣∣Hn+(x|λ)
n + 

〉
=

〈
eyt – 

t

∣∣∣t{Hn+(x|λ)
n + 

}〉

=
〈

eyt – 
t

∣∣∣Hn(x|λ)
〉
. ()

By () and (), we get

〈
eyt – 

t

∣∣∣Hn(x|λ)
〉

=
〈
eyt – 

∣∣∣Hn+(x|λ)
n + 

〉

=


n + 
{

Hn+(y|λ) – Hn+(λ)
}

=
∫ y


Hn(u|λ) du. ()

Therefore, by (), we obtain the following corollary.

Corollary  For n ≥ , we have

〈
eyt – 

t

∣∣∣Hn(x|λ)
〉

=
∫ y


Hn(u|λ) du.

Let P(λ) = {p(x) ∈ Q(λ)[x]|deg p(x) ≤ n} be a vector space over Q(λ).
For p(x) ∈ Pn(λ), let us take

p(x) =
n∑

k=

bkHk(x|λ). ()

By Proposition , Hn(x|λ) is an Appell sequence for gλ(t) = et–λ
–λ

where λ (	= ) ∈ C. Thus,
we have

〈
et – λ

 – λ
tk

∣∣∣Hn(x|λ)
〉

= n!δn,k . ()

From () and (), we can derive

〈
et – λ

 – λ
tk

∣∣∣p(x)
〉

=
n∑

l=

bl

〈
et – λ

 – λ
tk

∣∣∣Hl(x|λ)
〉

=
n∑

l=

bll!δl,k = k!bk . ()
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Thus, by (), we get

bk =

k!

〈
et – λ

 – λ
tk

∣∣∣p(x)
〉

=


k!( – λ)
〈(

et – λ
)
tk|p(x)

〉
=


k!( – λ)

〈
et – λ|p(k)(x)

〉
. ()

From () and (), we have

bk =


k!( – λ)
{

p(k)() – λp(k)()
}

, ()

where p(k)(x) = dk p(x)
dxk .

Therefore, by (), we obtain the following theorem.

Theorem  For p(x) ∈ Pn(λ), let us assume that p(x) =
∑n

k= bkHk(x|λ). Then we have

bk =


k!( – λ)
{

p(k)() – λp(k)()
}

,

where p(k)() = dk p(x)
dxk |x=.

The higher-order Frobenius-Euler polynomials are defined by

(
 – λ

et – λ

)r

ext =
∞∑

n=

H (r)
n (x|λ)

tn

n!
, ()

where λ (	= ) ∈ C and r ∈ N (see [, ]).
In the special case, x = , H (r)

n (|λ) = H (r)
n (λ) are called the nth Frobenius-Euler numbers

of order r. From (), we have

H (r)
n (x) =

n∑
l=

(
n
l

)
H (r)

n–l(λ)xl

=
∑

n+···+nr=n

(
n

n, . . . , nr

)
Hn (x|λ) · · ·Hnr (x|λ). ()

Note that H (r)
n (x|λ) is a monic polynomial of degree n with coefficients in Q(λ).

For r ∈ N, λ (	= ) ∈ C, let gr
λ(t) = ( et–λ

–λ
)r . Then we easily see that gr

λ(t) is an invertible
series.

From () and (), we have


gr
λ(t)

ext =
∞∑

n=

H (r)
n (x|λ)

tn

n!
, ()

and

tH (r)
n (x|λ) = nH (r)

n–(x|λ). ()
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By (), we get


gr
λ(t)

xn = H (r)
n (x|λ) (n ∈ Z+, r ∈ N). ()

Therefore, by () and (), we obtain the following proposition.

Proposition  For n ∈ Z+, H (r)
n (x|λ) is an Appell sequence for

gr
λ(t) =

(
et – λ

 – λ

)r

.

Moreover,


gr
λ(t)

xn = H (r)
n (x|λ) and tH (r)

n (x|λ) = nH (r)
n–(x|λ).

Remark Note that
〈

 – λ

et – λ

∣∣∣xn
〉

= Hn(λ). ()

From (), we have

〈(
 – λ

et – λ

)r∣∣∣xn
〉

=
∑

n=n+···+nr

(
n

n, . . . , nr

)〈
 – λ

et – λ

∣∣∣xn

〉
· · ·

〈
 – λ

et – λ

∣∣∣xnr

〉
, ()

〈(
 – λ

et – λ

)r∣∣∣xn
〉

= H (r)
n (λ). ()

By (), (), and (), we get

∑
n=i+···+ir

(
n

i, . . . , ir

)
Hi (λ) · · ·Hir (λ) = H (r)

n (λ).

Let us take p(x) ∈ Pn(λ) with

p(x) =
n∑

k=

C(r)
k H (r)

k (x|λ). ()

From the definition of Appell sequences, we have

〈(
et – λ

 – λ

)r∣∣∣H (r)
n (x|λ)

〉
= n!δn,k . ()

By () and (), we get

〈(
et – λ

 – λ

)r

tk
∣∣∣p(x)

〉
=

n∑
l=

C(r)
l

〈(
et – λ

 – λ

)r

tk
∣∣∣Hl(x|λ)

〉

=
n∑

l=

C(r)
l l!δl,k = k!C(r)

k . ()
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Thus, from (), we have

C(r)
k =


k!

〈(
et – λ

 – λ

)r

tk
∣∣∣p(x)

〉

=


k!( – λ)r

〈(
et – λ

)rtk|p(x)
〉

=


k!( – λ)r

r∑
l=

(
r
l

)
(–λ)r–l〈elt|p(k)(x)

〉

=


k!( – λ)r

r∑
l=

(
r
l

)
(–λ)r–lp(k)(l). ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For p(x) ∈ Pn(λ), let

p(x) =
n∑

k=

C(r)
k H (r)

k (x|λ).

Then we have

C(r)
k =


k!( – λ)r

r∑
l=

(
r
l

)
(–λ)r–lp(k)(l),

where r ∈ N and p(k)(l) = dk p(x)
dxk |x=l .

Remark Let Sn(x) be a Sheffer sequence for (g(t), f (t)). Then Sheffer identity is given by

Sn(x + y) =
n∑

k=

(
n
k

)
Pk(y)Sn–k(x) =

n∑
k=

(
n
k

)
Pk(x)Sn–k(y), ()

where Pk(y) = g(t)Sk(y) is associated to f (t) (see [, ]).

From (), Proposition , and (), we have

Hn(x + y|λ) =
n∑

k=

(
n
k

)
Pk(y)Sn–k(x)

=
n∑

k=

(
n
k

)
Hn–k(y|λ)xk .

By Proposition  and (), we get

H (r)
n (x + y|λ) =

n∑
k=

(
n
k

)
H (r)

n–k(y|λ)xk .

Let α (	= ) ∈ C. Then we have

Hn(αx|λ) = αn gλ(t)
gλ( t

α
)
Hn(x|λ).
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