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We consider Carlitz q-Bernoulli numbers and q-Stirling numbers of the first and the sec-
ond kinds. From the properties of q-Stirling numbers, we derive many interesting formu-
las associated with Carlitz q-Bernoulli numbers. Finally, we will prove βn,q =

∑ n
m=0
∑ n

k=m1/

(1 − q)n+m−k∑ d0+···+dk=n−kq
∑ k

i=0idis1,q(k,m)(−1)n−m((m + 1)/[m + 1]q), where βn,q are called Carlitz q-
Bernoulli numbers.
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1. Introduction

Let p be a fixed prime number. Throughout this paper, Zp, Qp, C, and Cp will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex
number field, and the completion of algebraic closure of Qp. For d a fixed positive integer with
(p, d) = 1, let

X = Xd = lim
←−
N

Z

/
dpNZ, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

a + dpZp,

a + dpNZp =
{
x ∈ X | x ≡ a

(
moddpN

)}
,

(1.1)

where a ∈ Z lies in 0 ≤ a < dpN , see [1–21]. The p-adic absolute value in Cp is normal-
ized so that |p|p = 1/p. When one talks about q-extension, q is variously considered as an
indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ Cp, then we
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assume |q − 1|p < p−1/(p−1), so that qx = exp(x log q) for |x|p ≤ 1. We use the notation
[x]q = [x : q] = (1 − qx)/(1 − q). For f ∈ C(1)(Zp) = {f | f ′ ∈ C(Zp)}, let us start with the
expressions

1
[
pN
]
q

∑

0≤j<pN
qjf(j) =

∑

0≤j<pN
f(j)μq

(
j + pNZp

)
(1.2)

(see [6, 8]), representing q-analogue of Riemann sums for f . The p-adic q-integral of a function
f ∈ C(1)(Zp) is defined by

∫

X

f(x)dμq(x) =
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN
]
q

pN−1∑

x=0

f(x)qx (1.3)

(see [8, 22, 23]). For f ∈ C(1)(Zp), it is easy to see that
∣
∣
∣
∣

∫

Zp

f(x)dμq(x)
∣
∣
∣
∣
p

≤ p‖f‖1 (1.4)

(see [6–14]), where ‖f‖1 = sup{|f(0)|p, supx/=y|(f(x) − f(y))/(x − y)|p}. If fn → f in C(1)(Zp),
namely, ‖fn − f‖1 → 0, then

∫

Zp

fn(x)dμq(x) −→
∫

Zp

f(x)dμq(x) (1.5)

(see [6–10]). The q-analogue of binomial coefficient was known as
[ x
n

]
q
= ([x]q[x − 1]q · · · [x

− n + 1]q)/[n]q!,where [n]q! =
∏n

i=1[i]q (see [1, 5, 6, 10, 11]). From this definition, we derive
[
x + 1

n

]

q

=

[
x

n − 1

]

q

+ qn
[
x

n

]

q

= qx−n
[

x

n − 1

]

q

+

[
x

n

]

q

(1.6)

(cf. [6, 10]). Thus, we have
∫
Zp

[ x
n

]
q
dμq(x) = ((−1)n/[n + 1]q)q

n+1−
(
n+1
2

)

. If f(x) =
∑

k≥0ak,q

[ x
k

]
q

is the q-analogue of Mahler series of strictly differentiable function f , then we see that
∫

Zp

f(x)dμq(x) =
∑

k≥0
ak,q

(−1)k
[k + 1]q

q
k+1−
(
k+1
2

)

. (1.7)

Carlitz q-Bernoulli numbers βk,q(= βk(q)) can be determined inductively by

β0,q = 1, q(qβ + 1)k − βk,q =
⎧
⎨

⎩

1 if k = 1,

0 if k > 1,
(1.8)

with the usual convention of replacing βi by βi,q (see [2–4]). In this paper, we study the q-
Stirling numbers of the first and the second kinds. From these q-Stirling numbers, we derive
some interesting q-Stirling numbers identities associated with Carlitz q-Bernoulli numbers.
Finally, we will prove the following formula:

