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Abstract

We develop methods for computing the product of several Bernoulli and Euler polynomials by using Bernoulli basis for the vector space of
polynomials of degree less than or equal to ᵅ�.

1. Introduction

It is well known that, the ᵅ�th Bernoulli and Euler numbers are de燦㥾ned by

where ᵃ�0 = ᵃ�0 = 1 and ᵯ�ᵅ�,ᵅ� is the Kronecker symbol (see [1–20]).

e Bernoulli and Euler polynomials are also de燦㥾ned by

Note that {ᵃ�0(ᵆ�), ᵃ�1(1),… ,ᵃ�ᵅ�(ᵆ�)} forms a basis for the space ℙᵅ� = {ᵅ�(ᵆ�) ∈ ℚ[ᵆ�] ∣ deg ᵅ�(ᵆ�) ≤ ᵅ�}.

So, for a given ᵅ�(ᵆ�) ∈ ℙᵅ�, we can write

(see [8–12]) for uniquely determined ᵄ�ᵅ� ∈ ℚ.

Further,

Probably, {1, ᵆ�,… , ᵆ�ᵅ�} is the most natural basis for the space ℙᵅ�. But {ᵃ�0(ᵆ�), ᵃ�1(ᵆ�),… ,ᵃ�ᵅ�(ᵆ�)} is also a good basis for the space ℙᵅ�, for our purpose
of arithmetical and combinatorial applications.

What are common to ᵃ�ᵅ�(ᵆ�), ᵃ�ᵅ�(ᵆ�), ᵆ�ᵅ�? A few proportion common to them are as follows:
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1
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0
ᵅ� (ᵅ�) ᵅ�ᵅ�, where ᵅ� = 1, 2,… , ᵅ�.

(1.4)

(i) they are all monic polynomials of degree  with rational coefficients;
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In [5, 6], Carlitz introduced the identities of the product of several Bernoulli polynomials:

In this paper, we will use (1.4) to derive the identities of the product of several Bernoulli and Euler polynomials.

2. e Product of Several Bernoulli and Euler Polynomials

Let us consider the following polynomials of degree ᵅ�:

where the sum runs over all nonnegative integers ᵅ�1,… , ᵅ�ᵅ�,  ᵅ�1,… ᵅ�ᵅ� satisfying ᵅ�1 +⋯ + ᵅ�ᵅ� + ᵅ�1 +⋯ + ᵅ�ᵅ� = ᵅ�,  ᵅ� + ᵅ� = 1, ᵅ�, ᵅ� ≥ 0.

us, from (2.1), we have

For ᵅ� = 1, 2,… , ᵅ�, by (1.4), we get

From (2.3), we note that

(i)
(ii)
(iii)

they are all monic polynomials of degree ᵅ� with rational coefficients;
(ᵃ�ᵅ�(ᵆ�))′ = ᵅ�ᵃ�ᵅ�−1(ᵆ�), (ᵃ�ᵅ�(ᵆ�))′ = ᵅ�ᵃ�ᵅ�−1(ᵆ�), (ᵆ�ᵅ�)′ = ᵅ�ᵆ�ᵅ�−1;
∫ᵃ�ᵅ�(ᵆ�)ᵅ�ᵆ� = ᵃ�ᵅ�+1(ᵆ�)/(ᵅ� + 1) + ᵅ�, ∫ᵃ�ᵅ�(ᵆ�)ᵅ�ᵆ� = ᵃ�ᵅ�+1(ᵆ�)/(ᵅ� + 1) + ᵅ�, ∫ ᵆ�ᵅ�ᵅ�ᵆ� = ᵆ�ᵅ�+1/(ᵅ� + 1) + ᵅ�.
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erefore, by (1.3), (2.1), (2.3), and (2.4), we obtain the following theorem.

eorem 2.1. For ᵅ� ∈ ℕ with ᵅ� ≥ 2, we have

Let us take the polynomial ᵅ�(ᵆ�) of degree ᵅ� as follows:

en, from (2.6), we have

By (1.4) and (2.7), we get, for ᵅ� = 1, 2,… , ᵅ�,
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Now, we look at ᵄ�ᵅ�  and ᵄ�ᵅ�−1.

