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Abstract

In this article, we first aim to give simple proofs of known formulae for the
generalized Carlitz q-Bernoulli polynomials bm,c(x, q) in the p-adic case by means of a
method provided by Kim and then to derive a complex, analytic, two-variable q-L-
function that is a q-analog of the two-variable L-function. Using this function, we
calculate the values of two-variable q-L-functions at nonpositive integers and study
their properties when q tends to 1.
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1. Introduction
Let p be a fixed prime. We denote by ℤp, ℚp, and ℂp the ring of p-adic integers, the field

of p-adic numbers, and the completion of the algebraic closure of ℚp, respectively. Let

vp be the normalized exponential valuation of ℂp with
∣∣p∣∣p = p−vp(p) = p−1. When one

talks of a q-extension, q can be variously considered as an indeterminate, a complex

number q Î ℂ, or a p-adic number q Î ℂp. If q Î ℂ, one normally assumes |q| < 1.

If q Î ℂp, one normally assumes |1 - q|p <p
-1/(p-1), so that qx = exp(x logp q) for |x|p ≤ 1.

Let d be a fixed positive integer. Let

X = Xd = lim←−
N

(Z/dpNZ), X1 = Zp,

X∗ = ∪
0<a<dp

(a,p)=1

a + dpZp,

a + dpNZp = {x ∈ X|x ≡ a (mod dpN)},

(1:1)

where a Î ℤ lies in 0 ≤ a <dpN. We use the following notation:

[x]q =
1− qx

1− q
. (1:2)

Hence limq®1 [x]q = x for any x Î ℂ in the complex case and any x with |x|p ≤ 1 in

the present p-adic case. This is the hallmark of a q-analog: The limit as q ® 1 recovers

the classical object.

In 1937, Vandiver [1] and, in 1941, Carlitz [2] discussed generalized Bernoulli and

Euler numbers. Since that time, many authors have studied these and other related
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subjects (see, e.g., [3-6]). The final breakthrough came in the 1948 article by Carlitz [7].

He defined inductively new q-Bernoulli numbers bm = bm(q) by

β0(q) = 1, q(qβ(q) + 1)m − βm(q) =
{

1 if m = 1
0 if m > 1,

(1:3)

with the usual convention of bi by bi. The q-Bernoulli polynomials are defined by

βm(x, q) = (qxβ(q) + [x]q)m =
m∑

i=0

(
m
i

)
βi(q)qix[x]m−i

q . (1:4)

In 1954, Carlitz [8] generalized a result of Frobenius [3] and showed many of the

properties of the q-Bernoulli numbers bm(q). In 1964, Carlitz [9] extended the Ber-

noulli, Eulerian, and Euler numbers and corresponding polynomials as a formal Dirich-

let series. In what follows, we shall call them the Carlitz q-Bernoulli numbers and

polynomials.

Some properties of Carlitz q-Bernoulli numbers bm(q) were investigated by various

authors. In [10], Koblitz constructed a q-analog of p-adic L-functions and suggested

two questions. Question (1) was solved by Satoh [11]. He constructed a complex analy-

tic q-L-series that is a q-analog of Dirichlet L-function and interpolates Carlitz q-Ber-

noulli numbers, which is an answer to Koblitz’s question. By using a q-analog of the p-

adic Haar distribution (see (1.6) below), Kim [12] answered part of Koblitz’s question

(2) and constructed q-analogs of the p-adic log gamma functions Gp,q(x) on ℂp \ ℤp.

In [11], Satoh constructed the generating function of the Carlitz q-Bernoulli numbers

Fq(t) in ℂ which is given by

Fq(t) =
∞∑

m=0

qme[m]qt(1− q− qmt) =
∞∑

m=0

βm(q)
tm

m!
, (1:5)

where q is a complex number with 0 < |q| < 1. He could not explicitly determine Fq
(t) in ℂp, see [11, p.347].

In [12], Kim defined the q-analog of the p-adic Haar distribution μHaar(a + pN ℤp) =

1/pN by

μq(a + pNZp) =
qa

[pN]q
. (1:6)

Using this distribution, he proved that the Carlitz q-Bernoulli numbers bm(q) can be

represented as the p-adic q-integral on ℤp by μq, that is,

βm(q) =
∫
Zp

[a]m
q dμq(a), (1:7)

and found the following explicit formula

βm(q) =
1

(q− 1)m

m∑
i=0

(−1)m−i
(

m
i

)
i + 1

[i + 1]q
, (1:8)

where m ≥ 0 and q Î ℂp with 0 <
∣∣1− q

∣∣
p < p

− 1
p−1.