βn,q =
n∑

m=q

n∑

k=m

1

(1 − q)n+m−k
∑

d0+···+dk=n−k
q
∑k

i=0idis1,q(k,m)(−1)n−m m + 1
[m + 1]q

, (1.9)

where s1,q(k,m) is the q-Stirling number of the first kind.
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2. q-Stirling numbers and Carlitz q-Bernoulli numbers

Form ∈ Z+, we note that

βm,q =
∫

Zp

[x]mq dμq(x) =
∫

X

[x]mq dμq(x). (2.1)

From this formula, we derive

β0,q = 1, q(qβ + 1)k − βk,q =
⎧
⎨

⎩

1 if k = 1,

0 if k > 1,
(2.2)

with the usual convention of replacing βi by βi,q. By the simple calculation of p-adic q-integral
on Zp, we see that

βn,q =
1

(1 − q)n
n∑

i=0

(
n

i

)

(−1)i i + 1
[i + 1]q

, (2.3)

where
( n

i

)
= n!/i!(n− i)! = n(n−1) · · · (n− i+1)/i!. Let F(t) be the generating function of Carlitz

q-Bernoulli numbers. Then we have

F(t) =
∞∑

n=0

βn,q
tn

n!

= lim
ρ→∞

1
[
pρ
]
q

pρ−1∑

x=0

qxe[x]qt

=
∞∑

n=0

1
(1 − q)n

{ ∞∑

k=0

(
n

k

)
k + 1

[k + 1]q
(−1)k

}
tn

n!

= et/(1−q)
∞∑

k=0

(−1)k
(1 − q)k

k + 1
[k + 1]q

tk

k!
.

(2.4)

From (2.4)we note that

F(t) = et/(1−q) + et/(1−q)
∞∑

k=1

(−1)k
(1 − q)k−1

(
k

1 − qk+1
)
tk

k!
+ et/(1−q)

∞∑

k=1

(−1)k
(1 − q)k−1

(
1

1 − qk+1
)
tk

k!

= −t
∞∑

n=0

q2ne[n]qt + (1 − q)
∞∑

n=0

qne[n]qt.

(2.5)

Therefore, we obtain the following.

Lemma 2.1. Let F(t) =
∑∞

n=0

∫
Zp

[x]nqdμq(x)(tn/n!). Then one has

F(t) = −t
∞∑

n=0

q2ne[n]qt + (1 − q)
∞∑

n=0

qne[n]qt. (2.6)
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The q-Bernoulli polynomials in the variable x in Cp with |x|p ≤ 1 are defined by

βn,q(x) =
∫

Zp

[x + t]nqdμq(t) =
∫

X

[x + t]nqdμq(x). (2.7)

Thus we have
∫

Zp

[x + t]nqdμq(x) =
n∑

k=0

(
n

k

)

[x]n−kq qkx
∫

Zp

[t]kqdμq(t)

=
n∑

k=0

(
n

k

)

[x]n−kq qkxβk,q

=
(
qxβ + [x]q

)n
.

(2.8)

From (2.7)we derive
∫

Zp

[x + t]nqdμq(x) = βn,q(x) =
1

(1 − q)n
n∑

k=0

(
n

k

)

(−1)kqkx k + 1
[k + 1]q

. (2.9)

Let F(t, x) be the generating function of q-Bernoulli polynomials. By (2.9)we see that

F(t, x) =
∞∑

n=0

βn,q(x)
tn

n!

= et/(1−q)
∞∑

k=0

1

(1 − q)k
qkx(−1)k k + 1

[k + 1]q

tk

k!
.

