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Text. Recently, R. Dere and Y. Simsek have studied
applications of umbral algebra to generating functions for
the Hermite type Genocchi polynomials and numbers [6]. In
this paper, we investigate some interesting properties arising
from umbral calculus. These properties are useful in deriving
some identities of Bernoulli polynomials.
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1. Introduction

As is well known, the Bernoulli polynomials are defined by the generating function to
be

text

et − 1 = eB(x)t =
∞∑

n=0
Bn(x) t

n

n! , (1)
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with the usual convention about replacing Bn(x) by Bn(x). In the special case, x = 0,
Bn(0) = Bn are called the n-th Bernoulli numbers. From (1), we note that

B0 = 1, (B + 1)n −Bn = Bn(1) −Bn = δ1,n
(
see [2–4]

)
,

where δm,k is the Kronecker symbol.
In particular, by (1), we set

Bn(x) =
n∑

l=0

(
n

l

)
Bn−lx

l
(
see [1–4,9,14]

)
. (2)

By (2), we see that Bn(x) is a monic polynomial of degree n. We recall the Euler poly-
nomials are defined by the generating function to be

2ext

et + 1 = eE(x)t =
∞∑

n=0
En(x) t

n

n!
(
see [1–4,6,9–24]

)
, (3)

with the usual convention about replacing En(x) by En(x). In the special case, x = 0,
En(0) = En are called the n-th Euler numbers. From (3), we can derive the following
equation:

En(x) =
n∑

l=0

(
n

l

)
En−lx

l
(
see [11,14]

)
. (4)

Thus by (4), we see that En(x) is also a monic polynomial of degree n. By (4), we get

E0 = 1, (E + 1)n + En = En(1) + En = 2δ0,n. (5)

Let C be the complex number field and let F be the set of all formal power series in
the variable t over C with

F =
{
f(t) =

∞∑
k=0

ak
k! t

k: ak ∈ C

}
.

We use the notation P = C[x] and P∗ denotes the vector space of all linear functional
on P.

Let 〈L | p(x)〉 be the action of a linear functional L on a polynomial p(x), and we
remind that the vector space operations on P∗ are defined by

〈
L + M

∣∣ p(x)
〉

=
〈
L
∣∣ p(x)

〉
+

〈
M

∣∣ p(x)
〉
,〈

cL
∣∣ p(x)

〉
= c

〈
L
∣∣ p(x)

〉 (
see [6,18]

)
,

where c is any constant in C.
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The formal power series

f(t) =
∞∑
k=0

ak
k! t

k ∈ F (6)

defines a linear functional on P by setting
〈
f(t)

∣∣ xn
〉

= an for all n � 0. (7)

Thus, by (6) and (7), we have
〈
tk

∣∣ xn
〉

= n!δn,k
(
see [6,18]

)
. (8)

Let fL(t) =
∑∞

k=0
〈L|xk〉

k! tk. Then we see that 〈fL(t) | xn〉 = 〈L | xn〉 and so as linear
functionals L = fL(t) (see [6,18]). As is known in [18], the map L �→ fL(t) is a vector
space isomorphism from P∗ onto F . Henceforth, F will denote both the algebra of formal
poser series in t and the vector space of all linear functionals on P, and so an element
f(t) of F will be thought of as both a formal power series and a linear functional. We
shall call F the umbral algebra. The umbral calculus is the study of umbral algebra and
modern classical umbral calculus can be described as a systematic study of the class of
Sheffer sequences (see [18]).