From (2.6), we note that

erefore, by (1.3), (2.6), (2.8), (2.9), and (2.10), we obtain the following theorem.

eorem 2.2. For ᵅ� ∈ ℕ with ᵅ� ≥ 2, one has

=  ᵅ�
ᵅ�+ᵅ�+ᵅ�+1 

⎪
⎪
⎨
⎪
⎪
⎩

ᵅ� + ᵅ� + ᵅ� + 1 0≤ᵄ�≤ᵅ�
0≤ᵅ�≤ᵅ�

ᵅ�+ᵅ�−ᵅ�−1≤ᵄ�≤ᵅ�

⎛
⎜
⎜
⎝

ᵅ�

ᵄ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�

ᵅ�

⎞
⎟
⎟
⎠
(−1)ᵅ�2ᵅ�−ᵅ�

×
ᵅ�+ᵄ�+1−ᵅ�−ᵅ�


ᵅ�=0


ᵅ�1+⋯+ᵅ�ᵄ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵄ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

− 
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�−ᵅ�+1

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

⎫
⎪
⎪
⎬
⎪
⎪
⎭

,

(2.8)

ᵄ�ᵅ� =
 ᵅ�
ᵅ�+ᵅ�+ᵅ�+1 

ᵅ� + ᵅ� + ᵅ� + 1 ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=1
ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) − ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�0

ᵅ�

=  ᵅ�
ᵅ�+ᵅ�+ᵅ�+1 


1

ᵅ� + ᵅ� + ᵅ� + 1 2 −
1(ᵅ� + ᵅ�) + 1 −
2 

=

(ᵅ� + ᵅ�)

ᵅ� + ᵅ� + 1 ⎛
⎜
⎜
⎝ ᵅ�

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎝ ᵅ�

⎞
⎟
⎟
⎠
,

ᵄ�

ᵅ� + ᵅ� + ᵅ� + 1
ᵅ� + ᵅ� + ᵅ� + 1 ᵅ� + ᵅ� + ᵅ�

ᵅ�−1 =
 ᵅ�+ᵅ�+ᵅ�+1

ᵅ�−1 
ᵅ� + ᵅ� + ᵅ� + 1 ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=2

ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) − ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�0
ᵅ�

=  ᵅ�+ᵅ�+ᵅ�+1
ᵅ�−1  ⎧⎪

⎨
⎪⎩

1
ᵅ� + ᵅ� + ᵅ� + 1 6

1ᵅ� + 1 +
2
1
2

⎛
⎜
⎜
⎝ 2

⎞
⎟
⎟
⎠
+ 1ᵅ� + ᵅ�
2

1(ᵅ� + ᵅ�) −
6 −

1ᵅ� −
2

−1
 2

⎛
⎜
⎜
⎝ 2

⎞
⎟
⎟
⎠

⎫⎪
⎬
⎪⎭

= 1

ᵅ� + ᵅ�

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

ᵅ� + ᵅ� + ᵅ� + 1
ᵅ� + ᵅ� + ᵅ� + 1

ᵅ� − 1

ᵅ� + ᵅ� + 2
2

= 1
2

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠
,

ᵅ� + ᵅ� + ᵅ�

ᵅ� − 1

(2.9)

ᵄ�0 = 

1

0

= 

ᵅ� (ᵅ�) ᵅ�ᵅ�

ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�

ᵅ�

+ᵅ�=ᵅ�

1


ᵅ�1=0

⋯
ᵅ�ᵅ�


ᵅ�ᵅ�

ᵅ�

=0

1


ᵅ�1=0

⋯
ᵅ�ᵅ�


ᵅ�ᵅ�=0

⎛
⎜
⎜
⎝

ᵅ�1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠

× ᵃ�ᵅ�1−ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�ᵃ�ᵅ�1−ᵅ�1ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�
1

ᵅ�1 +⋯ + ᵅ�ᵅ� + ᵅ�1 +⋯ᵅ�ᵅ�
.

