SOME IDENTITIES ON THE BERNSTEIN AND q-GENOCCHI POLYNOMIALS

Hyun-Mee Kim

Abstract

Recently, T. Kim has introduced and analysed the q-Euler polynomials (see [3, 14, 35, 37]). By the same motivation, we will consider some interesting properties of the q-Genocchi polynomials. Further, we give some formulae on the Bernstein and q-Genocchi polynomials by using p-adic integral on \mathbb{Z}_{p}. From these relationships, we establish some interesting identities

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of \mathbb{Q}_{p}, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}^{*}=\mathbb{N} \cup\{0\}$. The p-adic norm is normally defined by $|p|_{p}=1 / p$. As an indeterminate, we assume that $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$ (see [1-43]). Let $U D\left(\mathbb{Z}_{p}\right)$ be the space of uniformly differentiable functions on \mathbb{Z}_{p}. For $f \in U D\left(\mathbb{Z}_{p}\right)$, the fermionic p-adic integral on \mathbb{Z}_{p} is defined by T. Kim as follows:

$$
\begin{align*}
I_{-1}(f) & =\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x) \\
& =\lim _{n \rightarrow \infty} \sum_{0 \leq x \leq p^{n}-1} f(x) \mu_{-1}\left(x+p^{n} \mathbb{Z}_{p}\right) \tag{1}\\
& =\lim _{n \rightarrow \infty} \frac{1}{p^{n}} \sum_{0 \leq x \leq p^{n}-1} f(x)(-1)^{x}, \quad(\text { see }[1,21,22,25]) .
\end{align*}
$$

From (1), we can derive the following integral equation on \mathbb{Z}_{p} :

$$
\begin{equation*}
I_{-1}\left(f_{1}\right)=-I_{-1}(f)+2 f(0), \tag{2}
\end{equation*}
$$

where $f_{1}(x)=f(x+1)($ see $[1,21,22,25])$.

Received September 24, 2012; Revised December 12, 2012.
2010 Mathematics Subject Classification. 11S80, 11B68.
Key words and phrases. q-Genocchi number, q-Genocchi polynomial, Bernstein polynomial, p-adic integral.

As is well known, the Genocchi polynomials are defined by the generating function as follows:

$$
\begin{equation*}
\frac{2 t}{e^{t}+1} e^{x t}=e^{G(x) t}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

with the usual convention about replacing $G^{n}(x)$ by $G_{n}(x)$. Taking $x=0$ into (3), we get $G_{n}(0)=G_{n}$ is called the n-th Genocchi number (see [1-4, 11, 12 , $20,24,28,33,34]$). From (3), we have the following recurrence relations of Genocchi numbers as follows:

$$
\begin{equation*}
G_{0}=0 \quad \text { and } \quad(G+1)^{n}+G_{n}=2 \delta_{1, n} \tag{4}
\end{equation*}
$$

where $\delta_{1, n}$ is the Kronecker symbol and $n \in \mathbb{N}^{*}$ (see $[2,28,36]$).
As is well known, the Frobenius-Euler polynomials, $H_{n}(u \mid x)$, are defined by the generating function as follows:
(5) $\frac{1-u}{e^{t}-u} e^{x t}=\sum_{n=0}^{\infty} H_{n}(u \mid x) \frac{t^{n}}{n!}, u \in \mathbb{C}_{p}$ with $u \neq 1$ (see $[6,16,25,32,39]$).

In the special case, $x=0, H_{n}(u \mid 0)=H_{n}(u)$ is called the n-th Frobenius-Euler number (see $[6,16,25,32,39])$. For $n, k \in \mathbb{N}^{*}$ with $n>k$ and $x \in \mathbb{Z}_{p}$, the Bernstein polynomials of degree n is defined by
(6) $\quad B_{k, n}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}=\binom{n}{n-k}(1-x)^{n-k} x^{k}=B_{n-k, n}(1-x)$
(see $[19,32,33,35,37]$).
In this paper, we investigate some identities for the q-Genocchi numbers and polynomials by using p-adic integral on \mathbb{Z}_{p}. From these relationships, we establish some interesting identities in the next section.