(2.10)

From (2.10) we note that

F(t, x) = −t
∞∑

n=0

q2n+xe[n+x]qt + (1 − q)
∞∑

n=0

qne[n+x]qt. (2.11)

By (2.7) and (2.11)we easily see that

[m]k−1q

m−1∑

i=0

qiβk,qm

(
x + i

m

)

= βk,q(x), m ∈ N, k ∈ Z+. (2.12)

If we take x = 0 in (2.12), then we have

[n]qβn,q =
m∑

k=0

(
m

k

)

βk,qn[n]
k
q

n−1∑

j=0

qj(k+1)[j]n−kq . (2.13)

Let us define new q-Bernoulli polynomials, β∗n,q(x), as follows:

F∗(t, x) = F(t, x) − (1 − q)
∞∑

n=0

qne[n+x]qt

= −t
∞∑

n=0

q2n+xe[n+x]qt

=
∞∑

n=0

β∗n,q(x)

n!
tn.

(2.14)
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In the special case x = 0, we can also derive the definition of q-Bernoulli numbers as follows:

F∗(t) = F∗(t, 0) =
∞∑

n=0

β∗n,q
tn

n!
. (2.15)

From these generating functions, we note that

−
∞∑

l=0

q2l+ne[n+l]qt +
∞∑

l=0

q2le[l]qt =
∞∑

m=1

(

m
n−1∑

l=0

q2l[l]m−1q

)
tm−1

m!
. (2.16)

Note that −∑∞l=0q2l+ne[n+l]qt +
∑∞

l=0q
2le[l]qt = (1/t)(F∗(t, n) − F∗(t)). Thus, we have

∞∑

m=0

(
β∗m,q(n) − β∗m,q

) tm

m!
=
∞∑

m=0

(

m
n−1∑

l=0

q2l[l]m−1q

)
tm

m!
. (2.17)

By comparing the coefficients on both sides in (2.17), we see that

β∗m,q(n) − β∗m,q = m
n−1∑

l=0

q2l[l]m−1q . (2.18)

Therefore, we obtain the following.

Proposition 2.2. Form,n ∈ N, one has

(q − 1)
n−1∑

l=0

ql[l]mq +
n−1∑

l=0

ql[l]m−1q =
1
m

(
β∗m,q(n) − β∗m,q

)
. (2.19)

Now we consider the q-analogue of Jordan factor as follows:

[x]k,q = [x]q[x − 1]q · · · [x − k + 1]q

=

(
1 − qx)(1 − qx−1) · · · (1 − qx−k+1)

(1 − q)k
.

(2.20)

The q-binomial coefficient is defined by

[
n

k

]

q

=
[n]q!

[k]q![n − k]q!
=

(
1 − qn)(1 − qn−1) · · · (1 − qn−k+1)

(1 − q)(1 − q2) · · · (1 − qk) , (2.21)

where [n]q! = [n]q[n − 1]q · · · [2]q[1]q. The q-binomial formulas are known as

n∏

i=1

(
a + bqi−1

)
=

n∑

k=0

[
n

k

]

q

q
( k
2
)
an−kbk,

n∏

i=1

(
1 − bqi−1)−1 =

∞∑

k=0

[
n + k − 1

k

]

q

bk.

(2.22)
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The q-Stirling numbers of the first kind s1,q(n, k) and the second kind s2,q(n, k) are defined as

[x]n,q = q
−
(n
2

) n∑

l=0

s1,q(n, l)[x]
l
q, n = 0, 1, 2, . . . , (2.23)

[x]nq =
n∑

k=0

q

(
k

2

)

s2,q(n, k)[x]k,q, n = 0, 1, 2, . . . (2.24)

(see [2, 3, 6]). The values s1,q(n, 1), n = 1, 2, 3, . . . , and s2,q(n, 2), n = 2, 3, . . . , may be deduced
from the following recurrence relation:

s1,q(n, k) = s1,q(n − 1, k − 1) − [n − 1]qs1,q(n − 1, k) (2.25)

(see [2, 3, 6]), for k = 1, 2, . . . , n, n = 1, 2, . . . ,with initial conditions s1,q(0, 0) = 1, s1,q(n, k) = 0 if
k > n. For k = 1, it follows that

s1,q(n, 1) = −[n − 1]qs1,q(n − 1, 1), n = 2, 3, . . . , (2.26)

and since s1,q(1, 1) = 1, we have s1,q(n, 1) = (−1)n−1[n − 1]q!, n = 1, 2, 3, . . .. The recurrence
relation for k = 2 reduces to s1,q(n, 2) + [n − 1]qs1,q(n − 1, 2) = (−1)n−2[n − 2]q!, n = 3, 4, . . .. By
simple calculation, we easily see that

(−1)n+1s1,q(n + 1, 2)
[n]q!