+ ᵅ� + 1

(2.10)


ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=ᵅ�

ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵆ�
ᵅ�

= 1
ᵅ� + ᵅ� + ᵅ� + 1

ᵅ�−2


ᵅ�=1

⎛
⎜
⎜
⎝ ᵅ�

⎞
⎟
⎟
⎠

×

⎧
⎪
⎪
⎨
⎪
⎪
⎩



ᵅ� + ᵅ� + ᵅ� + 1

0≤ᵄ�≤ᵅ�
0≤ᵅ�≤ᵅ�

ᵅ�+ᵅ�−ᵅ�−1≤ᵄ�≤ᵅ�

⎛
⎜
⎜
⎝

ᵅ�

ᵄ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�

ᵅ�

⎞
⎟
⎟
⎠
(−1)ᵅ�2ᵅ�−ᵅ�

ᵅ�+ᵄ�+1−ᵅ�−ᵅ�



∞

ᵅ�=0


ᵅ�1+⋯+ᵅ�ᵄ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�
ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵄ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

− 
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�−ᵅ�+1

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

⎫
⎪
⎪
⎬
⎪
⎪
⎭

ᵃ�ᵅ�

+ 1

(ᵆ�)

2

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠
ᵃ�

ᵅ� + ᵅ� + ᵅ�

ᵅ� − 1
ᵅ�−1 (

⎛
⎜
⎜
⎝ ᵅ�

⎞
⎟
⎟
⎠
ᵃ�ᵆ�) +

ᵅ� + ᵅ� + ᵅ�
ᵅ� (ᵆ�)

(2.11)
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Consider the following polynomial of degree ᵅ�:

en, from (2.12), one has

By (1.4) and (2.13), one gets, for ᵅ� = 1, 2,… , ᵅ�,

Now look at ᵄ�ᵅ� and ᵄ�ᵅ�−1:

It is easy to show that

erefore, by (1.3), (2.14), and (2.15), one obtains the following theorem.

eorem 2.3. For ᵅ� ∈ ℕ with ᵅ� ≥ 2, one has

2 ⎜
⎝

⎟
⎠ᵅ� − 1 ⎜

⎝ ᵅ� ⎟
⎠

+ 
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�

ᵅ�

+ᵅ�=ᵅ�

1


ᵅ�1=0

⋯
ᵅ�ᵅ�


ᵅ�ᵅ�

ᵅ�

=0

1


ᵅ�1=0

⋯
ᵅ�ᵅ�


ᵅ�ᵅ�=0

⎧⎪
⎨
⎪⎩

⎛
⎜
⎜
⎝

ᵅ�1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠

× ᵃ�ᵅ�1−ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�ᵃ�ᵅ�1−ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�

× 1
ᵅ�1 +⋯ + ᵅ�ᵅ� + ᵅ�1 +⋯ᵅ�ᵅ�

⎫⎪
⎬
⎪⎭
.

+ ᵅ� + 1

ᵅ� (ᵆ�) =
∞


ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�!

ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) . (2.12)

ᵅ�(ᵅ�) (ᵆ�) = (ᵅ� + ᵅ�)ᵅ� 
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�−ᵅ�

ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�)
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�!

. (2.13)

ᵄ�ᵅ� =
1
ᵅ�ᵅ�!

(ᵅ�−1) (1) − ᵅ�(ᵅ�−1) 

=

(0)

(ᵅ� + ᵅ�)ᵅ�−1
ᵅ�! ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=ᵅ�−ᵅ�+1


ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) − ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�! 

= (ᵅ� + ᵅ�)ᵅ�−1
⎧
⎪
⎪
⎨
⎪
⎪
⎩

ᵅ�! 0≤ᵄ�≤ᵅ�
0≤ᵅ�≤ᵅ�

ᵅ�+ᵅ�−ᵅ�−1≤ᵄ�≤ᵅ�

⎛
⎜
⎜
⎝

ᵅ�

ᵄ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�

ᵅ�

⎞
⎟
⎟
⎠
(−1)ᵅ�2ᵅ�−ᵅ� 

ᵅ�1+⋯+ᵅ�ᵄ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�+ᵄ�+1−ᵅ�−ᵅ�

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵄ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

ᵅ�1! ᵅ�2!⋯ ᵅ�ᵄ�! ᵅ�1!⋯ ᵅ�ᵅ�!