2. Some identities on the Bernstein and \boldsymbol{q}-Genocchi polynomials

In this section, we assume that $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$. As is well known, the q-Genocchi polynomials are defined by the generating function as follows:

$$
\begin{equation*}
\frac{2 t}{q e^{t}+1} e^{x t}=e^{G_{q}(x) t}=\sum_{n=0}^{\infty} G_{n, q}(x) \frac{t^{n}}{n!}, \tag{7}
\end{equation*}
$$

with the usual convention about replacing $G_{q}^{n}(x)$ by $G_{n, q}(x)$. In the special case, $x=0$, then we have $G_{n, q}(0)=G_{n, q}$ is called the n-th q-Genocchi number (see $[1,4,11,20,24,33,34]$). From (7), we have the following recurrence relations of q-Genocchi numbers as follows:

$$
\begin{equation*}
G_{0, q}=0 \quad \text { and } \quad q\left(G_{q}+1\right)^{n}+G_{n, q}=2 \delta_{1, n} \tag{8}
\end{equation*}
$$

From (8), we easily see that

$$
\begin{equation*}
G_{1, q}=\frac{2}{[2]_{q}}, \quad \lim _{q \rightarrow 1} G_{1, q}=G_{1}, \quad \text { and } \quad G_{2, q}=-\frac{2^{2} q}{[2]_{q}{ }^{2}} \tag{9}
\end{equation*}
$$ where $[x]_{q}=\frac{1-q^{x}}{1-q}$ and $x \in \mathbb{Z}_{p}$. By the definition of q-Genocchi numbers, we note that

$$
\begin{equation*}
G_{n, q}(x)=\sum_{l=0}^{n}\binom{n}{l} G_{l, q} x^{n-l} \tag{10}
\end{equation*}
$$

From (8), we get

$$
\begin{equation*}
q\left(G_{q}+1\right)^{n}+G_{n, q}=q G_{n, q}(1)+G_{n, q}=2 \delta_{1, n} \tag{11}
\end{equation*}
$$

From (10) and (11), we have

$$
\begin{align*}
q G_{n, q}(2) & =q\left(G_{q}+2\right)^{n}=q\left(G_{q}+1+1\right)^{n} \\
& =q \sum_{l=0}^{n}\binom{n}{l}\left(G_{q}+1\right)^{l}=q \sum_{l=0}^{n}\binom{n}{l} G_{l, q}(1) . \tag{12}
\end{align*}
$$

By (11) and (12), we can derive the following equation:

$$
\begin{align*}
q^{2} G_{n, q}(2) & =q^{2}\left(G_{q}+2\right)^{n}=q^{2}\left(G_{q}+1+1\right)^{n} \\
& =q \sum_{l=0}^{n}\binom{n}{l} q\left(G_{q}+1\right)^{l}=q \sum_{l=1}^{n}\binom{n}{l} q G_{l, q}(1) \\
& =q \sum_{l=2}^{n}\binom{n}{l} q G_{l, q}(1)+q\left[\binom{n}{1} q G_{1, q}(1)\right] \tag{13}\\
& =-q \sum_{l=2}^{n}\binom{n}{l} G_{l, q}+n q\left(2-G_{1, q}\right) \\
& =-q \sum_{l=0}^{n}\binom{n}{l} G_{l, q}+2 n q=-q\left(G_{q}+1\right)^{n}+2 n q \\
& =-q G_{n, q}(1)+2 n q=-2 \delta_{1, n}+G_{n, q}+2 n q .
\end{align*}
$$

From (13), we have the following theorem.
Theorem 1. For $n \in \mathbb{N}^{*}$, we have

$$
q^{2} G_{n, q}(2)=G_{n, q}+2 n q-2 \delta_{1, n}
$$

Corollary 2. For $n \in \mathbb{N}$ with $n \geq 2$, we have

$$
q^{2} G_{n, q}(2)=G_{n, q}+2 n q
$$

By (7) and (8), we can derive the following equation:

$$
\begin{equation*}
\frac{2 t}{q e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} G_{n, q}(x) \frac{t^{n}}{n!}=\sum_{n=1}^{\infty} G_{n, q} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \frac{G_{n+1, q}}{n+1} \frac{t^{n+1}}{n!} \tag{14}
\end{equation*}
$$

Also, we note that

$$
\begin{equation*}
\frac{2 t}{q e^{t}+1} e^{x t}=\left(\frac{2 t}{1+q}\right)\left(\frac{1+q^{-1}}{e^{t}+q^{-1}}\right) e^{x t}=\frac{2}{[2]_{q}} \sum_{n=0}^{\infty} H_{n}\left(-q^{-1}\right) \frac{t^{n+1}}{n!} \tag{15}
\end{equation*}
$$

where $H_{n}\left(-q^{-1}\right)$ are the n-th Frobenius-Euler number.
Thus, by (14) and (15), we have

$$
\begin{equation*}
\frac{G_{n+1, q}}{n+1}=\frac{2}{[2]_{q}} H_{n}\left(-q^{-1}\right) . \tag{16}
\end{equation*}
$$