− (−1)ns1,q(n, 2)
[n − 1]q!

= (−1)n+1
s1,q(n + 1, 2) − [n]qs1,q(n, 2)

[n]q!

= (−1)n+1
(−1)n+1[n − 1]q!

[n]q!

=
1

[n]q
, n = 2, 3, 4, . . . .

(2.27)

Thus we have

(−1)ns1,q(n, 2)
[n − 1]q!

=
n−1∑

k=1

1
[k]q

. (2.28)

This is equivalent to s1,q(n, 2) = (−1)n[n − 1]q!
∑n−1

k=11/[k]q. It is easy to see that

n∑

m=1

(−1)m+1q
(m+1

2
)
[
n + 1

m + 1

]

q

m∑

k=1

1
[k]q

=
n∑

k=1

(−1)k+1q(
k+1
2

)

[ n
k

]
q

[k]q
. (2.29)

From this, we derive

n∑

k=1

(−1)k+1q(
k+1
2

) 1
[k]q

⎛

⎝

[
n

k

]

q

−
[
n − 1
k

]

q

⎞

⎠ =
n∑

k=1

(−1)k+1q(
k+1
2

) 1
[k]q

⎛

⎝qn−k
[
n − 1
k − 1

]

q

⎞

⎠

=
qn

[n]q

n∑

k=1

(−1)k+1q(
k

2
)
[
n

k

]

q

=
qn

[n]q
.

(2.30)
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Note that
∑n

k=1(−1)k+1q
(
k

2

)
[ n
k

]
q
= −∑n

k=0(−1)kq
(
k

2

)
[ n
k

]
q
+ 1 = 1. Thus, we have

n∑

k=1

(−1)k+1q(
k+1
2

)

[ n
k

]
q

[k]q
=

n−1∑

k=1

(−1)k+1q(
k+1
2

)

[ n−1
k

]

q

[k]q
+

qn

[n]q
. (2.31)

Continuing this process, we see that

n∑

k=1

(−1)k+1q(
k+1
2

)

[ n
k

]
q

[k]q
=

n∑

k=1

qk

[k]q
. (2.32)

The p-adic q-gamma function is defined as Γp,q(n) = (−1)n∏1≤j<n,(j,p)=1[j]q. For all x ∈ Zp,
we have Γp,q(x + 1) = Ep,q(x)Γp,q(x), where

Ep,q(x) =

⎧
⎨

⎩

−[x]q if |x|p = 1,

−1 if |x|p < 1.
(2.33)

Thus, we easily see that

log Γp,q(x + 1) = logEp,q(x) + logΓp,q(x). (2.34)

From the differentiation on both sides in (2.34), we derive

Γ′p,q(x + 1)

Γp,q(x + 1)
=
Γ′p,q(x)

Γp,q(x)
+
E′p,q(x)

Ep,q(x)
. (2.35)

Continuing this process, we have

Γ′p,q(x)

Γp,q(x)
=

(
x−1∑

j=1

qj

[j]q

)
log q
q − 1 +

Γ′p,q(1)

Γp,q(1)
. (2.36)

The classical Euler constant is known as γ = Γ′(1)/Γ(1). In [15], Kim defined the p-adic q-Euler
constant as

γp,q = −
Γ′p,q(1)

Γp,q(1)
. (2.37)

Therefore, we obtain the following.

Theorem 2.3. For x ∈ Zp, one has

x−1∑

k=1

(−1)k+1q(
k+1
2

)

[ x−1
k

]

q

[k]q
=
q − 1
log q

(Γ′p,q(x)

Γp,q(x)
− γp,q

)

. (2.38)

From (2.9), (2.21), (2.23), and (2.24), we derive the following theorem.
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Theorem 2.4. For n, k ∈ Z+, one has

βn,q =
1

(1 − q)n
n∑

l=0

(
n

l

)

(−1)l
l∑

k=0

(q − 1)k
[
l

k

]

q

k∑

m=0

s1,q(k,m)βm,q, (2.39)

where s1,q(k,m) is the q-Stirling number of the first kind.