The order ord(f(t)) of a nonzero power series f(t) is the smallest integer k for which
the coefficient of tk does not vanish. If a series f(t) is with ord(f(t)) = 1, then f(t) is
called a delta series. If a series f(t) is with ord(f(t)) = 0, then f(t) is called an invertible
series (see [6,18]). For f(t), g(t) ∈ F , we have

〈
f(t)g(t)

∣∣ p(x)
〉

=
〈
f(t)

∣∣ g(t)p(x)
〉 (

see [6,18]
)
. (9)

Let us assume that Sn(x) denotes a polynomial of degree n. If f(t) is a delta series and
g(t) is an invertible series, then there exists a unique sequence Sn(x) such that 〈g(t)f(t)k |
Sn(x)〉 = n!δn.k, n, k � 0 (see [6]). The sequence Sn(x) is called the Sheffer sequence
for (g(t), f(t)), denoted by Sn(x) ∼ (g(t), f(t)). If Sn(x) ∼ (1, f(t)), then Sn(x) is called
the associated sequence for f(t) or Sn(x) is associated to f(t). If Sn(x) ∼ (g(t), t), then
Sn(x) is called the Appell sequence for g(t) or Sn(x) is Appell for g(t) (see [6,18]). For
p(x) ∈ P, it is known (see [6,18]) that

〈
eyt − 1

t

∣∣∣∣ p(x)
〉

=
y∫

0

p(u) du, (10)

〈
f(t)

∣∣ xp(x)
〉

=
〈
∂tf(t)

∣∣ p(x)
〉

=
〈
f ′(t)

∣∣ p(x)
〉
, (11)

and
〈 ∣ 〉 ( )

eyt − 1 ∣ p(x) = p(y) − p(0) see [6,18] . (12)
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Let us assume that Sn(x) ∼ (g(t), f(t)). Then we have the following equations
(13)–(16):

h(t) =
∞∑
k=0

〈h(t) | Sk(x)〉
k! g(t)f(t)k, h(t) ∈ F , (13)

p(t) =
∞∑
k=0

〈g(t)f(t)k | p(x)〉
k! Sk(x), p(t) ∈ P, (14)

f(t)Sn(x) = nSn−1(x)
(
n ∈ Z+ = N ∪ {0}

)
, (15)

and

1
g(f̄(t))

eyf̄(t) =
∞∑
k=0

Sk(y)
k! tk, for all y ∈ C, (16)

where f̄(t) is the compositional inverse of f(t) (see [18]).
Let f1(t), . . . , fm(t) ∈ F . Then as is well known, we have

〈
f1(t)f2(t) · · · fm(t)

∣∣ xn
〉

=
∑(

n

i1, . . . , im

)〈
f1(t)

∣∣ xi1
〉
· · ·

〈
fm(t)

∣∣ xim
〉
, (17)

where the sum is over all nonnegative integers i1, . . . , im such that i1 + · · · + im = n

(see [6,18]).
In [6], R. Dere and Y. Simsek have studied applications of umbral algebra to generating

functions for the Hermite type Genocchi polynomials and numbers. In this paper, we
derive some interesting properties of Bernoulli polynomials arising from umbral calculus.
These properties will be used in studying identities on the Bernoulli polynomials

2. Umbral calculus and Bernoulli polynomials

Let Pn = {p(x) ∈ C[x]: deg p(x) � n} and let Sn(x) ∼ (g(t), t). From (16), we have

1
g(t)x

n = Sn(x) ⇔ xn = g(t)Sn(x) (n � 0). (18)

Let us take g(t) = 1
t (e

t − 1) ∈ F . Then g(t) is invertible series. By (1), we get

∞∑
k=0

Bk(x)
k! tk = 1

g(t)e
xt. (19)

Thus by (19), we have

1 n
g(t)x = Bn(x) (n � 0), (20)
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and

tBn(x) = B′
n(x) = nBn−1(x). (21)

From (20) and (21), we note that Bn(x) is an Appell sequence for 1
t (e

t − 1). By (2), we
get

x+y∫
x

Bn(u) du = 1
n + 1

{
Bn+1(x + y) −Bn+1(x)

}

=
∞∑
k=1

yk

k! t
k−1Bn(x) = eyt − 1

t
Bn(x). (22)