Therefore, by (16), we obtain the following proposition.
Proposition 3. For $n \in \mathbb{N}^{*}$, we have

$$
\frac{G_{n+1, q}}{n+1}=\frac{2}{[2]_{q}} H_{n}\left(-q^{-1}\right)
$$

where $H_{n}\left(-q^{-1}\right)$ are the n-th Frobenius-Euler number.
Let us take $f(x)=q^{x} e^{x t}$. Then, by (2), we get

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} q^{x} e^{x t} d \mu_{-1}(x)=\sum_{n=0}^{\infty} \frac{G_{n+1, q}}{n+1} \frac{t^{n}}{n!} \tag{17}
\end{equation*}
$$

From Proposition 3 and (17), we have the following theorem.
Theorem 4. For $n \in \mathbb{N}^{*}$, we have

$$
\int_{\mathbb{Z}_{p}} q^{x} x^{n} d \mu_{-1}(x)=\frac{G_{n+1, q}}{n+1}=\frac{2}{[2]_{q}} H_{n}\left(-q^{-1}\right) .
$$

By (2), (7), and (17), we have

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} q^{y}(x+y)^{n} d \mu_{-1}(y) & =\sum_{l=0}^{n}\binom{n}{l} x^{n-l} \int_{\mathbb{Z}_{p}} q^{y} y^{l} d \mu_{-1}(y) \\
& =\sum_{l=0}^{n}\binom{n}{l} x^{n-l} \frac{G_{l+1, q}}{l+1} \\
& =\sum_{l=1}^{n+1}\binom{n}{l-1} x^{n+1-l} \frac{G_{l, q}}{l} \tag{18}\\
& =\frac{1}{n+1} \sum_{l=1}^{n+1}\binom{n+1}{l} x^{n+1-l} G_{l, q} \\
& =\frac{1}{n+1} \sum_{l=0}^{n+1}\binom{n+1}{l} x^{n+1-l} G_{l, q} \\
& =\frac{1}{n+1} G_{n+1, q}(x) .
\end{align*}
$$

From (18), we obtain the following theorem.
Theorem 5. For $n \in \mathbb{N}^{*}$, we have

$$
\int_{\mathbb{Z}_{p}} q^{y}(x+y)^{n} d \mu_{-1}(y)=\frac{1}{n+1} G_{n+1, q}(x)=\frac{2}{[2]_{q}} H_{n}\left(-q^{-1} \mid x\right) .
$$

Now, we consider the symmetric property for the q-Genocchi polynomials as follows:

$$
\begin{align*}
q \sum_{n=0}^{\infty} G_{n, q}(1-x) \frac{t^{n}}{n!} & =\frac{2 q t}{q e^{t}+1} e^{(1-x) t} \\
& =-\frac{-2 t}{1+q^{-1} e^{-t}} e^{-x t} \\
& =-\sum_{n=0}^{\infty} G_{n, q^{-1}}(x) \frac{(-t)^{n}}{n!} \tag{19}\\
& =\sum_{n=0}^{\infty} G_{n, q^{-1}}(x)(-1)^{n+1} \frac{t^{n}}{n!}
\end{align*}
$$

From (19), we get

$$
q \sum_{n=0}^{\infty} G_{n, q}(1-x) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} G_{n, q^{-1}}(x)(-1)^{n+1} \frac{t^{n}}{n!}
$$

Therefore, we have the following theorem.
Theorem 6. For $n \in \mathbb{N}^{*}$, we have

$$
q G_{n, q}(1-x)=(-1)^{n+1} G_{n, q^{-1}}(x)
$$

For $n \in \mathbb{N}^{*}$ with $n \geq 2$, by Theorems $4,5,6$, and Corollary 2, we have

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} q^{-x}(1-x)^{n-1} d \mu_{-1}(x) & =(-1)^{n-1} \int_{\mathbb{Z}_{p}} q^{-x}(x-1)^{n-1} d \mu_{-1}(x) \\
& =(-1)^{n-1} \frac{G_{n, q^{-1}}(-1)}{n} \\
& =q \frac{G_{n, q}(2)}{n}=\frac{1}{n q}\left(G_{n, q}+2 n q\right) \tag{20}\\
& =\frac{1}{n q}\left(G_{n, q}+2 n q\right) \\
& =\frac{1}{q} \frac{G_{n, q}}{n}+2 \\
& =\frac{1}{q} \int_{\mathbb{Z}_{p}} q^{x} x^{n-1} d \mu_{-1}(x)+2 .
\end{align*}
$$