Recently, Kim and Rim [13] constructed the generating function of the Carlitz q-Ber-

noulli numbers Fq(t) in ℂp :
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Fq(t) = e
t

1−q
∞∑
j=0

j + 1
[j + 1]q

(−1)j
(

1
1− q

)j tj

j!
, (1:9)

where q Î ℂp with 0 <
∣∣1− q

∣∣
p < p

− 1
p−1.

This article is organized as follows.

In Section 2, we consider the generalized Carlitz q-Bernoulli polynomials in the p-adic

case by means of a method provided by Kim. We obtain the generating functions of the

generalized Carlitz q-Bernoulli polynomials. We shall provide some basic formulas for the

generalized Carlitz q-Bernoulli polynomials which will be used to prove the main results

of this article.

In Section 3, we construct the complex, analytic, two-variable q-L-function that is a q-

analog of the two-variable L-function. Using this function, we calculate the values of two-

variable q-L-functions at nonpositive integers and study their properties when q tends to 1.

2. Generalized Carlitz q-Bernoulli polynomials in the p-adic (and complex)
case
For any uniformly differentiable function f : ℤp ® ℂp, the p-adic q-integral on ℤp is

defined to be the limit 1
[pN]q

∑pN−1
a=0 f (a)qa as N ® ∞. The uniform differentiability guar-

antees the limit exists. Kim [12,14-16] introduced this construction, denoted Iq(f),

where |1 - q|p <p-1/(p-1).

The construction of Iq(f) makes sense for many q in ℂp with the weaker condition |1 - q|

p < 1. Indeed, when |1 - q|p < 1 the function qx is uniformly differentiable and the space of

uniformly differentiable functions ℤp ® ℂp is closed under multiplication, so we can make

sense of its p-adic q-integral Iq(f) for |1 - q|p < 1.

Lemma 2.1. For q Î ℂp with 0 < |1 - q|p < 1 and x Î ℤp, we have

lim
N→∞

1

1− qpN

pN−1∑
a=0

qax =
x

1− qx
.

Proof. We assume that q Î ℂp satisfies the condition 0 < |1 - q|p < 1. Then it is

known that

qx =
∞∑

m=0

(
x
m

)
(q− 1)m

for any x Î ℤp (see [[17], Lemma 3.1 (iii)]). Therefore, we obtain

lim
N→∞

1

1− qpN

pN−1∑
a=0

qax =
1

1− qx
lim

N→∞

(
qpN

)x
− 1

qpN − 1

=
1

1− qx
lim

N→∞

∑∞
m=1

(
x
m

)(
qpN − 1

)m

qpN − 1

=
1

1− qx
lim

N→∞

∞∑
m=0

(
x

m + 1

)(
qpN − 1

)m

=
x

1− qx
.
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This completes the proof.

Definition 2.2 ([12, §2, p. 323]). Let c be a primitive Dirichlet character with con-

ductor d Î N and let x Î ℤp. For q Î ℂp with 0 < |1 - q|p < 1 and an integer m ≥ 0,

the generalized Carlitz q-Bernoulli polynomials bm,c(x, q) are defined by

βm,χ(x, q) =
∫

X
χ(a)[x + a]m

q dμq(a)

= lim
N→∞

1
[dpN]q

dpN−1∑
a=0

χ(a)[x + a]m
q qa.

(2:1)

Remark 2.3. If c = c0, the trivial character and x = 0, then (2.1) reduces to (1.7) since

d = 1. In particular, Kim [12] defined a class of p-adic interpolation functions Gp,q(x) of

the Carlitz q-Bernoulli numbers bm(q) and gave several interesting applications of these

functions.

By Lemma 2.1, we can prove the following explicit formula of bm,c(x, q) in ℂp.

Proposition 2.4. For q Î ℂp with 0 < |1 - q|p < 1 and an integer m ≥ 0, we have

βm,χ(x, q) =
1

(1− q)m

d−1∑
k=0

χ(k)qk
m∑

i=0

(
m
i

)
(−1)iqi(x+k) i + 1

[d(i + 1)]q
.