In particular, for y = 1, we have

Bn(x) = t

et − 1

x+1∫
x

Bn(u) du = t

et − 1x
n. (23)

By (15), we easily get

Bn(x) = t

{
1

n + 1Bn+1(x)
}
. (24)

From (24), we can derive the following equation:

〈
eyt − 1

t

∣∣∣∣ Bn(x)
〉

=
〈
eyt − 1

∣∣∣∣ 1
n + 1Bn+1(x)

〉
=

y∫
0

Bn(u) du. (25)

For r ∈ N, the n-th Bernoulli polynomials of order r are defined by the generating
function to be

(
t

et − 1

)r

ext =
∞∑

n=0
B(r)

n (x) t
n

n!
(
see [2,3]

)
. (26)

In the special case, x = 0, B(r)
n (0) = B

(r)
n are called the n-th Bernoulli numbers of

order r. By (26), we get

B(r)
n (x) =

n∑
l=0

(
n

l

)
B

(r)
n−lx

r
(
see [2,3]

)
. (27)
Note that
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B(r)
n =

∑
l1+···+lr=n

(
n

l1, . . . , lr

)
Bl1 · · ·Blr . (28)

From (27) and (28), we note that B
(r)
n (x) is a monic polynomial with coefficients in Q.

By (27), we get

x+y∫
x

B(r)
n (u) du = 1

n + 1
{
B

(r)
n+1(x + y) −B

(r)
n+1(x)

}

=
∞∑
k=1

yk

k! t
k−1Bn(x) = eyt − 1

t
B(r)

n (x), (29)

and

B(r)
n (x + 1) −B(r)

n (x) = nB
(r−1)
n−1 (x). (30)

From (29) and (30), we note that

et − 1
t

B(r)
n (x) =

x+1∫
x

B(r)
n (u) du = B(r−1)

n (x). (31)

By (31), we get

B(r)
n (x) =

(
t

et − 1

)
B(r−1)

n (x) =
(

t

et − 1

)r−1

Bn(x) =
(

t

et − 1

)r

xn, (32)

and

tB(r)
n (x) = n

(
t

et − 1

)r

xn−1 = nB
(r)
n−1(x). (33)

It is easy to show that ( e
t−1
t )r is an invertible series in F . Therefore, by (32) and (33),

we obtain the following lemma.

Lemma 1. B(r)
n (x) is the Appell sequence for ( e

t−1
t )r.

By (33), we get

(r)
{

1 (r)
}

Bn (x) = t
n + 1Bn+1(x) (n � 0). (34)



D.S. Kim, T. Kim / Journal of Number Theory 147 (2015) 871–882 877
Thus, from (34), we have

〈
eyt − 1

t

∣∣∣∣ B(r)
n (x)

〉
=

〈
eyt − 1

∣∣∣∣ 1
n + 1B

(r)
n+1(x)

〉
=

y∫
0

B(r)
n (u) du. (35)

In the special case, y = 1, we have

〈
et − 1

t

∣∣∣∣ B(r)
n (x)

〉
=

1∫
0

B(r)
n (u) du = B(r−1)

n .

By (17), we get

〈(
t

et − 1

)r ∣∣∣∣ xn

〉
=

∑
n=i1+···+ir

(
n

i1, . . . , ir

)〈
t

et − 1

∣∣∣∣ xi1

〉
· · ·

〈
t

et − 1

∣∣∣∣ xir

〉
(36)

and

〈
t

et − 1

∣∣∣∣ xn

〉
= Bn,

〈(
t

et − 1

)r ∣∣∣∣ xn

〉
= B(r)

n . (37)

Thus, from (36) and (37), we have

∑
n=i1+···+ir

(
n

i!, . . . , ir

)
Bi1 · · ·Bir = B(r)

n .