Therefore, by (20), we have the following theorem.
Theorem 7. For $n \in \mathbb{N}^{*}$ with $n \geq 2$, we have

$$
\int_{\mathbb{Z}_{p}} q^{-x}(1-x)^{n-1} d \mu_{-1}(x)=\frac{1}{q} \int_{\mathbb{Z}_{p}} q^{x} x^{n-1} d \mu_{-1}(x)+2 .
$$

Now, let $n, k \in \mathbb{N}^{*}$ with $n>k$. Then, by (6) and Theorem 5, we see that

$$
\begin{align*}
I & =\int_{\mathbb{Z}_{p}} B_{k, n}(x) q^{x} d \mu_{-1}(x) \\
& =\int_{\mathbb{Z}_{p}}\binom{n}{k} x^{k}(1-x)^{n-k} q^{x} d \mu_{-1}(x) \\
& =\binom{n}{k} \sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{n-k-l} \int_{\mathbb{Z}_{p}} x^{l+k} q^{x} d \mu_{-1}(x) \tag{21}\\
& =\binom{n}{k} \sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{n-k-l} \frac{G_{l+k+1, q}}{l+k+1} .
\end{align*}
$$

From the same method, we have

$$
\begin{align*}
I & =\int_{\mathbb{Z}_{p}} B_{n-k, n}(1-x) q^{x} d \mu_{-1}(x) \\
& =\int_{\mathbb{Z}_{p}}\binom{n}{n-k}(1-x)^{n-k} x^{k} q^{x} d \mu_{-1}(x) \\
& =\binom{n}{n-k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l} \int_{\mathbb{Z}_{p}}(1-x)^{n-l} q^{x} d \mu_{-1}(x) \tag{22}\\
& =\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l}\left[q \int_{\mathbb{Z}_{p}} q^{-x} x^{n-l} d \mu_{-1}(x)\right] \\
& =\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l}\left[2+q \frac{G_{n-l+1, q^{-1}}}{n-l+1}\right]
\end{align*}
$$

Thus, by (21) and (22), we obtain the following theorem.
Theorem 8. For $n, k \in \mathbb{N}^{*}$ with $n>k$, we have

$$
\sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{n-k-l} \frac{G_{l+k+1, q}}{l+k+1}=\sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l}\left[2+q \frac{G_{n-l+1, q^{-1}}}{n-l+1}\right]
$$