Proof. For m ≥ 0, (2.1) implies

βm,χ(x, q) = lim
N→∞

1
[d]q

1
[pN]qd

d−1∑
k=0

pN−1∑
a=0

χ(k + da)[x + k + da]m
q qk+da

= lim
N→∞

1

(1− q)m−1

d−1∑
k=0

χ(k)
qk

1− qdpN

pN−1∑
q=0

(1− qx+k+da)
m

qda

=
1

(1− q)m−1

d−1∑
k=0

χ(k)qk
m∑

i=0

(
m
i

)
(−1)iqi(x+k)

× lim
N→∞

1

1− (qd)pN

pN−1∑
a=0

(
qd

)a(i+1)

=
1

(1− q)m−1

d−1∑
k=0

χ(k)qk
m∑

i=0

(
m
i

)
(−1)iqi(x+k) i + 1

1− qd(i+1)

(where we use Lemma 2.1).

This completes the proof.

Remark 2.5. We note here that similar expressions to those of Proposition 2.4 with c
= c0 are given by Kamano [[18], Proposition 2.6] and Kim [12, §2]. Also, Ryoo et al.

[19, Theorem 4] gave the explicit formula of bm,c(0, q) in ℂ for m ≥ 0.

Lemma 2.6. Let c be a primitive Dirichlet character with conductor d Î N. Then for

q Î ℂ with |q| < 1,

∞∑
m=0

χ(m)qmx =
1

1− qdx

d−1∑
k=0

χ(k)qkx.

Proof. If we write m = ad + k, where 0 ≤ k ≤ d - 1 and a = 0,1, 2,..., we have the

desired result.
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We now consider the case:

q ∈ Q ∩ Cp, 0 <
∣∣q∣∣ < 1, 0 <

∣∣1− q
∣∣
p < 1. (2:2)

For instance, if we set

q =
1

1− pz
∈ Q ∩ Cp

for each z ≠ 0 Î ℤ and p > 3, we find 0 < |q| < 1, 0 < |1 - q|p < 1.

Let Fq,c(t, x) be the generating function of bm,c(x, q) defined in Definition 2.2. From

Proposition 2.4, we have

Fq,χ (t, x) =
∞∑

m=0

βm,χ(x, q)
tm

m!

=
∞∑

m=0

(
1

(1− q)m

d−1∑
k=0

χ(k)qk
m∑

i=0

(
m
i

)
(−1)iqi(x+k) i + 1

[d(i + 1)]q

)
tm

m!

= Pq,χ(t, x) + Qq,χ(t, x),

(2:3)

where

Pq,χ(t, x) =
∞∑

m=0

1
(1− q)m

d−1∑
k=0

χ(k)qk
m∑

i=0

(
m
i

)
(−1)iqi(x+k) i

[d(i + 1)]q

tm

m!

and

Qq,χ(t, x) =
∞∑

m=0

1
(1− q)m

d−1∑
k=0

χ(k)qk
m∑

i=0

(
m
i

)
(−1)iqi(x+k) 1

[d(i + 1)]q

tm

m!
.

Then, noting that

e

t
1− q =

∞∑
i=0

(−1)i(q− 1)−i ti

i!
,

we see that

Pq,χ(t, x) =
∞∑

m=0

1
(1− q)m

d−1∑
k=0

χ(k)qk
m∑

i=0

(
m
i

)
(−1)iqi(x+k) i

[d(i + 1)]q

tm

m!

=
∞∑

n=0

1
(1− q)n

tn

n!

∞∑
j=0

1

(q− 1)j

d−1∑
k=0

χ(k)qj(x+k)+k j
[d(j + 1)]q

tj

j!

= e
t

1−q
∞∑
j=0

(
1

q− 1

)j d−1∑
k=0

χ(k)qj(x+k)+k j
[d(j + 1)]q

tj

j!
.

(2:4)
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Moreover, (2.4) now becomes

Pq,χ(t, x) = e
t

1−q
∞∑
j=1

(
1

q− 1

)j d−1∑
k=0

χ(k)qj(x+k)+k 1
[d(j + 1)]q

tj

(j− 1)!