Let us take p(x) ∈ Pn with

p(x) =
n∑

k=0

bkBk(x). (38)

From (20) and (21), we note that Bn(x) ∼ ( e
t−1
t , t). By the definition of Appell sequences,

we get

〈
et − 1

t
tk

∣∣∣∣ Bn(x)
〉

= n!δn,k (n, k � 0), (39)

and, from (38), we have

〈
et − 1

tk
∣∣∣ p(x)

〉
=

n∑
b

〈
et − 1

tk
∣∣∣ B (x)

〉
=

n∑
b l!δ = k!b . (40)
t ∣
l=0

l
t ∣ l

l=0
l l,k k
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Thus, by (25) and (40), we get

bk = 1
k!

〈
et − 1

t
tk

∣∣∣∣ p(x)
〉

= 1
k!

〈
et − 1

t

∣∣∣∣ p(k)(x)
〉

= 1
k!

1∫
0

p(k)(u) du, (41)

where p(k)(u) = dk

duk p(u). Therefore, by (38) and (41), we obtain the following theorem.

Theorem 2. Let p(x) ∈ Pn with p(x) =
∑n

k=0 bkBk(x). Then we have

bk = 1
k!

〈
et − 1

t

∣∣∣∣ p(k)(x)
〉

= 1
k!

1∫
0

p(k)(u) du,

where p(k)(u) = dk

duk p(u).

Let p(x) = B
(r)
n (x) ∈ Pn with p(x) =

∑n
k=0 bkBk(x). Then we have

p(k)(x) = k!
(
n

k

)
B

(r)
n−k(x), (42)

and

bk = 1
k!

〈
et − 1

t

∣∣∣∣ p(k)(x)
〉

=
(
n

k

)〈
et − 1

t

∣∣∣∣ B(r)
n−k(x)

〉
. (43)

Therefore, by Theorem 2 and (43), we obtain the following corollary.

Corollary 3. For n � 0, we have

B(r)
n (x) =

n∑
k=0

(
n

k

)〈
et − 1

t

∣∣∣∣ B(r)
n−k(x)

〉
Bk(x).

In other words,

B(r)
n (x) =

n∑
k=0

(
n

k

)
B

(r−1)
n−k Bk(x), where n− k � 0.

From the definition of Appell sequences, we note that

〈(
et − 1

)r
k

∣∣ (r)
〉

t
t ∣∣ Bn (x) = n!δn,k (n, k � 0). (44)
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Let p(x) ∈ Pn with p(x) =
∑n

k=0 b
(r)
k B

(r)
k (x). By (44), we get

〈(
et − 1

t

)r

tk
∣∣∣∣ p(x)

〉
=

n∑
l=0

b
(r)
l

〈(
et − 1

t

)r

tk
∣∣∣∣ B(r)

l (x)
〉

=
n∑

l=0

b
(r)
l l!δl,k = k!b(r)k . (45)

Thus, by (45), we have

b
(r)
k = 1

k!

〈(
et − 1

t

)r

tk
∣∣∣∣ p(x)

〉
. (46)

Therefore, by (46), we obtain the following theorem.

Theorem 4. Let p(x) ∈ Pn with p(x) =
∑n

k=0 b
(r)
k B

(r)
k (x). Then we have

b
(r)
k = 1

k!

〈(
et − 1

t

)r

tk
∣∣∣∣ p(x)

〉
.

Let us consider p(x) = Bn(x) with

Bn(x) = p(x) =
n∑

k=0

b
(r)
k B

(r)
k (x). (47)

By Theorem 4 and (47), we get

b
(r)
k = 1

k!

〈(
et − 1

t

)r

tk
∣∣∣∣ p(x)

〉
= 1

k!

〈(
et − 1

t

)r

tk
∣∣∣∣ Bn(x)

〉
. (48)

For k < r, we have

b
(r)
k = 1

k!

〈(
et − 1

t

)r

tk
∣∣∣∣ Bn(x)

〉

= 1
k!