By simple calculation, we easily see that

qnt =
(
[t]q(q − 1) + 1

)n

=
n∑

m=0

(
n

m

)

(−1)m(1 − q)m[t]mq

=
n∑

k=0

(q − 1)kq(
k

2
)
[
n

k

]

q

[t]k,q

=
n∑

k=0

(q − 1)k
[
n

k

]

q

k∑

m=0

s1,q(k,m)[t]mq

=
n∑

m=0

(
n∑

k=m

(q − 1)k
[
n

k

]

q

s1,q(k,m)

)

[t]mq .

(2.40)

Thus we note

∫

Zp

qntdμq(t) =
n∑

m=0

(
n∑

k=m

(q − 1)k
[
n

k

]

q

s1,q(k,m)

)

βm,q. (2.41)

From the definition of p-adic q-integral on Zp, we also derive

∫

Zp

qntdμq(t) =
n∑

m=0

(
n

m

)

(q − 1)mβm,q. (2.42)

By comparing the coefficients on both sides of (2.41) and (2.42), we see that

(
n

m

)

(q − 1)m =
n∑

k=m

(q − 1)k
[
n

k

]

q

s1,q(k,m). (2.43)

Therefore, we obtain the following.

Theorem 2.5. For n ∈ N, m ∈ Z+, one has
(

n

m

)

=
n∑

k=m

(q − 1)−m+k

[
n

k

]

q

s1,q(k,m). (2.44)

From Theorem 2.5, we can also derive the following interesting formula for q-Bernoulli
numbers.
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Theorem 2.6. For n ∈ Z+, one has

βn,q =
1

(1 − q)n
n∑

m=0

(
n∑

k=m

(q − 1)−m+k

[
n

k

]

q

s1,q(k,m)

)

(−1)m m + 1
[m + 1]q

. (2.45)

From the definition of q-binomial coefficient, we easily derive
[
x + 1

n

]

q

=

[
x

n − 1

]

q

+ qn
[
x

n

]

q

= qx−n
[

x

n − 1

]

q

+

[
x

n

]

q

.

(2.46)

By (2.46), we see that
∫

Zp

[
x

n

]

q

dμq(x) =
(−1)n
[n + 1]q

q
n+1−(n+1

2
)
. (2.47)

From the definition of q-Stirling number of the first kind, we also note that
∫

Zp

[x]n,qdμq(x) = [n]q!
∫

Zp

[
x

n

]

q

dμq(x)

= q
−(n

2
)

n∑

k=0

s1,q(n, k)βk,q.

(2.48)

By using (2.47) and (2.48), we see

(−1)n
q[n]q!

[n + 1]q
=

n∑

k=0

s1,q(n, k)βk,q. (2.49)

From (2.24) and (2.48), we derive

βn,q = q
n∑

k=0

s2,q(n, k)(−1)k
[k]q!

[k + 1]q
. (2.50)

Therefore, we obtain the following.

Theorem 2.7. For n ∈ Z+, one has

βn,q = q
n∑

k=0

s2,q(n, k)(−1)k
[k]q!

[k + 1]q
, (2.51)

where s2,q(n, k) is the q-Stirling number of the second kind.

It is easy to see that
[
n

k

]

q

=
∑

d0+···+dk=n−k
q
∑k

i=0idi . (2.52)

By Theorem 2.4, we have the following.

Theorem 2.8. For n ∈ Z+, one has

βn,q =
n∑

m=0

n∑

k=m

1

(1 − q)n+m−k
∑

d0+···+dk=n−k
q
∑k

i=0idis1,q(k,m)(−1)n−m m + 1
[m + 1]q

, (2.53)

where s1,q(k,m) is the q-Stirling number of the first kind.
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