= e
t

1−q
∞∑
j=0

(
1

q− 1

)j

q(j+1)x
d−1∑
k=0

χ(k)
qk(j+2)

qd(j+2) − 1

tj+1

j!

= −te
t

1−q
∞∑
j=0

(
1

q− 1

)j

q(j+1)x
∞∑

n=0

χ(n)qn(j+2) tj

j!

(where we use Lemma 2.6)

= −te
t

1−q
∞∑

n=0

χ(n)qx+2n
∞∑
j=0

(−qn+x

1− q

)j tj

j!

= −te
t

1−q
∞∑

n=0

χ(x)qx+2ne
(−qn+x)t

1−q

= −t
∞∑

n=0

χ(x)qx+2ne[n+x]qt

(2:5)

(cf. [13,16,20]). Similar arguments apply to the case Qq,c(t, x). We can rewrite

Qq,χ(t, x) = e
t

1−q
∞∑
j=0

(
1

q− 1

)j d−1∑
k=0

χ(k)qj(x+k)+k 1
[d(j + 1)]q

tj

j!
(2:6)

and

Qq,χ(t, x) = (1− q)
∞∑

n=0

χ(n)qne[n+x]qt. (2:7)

Then, by (2.4), (2.5), (2.6), and (2.7), we have the following theorem.

Theorem 2.7. Let q ∈ Q ∩ Cp, 0 <
∣∣q∣∣ < 1, 0 <

∣∣1− q
∣∣
p < 1. Then the generalized

Carlitz q-Bernoulli polynomials bm,c(x, q) for m ≤ 0 is given by equating the coefficients

of powers of t in the following generating function:

Fq,χ(t, x) = e
t

1−q
∞∑
j=0

(
1

q− 1

)j−1 d−1∑
k=0

χ(k)qj(x+k)+k j + 1
qd(j+1) − 1

tj

j!

=
∞∑

n=0

χ(n)qne[n+x]qt(1− q− qn+xt).

(2:8)

Remark 2.8. If c = c0, the trivial character, and x = 0, (2.8) reduces to (1.5).

3. q-analog of the two-variable L-function (in ℂ)
From Theorem 2.7, for k ≥ 0, we obtain the following

βk,χ(x, q) =
(

d
dt

)k

Fq,χ(t, x)

∣∣∣∣∣
t=0

= (1− q)
∞∑

m=0

χ(m)qm[m + x]k
q − k

∞∑
m=0

χ(m)qx+2m[m + x]k−1
q .

(3:1)
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Hence we can define a q-analog of the L-function as follows:

Definition 3.1. Suppose that c is a primitive Dirichlet character with conductor d Î
N. Let q be a complex number with 0 < |q| < 1, and let Lq(s, x, c) be a function of

two-variable (s, x) Î ℂ × ℝ defined by

Lq(s, x, χ) =
1− q
s− 1

∞∑
m=0

χ(m)qm

[m + x]s−1
q

+
∞∑

m=0

χ(m)qm+2x

[m + x]s
q

(3:2)

for 0 <x ≤ 1 (cf. [11,13,14,21-25]).

In particular, the two-variable function Lq(s, x, c) is a generalization of the one-vari-

able Lq(s, c) of Satoh [11], yielding the one-variable function when the second variable

vanishes.

Proposition 3.2. For k Î ℤ, k ≥ 1, the limiting value lims ® k Lq(1 - s, x, c) = Lq (1 -

k, x, c) exists and is given explicitly by

Lq(1− k, x, χ) = −1
k
βk,χ(x, q).

Proof. The proof is clear by Proposition 2.4, Theorem 2.7 and (3.1).

The formula of Proposition 3.2 is slight extension of the result in [19] and [11, Theo-

rem 2].

Theorem 3.3. For any positive integer k, we have

lim
q→1

βk,χ(x, q) = lim
q→1

1
(1− q)m

d−1∑
k=0

χ(k)qk
m∑

i=0

(
m
i

)
(−1)iqi(x+k) i + 1

[d(i + 1)]q

= Bk,χ (x),

where the Bk,c(x) are the kth generalized Bernoulli polynomials.