References

[1] S. Araci, D. Erdal, and J. J. Seo, A study on the fermionic p-adic q-integral on \mathbb{Z}_{p} associated with weighted q-Bernstein and q-Genocchi polynomials, Abstr. Appl. Anal. 2011 (2011), Article ID 649248, 10 pages.
[2] A. Bayad and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 20 (2010), no. 2, 247-253.
[3] , Identities involving values of Bernstein, q-Bernoulli and q-Euler polynomials, Russ. J. Math. Phys. 18 (2011), no. 2, 133-143.
[4] I. N. Cangul, V. Kurt, H. Ozden, and Y. Simsek, On the higher-order w-q-Genocchi numbers, Adv. Stud. Contemp. Math. 19 (2009), no. 1, 39-57.
[5] I. N. Cangul, H. Ozden, and Y. Simsek, A new approach to q-Genocchi numbers and their interpolation functions, Nonlinear Anal. 71 (2009), no. 12, e793-e799.
[6] M. Can, M. Cenkci, V. Kurt, and Y. Simsek, Twisted Dedekind type sums associated with Barnes' type multiple Frobenius-Euler l-functions, Adv. Stud. Contemp. Math. 18 (2009), no. 2, 135-160.
[7] L. Carlitz, Some arithmetic properties of generalized Bernoulli numbers, Bull. Amer. Math. Soc. 65 (1959), 68-69.
[8] _ Note on the integral of the product of several Bernoulli polynomials, J. London Math. Soc. 34 (1959), 361-363.
[9] R. Dere and Y. Simsek, Applications of umbral algebra to some special polynomials, Adv. Stud. Contemp. Math. 22 (2012), no. 3, 433-438.
[10] , Genocchi polynomials associated with the Umbral algebra, Appl. Math. Comput. 218 (2011), no. 3, 756-761.
[11] L.-C. Jang, A study on the distribution of twisted q-Genocchi polynomials, Adv. Stud. Contemp. Math. 18 (2009), no. 2, 181-189.
[12] N. S. Jung and C. S. Ryoo, On the twisted (h, q)-Genocchi numbers and polynomials associated with weight α, Proc. Jangjeon Math. Soc. 15 (2012), no. 1, 1-9.
[13] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), no. 2, 1458-1465.
[14] , On p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl. 339 (2008), no. 1, 598-608.
[15] _, On the analogs of Euler numbers and polynomials associated with p-adic q integral on \mathbb{Z}_{p} at $q=$, J. Math. Anal. Appl. 331 (2007), no. 2, 779-792.
[16] , Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory 132 (2012), no. 12, 2854-2865.
[17] , On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329.
[18] _, Note on the Euler q-zeta functions, J. Number Theory 129 (2009), no. 7, 17981804.
[19] $\overline{73-82 \text {. }}$, A note on q-Bernstein polynomials, Russ. J. Math. Phys. 18 (2011), no. 1, 73-82.
[20] , On the multiple q-Genocchi and Euler numbers, Russ. J. Math. Phys. 15 (2008), no. 4, 481-486.
$[21] \quad$, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}, Russ. J. Math. Phys. 16 (2009), 484-491.
[22] , Symmetry of power sum polynomial and multivariate fermionic p-adic invariant integral on \mathbb{Z}_{p}, Russ. J. Math. Phys. 16 (2009), no. 1, 93-96.
[23] , q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15 (2008), no. 1, 51-57.
[24] , Note on q-Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 17 (2008), no. 1, 9-15.
[25] _, An identity of the symmetry for the Frobenius - Euler polynomials associated with the fermionic p-adic invariant q-integrals on \mathbf{Z}_{p}, Rocky Mountain J. Math. 41 (2011), no. 1, 239-247.
[26],$~ q$-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
[27] T. Kim, B. Lee, S.-H. Lee, and S.-H. Rim, Identities for the Bernoulli and Euler numbers and ploynomials, Ars Combinatorics 107 (2012), 325-337.
[28] B. Kurt, The multiplication formulae for the Genocchi polynomials, Proc. Jangjeon Math. Soc. 13 (2010), no. 1, 89-96.
[29] H. Ozden and Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008), no. 9, 934-939.
[30] _, Interpolation function of the (h, q)-extension of twisted Euler numbers, Comput. Math. Appl. 56 (2008), no. 4, 898-908.
[31] H. Ozden, Y. Simsek, and H. M. Srivastava, A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl. 60 (2010), no. 10, 2779-2787.
[32] S.-H. Rim and S. J. Lee, Some identities on the twisted (h,q)-Genocchi numbers and polynomials associated with q-Bernstein polynomials, Int. J. Math. Math. Sci. 2011 (2011), Art. ID 482840, 8 pp.
[33] S.-H. Rim, J. H. Jeong, S. J. Lee, J. H. Jin, and E. J. Moon, q-Bernstein polynomials associated with q-Genocchi numbers and polynomials, J. Comput. Anal. Appl. 14 (2012), no. 6, 1006-1013.
[34] S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin, On the q-Genocchi numbers and polynomials associated with q-zeta function, Proc. Jangjeon Math. Soc. 12 (2009), no. 3, 261-267.
[35] C. S. Ryoo, Some relations between twisted q-Euler numbers and Bernstein polynomials, Adv. Stud. Contemp. Math. 21 (2011), no. 2, 217-223.
[36] \qquad , Calculating zeros of the twisted Genocchi polynomials, Adv. Stud. Contemp. Math. 17 (2008), no. 2, 147-159.
[37] , Some identities of the twisted q-Euler numbers and polynomials associated with q-Bernstein polynomials, Proc. Jangjeon Math. Soc. 14 (2011), 239-248.
[38] Y. Simsek, O. A. Bayad, and V. Lokesha, q-Bernstein polynomials related to q-FrobeniusEuler polynomials, l-functions, and q-Stirling numbers, Math. Methods Appl. Sci. 35 (2012), no. 8, 877-884.
[39] Y. Simsek, O. Yurekli, and V. Kurt, On interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math. 15 (2007), no. 2, 187-194.
[40] Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions, Adv. Stud. Contemp. Math. 16 (2008), 251278.
[41] _, q-Hardy-Berndt type sums associated with q-Genocchi type zeta and q-lfunctions, Nonlinear Anal. 71 (2009), no. 12, e377-e395.
[42] _, (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), no. 2, 790-804.
[43] -, Theorems on twisted L-function and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 205-218.

Department of General Education
Kookmin University
Seoul 136-702, Korea
E-mail address: kagness@kookmin.ac.kr