− 
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�−ᵅ�+1

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�!

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

(2.14)

ᵄ�ᵅ� =
(ᵅ� + ᵅ�)ᵅ�−1

ᵅ�! ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=1

ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) − ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�! 

= (ᵅ� + ᵅ�)ᵅ�−1

1

ᵅ�! 2 −
1(ᵅ� + ᵅ�) −
2  =(ᵅ� + ᵅ�) (ᵅ� + ᵅ�)ᵅ� ,

ᵄ�

ᵅ�!

ᵅ�−1 =
(ᵅ� + ᵅ�)ᵅ�−2

(ᵅ� − 1) ! ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=2

ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) − ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�! 

= (ᵅ� + ᵅ�)ᵅ�−2 ⎧⎪
⎨
⎪⎩

1
(ᵅ� − 1) ! 2

1
6

1ᵅ� +
2
1
2

⎛
⎜
⎜
⎝ 2

⎞
⎟
⎟
⎠
− 1ᵅ� + ᵅ�
2
1
6 

1ᵅ� −
2

−1
 2

⎛
⎜
⎜
⎝ 2

⎞
⎟
⎟
⎠

⎫⎪
⎬
⎪⎭

ᵅ� + ᵅ�
= 0.

(2.15)

ᵄ�0 = 

1

0 ᵅ�(ᵅ�) ᵅ�ᵅ� =
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�

1
ᵅ�1!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�!

×
ᵅ�1


ᵅ�1=0

⋯
ᵅ�ᵅ�


ᵅ�ᵅ�

ᵅ�

=0

1


ᵅ�1=0

⋯
ᵅ�ᵅ�


ᵅ�ᵅ�=0

⎧⎪
⎨
⎪⎩

ᵃ�ᵅ�1−ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�ᵃ�ᵅ�1−ᵅ�1ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�

ᵅ�1 +⋯ + ᵅ�ᵅ� + ᵅ�1 +⋯ᵅ�ᵅ�

⎛
⎜
⎜
⎝

ᵅ�
+ 1

1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠

⎫⎪
⎬
⎪⎭
.

(2.16)


ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�!

ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ�

=

(ᵆ�)

ᵅ�−2


(ᵅ� + ᵅ�)ᵅ�−1

⎧
⎪
⎪
⎨
⎪
⎪

ᵅ�!

⎛
⎜
⎜
⎝

ᵅ�

ᵄ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�

ᵅ�

⎞
⎟
⎟
⎠
(−1)ᵅ�2ᵅ�−ᵅ�
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Take the polynomial ᵅ�(ᵆ�) of degree ᵅ� as follows:

en, from (2.18), one gets

By (1.4) and (2.19), one gets, for ᵅ� = 1,… , ᵅ�,

Now look at ᵄ�ᵅ� and ᵄ�ᵅ�−1:

= 
ᵅ�=1

⎨
⎪
⎪
⎩

ᵅ�! 0≤ᵄ�≤ᵅ�
0≤ᵅ�≤ᵅ�

ᵅ�+ᵅ�−ᵅ�−1≤ᵄ�≤ᵅ�

⎜
⎜
⎝ᵄ�
⎟
⎟
⎠

⎜
⎜
⎝ᵅ�
⎟
⎟
⎠
(−1) 2

× 
ᵅ�1+⋯+ᵅ�ᵄ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�+ᵄ�+1−ᵅ�−ᵅ�

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵄ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

ᵅ�1! ᵅ�2!⋯ ᵅ�ᵄ�! ᵅ�1!⋯ ᵅ�ᵅ�!

− 
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�−ᵅ�+1

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�!

×ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

⎫
⎪
⎪
⎬
⎪
⎪
⎭

ᵃ�ᵅ� (ᵆ�) +
(ᵅ� + ᵅ�)ᵅ�ᵃ�

ᵅ�! ᵅ�

+ 

(ᵆ�)

ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�

ᵅ�

=ᵅ�

1


ᵅ�1=0

⋯
ᵅ�ᵅ�


ᵅ�ᵅ�

ᵅ�

=0

1


ᵅ�1=0

⋯
ᵅ�ᵅ�


ᵅ�ᵅ�=0

⎛
⎜
⎜
⎝

ᵅ�1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠

×
ᵃ�ᵅ�1−ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�ᵃ�ᵅ�1−ᵅ�1ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�

ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�! ᵅ�1 +⋯ + ᵅ�ᵅ� + ᵅ�1 +⋯ᵅ�ᵅ� 
.

+ 1

(2.17)

ᵅ� (ᵆ�) =
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=ᵅ�

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�

ᵃ�
! ᵅ�! ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵆ�

ᵅ�. (2.18)

ᵅ�(ᵅ�) (ᵆ�) = (ᵅ� + ᵅ� + 1)ᵅ�

× 
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=ᵅ�−ᵅ�

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�

ᵃ�
! ᵅ�! ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵆ�

ᵅ�. (2.19)

ᵄ�ᵅ� =
1
ᵅ�ᵅ�!

(ᵅ�−1) (1) − ᵅ�(ᵅ�−1) 

=

(0)

(ᵅ� + ᵅ� + 1)ᵅ�−1
ᵅ�! ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=ᵅ�−ᵅ�+1

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�

× ᵃ�

! ᵅ�!

ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) − ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�0
ᵅ�

= (ᵅ� + ᵅ� + 1)ᵅ�−1
⎧
⎪
⎪
⎨
⎪
⎪
⎩

ᵅ�! 0≤ᵄ�≤ᵅ�
0≤ᵅ�≤ᵅ�

ᵅ�+ᵅ�−ᵅ�−1≤ᵄ�≤ᵅ�

⎛
⎜
⎜
⎝

ᵅ�

ᵄ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�

ᵅ�

⎞
⎟
⎟
⎠
(−1)ᵅ�2ᵅ�−ᵅ�

ᵅ�+ᵄ�+1−ᵅ�−ᵅ�


ᵅ�=0

1

× 

(ᵅ� + ᵄ� + 1 − ᵅ� − ᵅ� − ᵅ�) !

ᵅ�1+⋯+ᵅ�ᵄ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵄ�! ᵅ�1!⋯ ᵅ�ᵅ�!

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵄ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

− 
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�−ᵅ�+1

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

(2.20)

ᵄ�ᵅ� =
(ᵅ� + ᵅ� + 1)ᵅ�−1

ᵅ�! ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=1

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�

× ᵃ�

! ᵅ�!

ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) − ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�0
ᵅ�

= (ᵅ� + ᵅ� + 1)ᵅ�−1

1

ᵅ�! 2
( −

1ᵅ� + ᵅ�) + 1 −
2

( 

=

ᵅ� + ᵅ�)

(ᵅ� + ᵅ� + 1)ᵅ�−1

ᵅ�!
(ᵅ� + ᵅ� + 1) = (ᵅ� + ᵅ� + 1)ᵅ� ,

ᵄ�

ᵅ�!

ᵅ�−1 =
(ᵅ� + ᵅ� + 1)ᵅ�−2

(ᵅ� − 1) ! ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=2

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�

× ᵃ�

! ᵅ�!

ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) − ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�0
ᵅ�

(ᵅ� + ᵅ� + 1)

(2.21)
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From (2.18), one can derive the following identity:

erefore, by (1.3), (2.20), (2.21), and (2.22), one obtains the following theorem.

eorem 2.4. For ᵅ� ∈ ℕ with ᵅ� ≥ 2, one has

× ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) ᵃ�ᵅ�1 (1)⋯ᵃ�ᵅ�ᵅ� (1) − ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�0 