Proof. We follow the proof in [[26], Theorem 1] motivated by the study of a simple

q-analog of the Riemann zeta function. Recall that the ordinary Bernoulli polynomials

Bk(x) are defined by

i
qi − 1

qix =
1

log q
i log q

eilog q − 1
ex(i log q) =

1
log q

∞∑
k=0

Bk(x)ik
(log q)k

k!
, (3:3)

where it is noted that in this instance, the notation Bk(x) is used to replace Bk(x)

symbolically. For each m ≥ 1, let

(et − 1)m =
∞∑
k=0

d(m)
k

tk

k!
. (3:4)

Note that

(et − 1)m =
m∑

i=0

(−1)m−i
(

m
i

)
eit =

∞∑
k=0

(
m∑

i=0

(
m
i

)
(−1)m−iik

)
tk

k!
. (3:5)

From (3.4) and (3.5), we obtain

d(m)
k =

⎧⎨
⎩

∑m
i=0 (−1)m−i

(
m
i

)
ik, m ≤ k

0, 0 ≤ k < m.
(3:6)
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It is also clear from the definition that d(0)
0 = 1, d(0)

k = 0 and d(k)
k = k! for k Î N. From

(2.3), (3.3), and (3.6), we obtain

βm,χ(x, q) =
q−x

(q− 1)m

d−1∑
k=0

χ(k)qk+x
m∑

i=0

(−1)m−i
(

m
i

)
qi(k+x) i + 1[

d(i + 1)
]
q

=
q−x

(q− 1)m−1

d−1∑
k=0

χ(k)
m∑

i=0

(−1)m−i
(

m
i

)

× ed(i+1)log q
(k+x)

d d(i + 1) log q

ed(i+1) log q−1

1
d log q

=
q−x

(q− 1)m−1

∞∑
n=0

(
m∑

i=0

(−1)m−i
(

m
i

)
(i + 1)n

)

× dn−1
d−1∑
k=0

χ(k)Bn

(
k + x

d

)
(log q)n−1

n!

= q−x (log q)m−1

(q− 1)m−1 dm−1
d−1∑
k=0

χ(k)Bm

(
k + x

d

)

+ q−x
∞∑

σ=1

σ∑
i=0

(
m + σ

i

)
d(m)

m+σ−i
1

(m + σ )!
(log q)m+σ−1

(q− 1)m−1

× dm+σ−1
d−1∑
k=0

χ(k)Bm+σ

(
k + x

d

)
.

Then, because

log q = log(1 + (q− 1)) = (q− 1)− (q− 1)2

2
+ · · · = (q− 1) + O((q− 1)2)

as q ® 1, we find

lim
q→1

(log q)m+σ−1

(q− 1)m−1 =
{

1, σ = 0
0, σ ≥ 1,

so

lim
q→1

βm,χ(x, q) = dm−1
d−1∑
k=0

χ(k)Bm

(
k + x

d

)
= Bm,χ(x),

where the Bm,c(x) are the mth generalized Bernoulli polynomials (e.g., [14,19]). This

completes the proof.

Corollary 3.4. For any positive integer k, we have

lim
q→1

Lq(1− k, x, χ) = −1
k

Bk,x(x).

Remark 3.5. The formula of Theorem 3.3 is slight extension of the result in [[26],

Theorem 1].

Remark 3.6. From Theorem 2.7, the generalized Bernoulli polynomials Bm,c(x) are

defined by means of the following generating function [[27], p. 8]
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Fχ(t, x) := lim
q→1

Fq,χ(t, x)

= −t
d∑

a=1

∞∑
l=0

χ(a + dl)e(a+dl)text

=
d∑

a=1

χ(a)te(a+x)t

edt − 1

=
∞∑

m=0

Bm,χ (x)
tm

m!
.

Remark 3.7. If we substitute c = c0, the trivial character, in Definition 3.1 and Corol-

lary 3.4, we can also define a q-analog of the Hurwitz zeta function

ζ (s, x) =
∞∑

m=0

1
(m + x)s

by

ζq(s, x) = Lq(s, x, χ0) =
1− q
s− 1

∞∑
m=0

qm+x

[m + x]s−1
q

+
∞∑

m=0

q2(m+x)

[m + x]s
q

and obtain the identity

lim
q→1

ζq(s, x) = ζ (s, x)

for all s ≠ 1, as well as the formula

lim
q→1

ζq(1− k, x) = −1
k

Bk(x)

for integers k ≥ 1 (cf. [11,13,19,22,24,25]).
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