〈(
et − 1

)r ∣∣∣∣ Bn+r−k(x)
(n + 1) · · · (n + r − k)

〉

= 1
k!(r − k)!

(
n+r−k
r−k

)〈(et − 1
)r ∣∣ Bn+r−k(x)

〉

=
(
r
k

)
r!
(
n+r−k
r−k

) r∑
j=0

(
r

j

)
(−1)r−j

〈
ejt

∣∣ Bn+r−k(x)
〉

=
(
r
k

)
( ) r∑(

r
)

(−1)r−jBn+r−k(j). (49)

r! n+r−k

r−k j=0
j
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Let k � r. Then by (48), we get

b
(r)
k = 1

k!
〈(
et − 1

)r
tk−r

∣∣ Bn(x)
〉

= 1
k!
〈(
et − 1

)r ∣∣ tk−rBn(x)
〉

= 1
k!

(
n

k − r

)
(k − r)!

〈(
et − 1

)r ∣∣ Bn+r−k(x)
〉

=
(

n
k−r

)
r!
(
k
r

) r∑
j=0

(
r

j

)
(−1)r−j

〈
ejt

∣∣ Bn+r−k(x)
〉

=
(

n
k−r

)
r!
(
k
r

) r∑
j=0

(
r

j

)
(−1)r−jBn+r−k(j). (50)

Therefore, by (47), (49) and (50), we obtain the following theorem.

Theorem 5. For n ∈ Z+ and r ∈ N, we have

Bn(x) =
r−1∑
k=0

(
r
k

)
r!
(
n+r−k
r−k

) r∑
j=0

(
r

j

)
(−1)r−jBn+r−k(j)B(r)

k (x)

+
n∑

k=r

(
n

k−r

)
r!
(
k
r

) r∑
j=0

(
r

j

)
(−1)r−jBn+r−k(j)B(r)

k (x).

3. Further remarks

For n,m ∈ Z+ with n−m � 0, we have

B(r)
n (x)B(r)

n−m(x) =
(

n∑
l=0

(
n

l

)
B

(r−1)
n−l Bl(x)

)(
n−m∑
p=0

(
n−m

p

)
B

(r−1)
n−m−pBp(x)

)

=
2n−m∑
k=0

k∑
p=0

(
n−m

p

)(
n

k − p

)
B

(r−1)
n−m−pB

(r−1)
n−k+pBp(x)Bk−p(x), (51)

where n−m− p � 0.
Let us consider p(x) = En(x) with

En(x) = p(x) =
n∑

k=0

bkBk(x). (52)

Then we have

p(k)(x) = k!
(
n

k

)
En−k(x), (53)
and



D.S. Kim, T. Kim / Journal of Number Theory 147 (2015) 871–882 881
bk = 1
k!

〈
et − 1

t

∣∣∣∣ p(k)(x)
〉

=
(
n

k

)〈
et − 1

t

∣∣∣∣ En−k(x)
〉

=
(
n

k

)
En−k+1(1) −En−k+1

n− k + 1 = −2
(
n

k

)
En−k+1

n− k + 1 . (54)

By (52) and (54), we get

En(x) = −2
n∑

k=0

(
n

k

)
En−k+1

n− k + 1Bk(x). (55)

From (55), we can derive the following equation.

En(x)En−m(x)

= 4
(

n∑
l=0

(
n

l

)
En−l+1

n− l + 1Bl(x)
)(

n−m∑
p=0

(
n−m

p

)
En−m−p+1

n−m− p + 1Bp(x)
)

= 4
2n−m∑
k=0

k∑
l=0

(
n−m

l

)(
n

k − l

)
En−m−l+1En−k+l+1

(n−m− l + 1)(n− k + l + 1)Bl(x)Bk−l(x),

where n,m ∈ Z+ with n−m � 0.

Remark. Recently, R. Dere, Y. Simsek and H.M. Srivastava have studied special poly-
nomials with viewpoint of umbral calculus (see [5,7,8]).
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