= (ᵅ� + ᵅ� + 1)ᵅ�−2 ⎧⎪
⎨
⎪⎩

1
(ᵅ� − 1) ! 2

1
6

1ᵅ� +
2
+ 1
2
1
2

⎛
⎜
⎜
⎝ 2

⎞
⎟
⎟
⎠
+ 1ᵅ� + ᵅ�
2

1(ᵅ� + ᵅ�) −
2
1
6 −

1ᵅ� −
2

−1
 2

⎛
⎜
⎜
⎝ 2

⎞
⎟
⎟
⎠

⎫⎪
⎬
⎪⎭

=

ᵅ� + ᵅ�

(ᵅ� + ᵅ� + 1)ᵅ�−2

(ᵅ� − 1) !
ᵅ� + ᵅ� + 1

2

= (ᵅ� + ᵅ� + 1)ᵅ�−1 .
2 (ᵅ� − 1) !

ᵄ�0 = 

1

0

= 

ᵅ� (ᵅ�) ᵅ�ᵅ�

ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=ᵅ�

1
ᵅ�1!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ� ! ᵅ�!

1

0
ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵆ�

ᵅ�

= 

ᵅ�ᵅ�

ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=ᵅ�

1
ᵅ�1!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�! ᵅ�!

ᵅ�1


ᵅ�1=0

⋯
ᵅ�ᵅ�


ᵅ�ᵅ�

ᵅ�

=0

1


ᵅ�1=0

⋯

×
ᵅ�ᵅ�


ᵅ�ᵅ�=0

⎛
⎜
⎜
⎝

ᵅ�1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�1

ᵅ�1

⎞
⎟
⎟
⎠
⋯

⎛
⎜
⎜
⎝

ᵅ�ᵅ�

ᵅ�ᵅ�

⎞
⎟
⎟
⎠
ᵃ�ᵅ�1−ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�ᵃ�ᵅ�1−ᵅ�1ᵃ�ᵅ�ᵅ�−ᵅ�ᵅ�

1
ᵅ�1 +⋯ + ᵅ�ᵅ� + ᵅ�1 +⋯ᵅ�ᵅ�

.
+ ᵅ� + 1

(2.22)


ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�=ᵅ�

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�

ᵃ�
! ᵅ�! ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵃ�ᵅ�1 (ᵆ�)⋯ᵃ�ᵅ�ᵅ� (ᵆ�) ᵆ�

ᵅ�

=
ᵅ�−2


ᵅ�=1

(ᵅ� + ᵅ� + 1)ᵅ�−1
⎧
⎪
⎪
⎨
⎪
⎪
⎩

ᵅ�! 0≤ᵄ�≤ᵅ�
0≤ᵅ�≤ᵅ�

ᵅ�+ᵅ�−ᵅ�−1≤ᵄ�≤ᵅ�

⎛
⎜
⎜
⎝

ᵅ�

ᵄ�

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ᵅ�

ᵅ�

⎞
⎟
⎟
⎠
(−1)ᵅ�2ᵅ�−ᵅ�

ᵅ�+ᵄ�+1−ᵅ�−ᵅ�


ᵅ�=0

1
(

× 

ᵅ� + ᵄ� + 1 − ᵅ� − ᵅ� − ᵅ�) !

ᵅ�1+⋯+ᵅ�ᵄ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�

1
ᵅ�1! ᵅ�2!⋯ ᵅ�ᵄ�! ᵅ�1!⋯ ᵅ�ᵅ�!

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵄ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

− 
ᵅ�1+⋯+ᵅ�ᵅ�+ᵅ�1+⋯+ᵅ�ᵅ�=ᵅ�−ᵅ�+1

ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�ᵃ�ᵅ�1 ⋯ᵃ�ᵅ�ᵅ�

ᵅ�1! ᵅ�2!⋯ ᵅ�ᵅ�! ᵅ�1!⋯ ᵅ�ᵅ�!

⎫
⎪
⎪
⎬
⎪
⎪
⎭

ᵃ�ᵅ�

+

(ᵆ�)

(ᵅ� + ᵅ� + 1)ᵅ�−1ᵃ�
2 (ᵅ� − 1) ! ᵅ�−1 (ᵆ�) +

(ᵅ� + ᵅ� + 1)ᵅ�


