International Journal of Mathematics and Mathematical Sciences
Volume 2012 (2012), Article ID 463659, 12 pages
http://dx.doi.org/10.1155/2012/463659

Research Article

Bernoulli Basis and the Product of Several Bernoulli Polynomials

Dae San Kim ${ }^{1}$ and Taekyun Kim ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
${ }^{2}$ Division of General Education, Kwangwoon University, Seoul 139-701, Republic of Korea
Received 25 June 2012; Accepted 9 August 2012
Academic Editor: Yilmaz Simsek
Copyright © 2012 Dae San Kim and Taekyun Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We develop methods for computing the product of several Bernoulli and Euler polynomials by using Bernoulli basis for the vector space of polynomials of degree less than or equal to n.

1. Introduction

It is well known that, the nth Bernoulli and Euler numbers are defined by

$$
\begin{equation*}
\sum_{l=0}^{n}\binom{n}{l} B_{l}-B_{n}=\delta_{1, n}, \quad \sum_{l=0}^{n}\binom{n}{l} E_{l}+E_{n}=2 \delta_{0, n} \tag{1.1}
\end{equation*}
$$

where $B_{0}=E_{0}=1$ and $\delta_{k, n}$ is the Kronecker symbol (see [1-20]).
The Bernoulli and Euler polynomials are also defined by

$$
\begin{equation*}
B_{n}(x)=\sum_{l=0}^{n}\binom{n}{l} B_{n-l} x^{l}, \quad E_{n}(x)=\sum_{l=0}^{n}\binom{n}{l} E_{n-l} x^{l} \tag{1.2}
\end{equation*}
$$

Note that $\left\{B_{0}(x), B_{1}(1), \ldots, B_{n}(x)\right\}$ forms a basis for the space $\mathbb{P}_{n}=\{p(x) \in \mathbb{Q}[x] \mid \operatorname{deg} p(x) \leq n\}$.
So, for a given $p(x) \in \mathbb{P}_{n}$, we can write

$$
\begin{equation*}
p(x)=\sum_{k=0}^{n} a_{k} \boldsymbol{B}_{k}(x), \tag{1.3}
\end{equation*}
$$

(see [8-12]) for uniquely determined $a_{k} \in \mathbb{Q}$.
Further,

$$
\begin{align*}
& a_{k}=\frac{1}{k!}\left\{p^{(k-1)}(1)-p^{(k-1)}(0)\right\}, \quad \text { where } p^{(k)}(x)=\frac{d^{k} p(x)}{d x^{k}} \\
& a_{0}=\int_{0}^{1} p(t) d t, \quad \text { where } k=1,2, \ldots, n \tag{1.4}
\end{align*}
$$

Probably, $\left\{1, x, \ldots, x^{n}\right\}$ is the most natural basis for the space \mathbb{P}_{n}. But $\left\{B_{0}(x), B_{1}(x), \ldots, B_{n}(x)\right\}$ is also a good basis for the space \mathbb{P}_{n}, for our purpose of arithmetical and combinatorial applications.
What are common to $B_{n}(x), E_{n}(x), x^{n}$? A few proportion common to them are as follows:
(i) they are all monic polynomials of degree n with rational coefficients;
(ii) $\left(B_{n}(x)\right)^{\prime}=n B_{n-1}(x),\left(E_{n}(x)\right)^{\prime}=n E_{n-1}(x),\left(x^{n}\right)^{\prime}=n x^{n-1}$;
(iii) $\int B_{n}(x) d x=B_{n+1}(x) /(n+1)+c, \int E_{n}(x) d x=E_{n+1}(x) /(n+1)+c, \int x^{n} d x=x^{n+1} /(n+1)+c$.

In [5, 6], Carlitz introduced the identities of the product of several Bernoulli polynomials:

$$
\begin{align*}
B_{m}(x) B_{n}(x)= & \sum_{r=0}^{\infty}\left\{\binom{m}{2 r} n+\binom{n}{2 r} m\right\} \frac{B_{2 r} B_{m+n-2 r}(x)}{m+n-2 r}+(-1)^{m+1} \\
& \times \frac{m!n!}{(m+n)!} B_{m+n}(m+n \geq 2), \\
\int_{0}^{1} B_{m}(x) B_{n}(x) B_{p}(x) B_{q}(x) d x= & (-1)^{m+n+p+q} \sum_{r, s=0}^{\infty}\left\{\binom{m}{2 r} n+\binom{n}{2 r} m\right\}\left\{\binom{p}{2 s} q+\binom{q}{2 s} p\right\} \tag{1.5}\\
& \times \frac{(m+n-2 r-1)!(p+q-2 s-1)!}{(m+n+p+q-2 r-2 s)!} B_{r} B_{s} B_{m+n+p+q-2 r-2} \\
& +(-1)^{m+p} \frac{m!n!}{(m+n)!} \frac{p!q!}{(p+q)!} B_{m+n} B_{p+q} .
\end{align*}
$$

In this paper, we will use (1.4) to derive the identities of the product of several Bernoulli and Euler polynomials.

2. The Product of Several Bernoulli and Euler Polynomials

Let us consider the following polynomials of degree n :

$$
\begin{equation*}
p(x)=\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x), \tag{2.1}
\end{equation*}
$$

where the sum runs over all nonnegative integers $i_{1}, \ldots, i_{r}, j_{1}, \ldots j_{s}$ satisfying $i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n, r+s=1, r, s \geq 0$.
Thus, from (2.1), we have

$$
\begin{align*}
p^{(k)}(x)= & (n+r+s-1)(n+r+s-2) \cdots(n+r+s-k) \\
& \times \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n-k}^{\infty} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) . \tag{2.2}
\end{align*}
$$

For $k=1,2, \ldots, n$, by (1.4), we get

$$
\begin{align*}
a_{k}= & \frac{1}{k!}\left\{p^{(k-1)}(1)-p^{(k-1)}(0)\right\} \\
= & \frac{\binom{n+r+s}{k}}{n+r+s} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n-k+1}\left\{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}\right\} \\
= & \frac{\binom{n+r+s}{k}}{n+r+s}\left\{\sum_{\substack{0 \leq a \leq r \\
0 \leq c \leq s \\
k+r-n-1 \leq a \leq r}}\binom{r}{a}\binom{s}{c}(-1)^{c} 2^{s-c}\right. \tag{2.3}\\
& \times \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n+a+1-k-r}^{\infty} B_{i_{1}} \cdots B_{i_{a}} E_{j_{1}} \cdots E_{j_{c}} \\
& \left.-\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n-k+1} B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}\right\}
\end{align*}
$$

From (2.3), we note that

$$
\begin{aligned}
a_{n} & =\frac{\binom{n+r+s}{n}}{n+r+s} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=1}\left\{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}\right\} \\
& =\frac{\binom{n+r+s}{n}}{n+r+s}\left\{\left(-\frac{1}{2}+1\right) r-\left(-\frac{1}{2}\right) s-\left(-\frac{1}{2}\right)(r+s)\right\} \\
& =\frac{\binom{n+r+s}{n}}{n+r+s}(r+s)=\binom{n+r+s-1}{n},
\end{aligned}
$$

$$
\begin{align*}
a_{n-1}= & \frac{1}{n+r+s}\binom{n+r+s}{n-1} \\
& \times \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=2}\left\{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}\right\} \tag{2.4}\\
= & \frac{1}{n+r+s}\binom{n+r+s}{n-1}\left\{\frac{1}{6} r+\frac{1}{2} \frac{1}{2}\binom{r+s}{2}-\frac{1}{6} r-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\binom{r+s}{2}\right\}=0, \\
a_{0}= & \int_{0}^{1} p(t) d t \\
= & \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n}^{\infty} \sum_{l_{1}=0}^{i_{1}} \cdots \sum_{l_{r}=0}^{i_{r}} \sum_{p_{1}=0}^{j_{1}} \cdots \sum_{p_{s}=0}^{j_{s}}\binom{i_{1}}{l_{1}} \cdots\binom{i_{r}}{l_{r}}\binom{j_{1}}{p_{1}} \cdots\binom{j_{s}}{p_{s}} \\
& \times \frac{B_{i_{1}-l_{1}} \cdots B_{i_{r}-l_{r}} E_{j_{1}-p_{1}} E_{j_{s}-p_{s}}}{l_{1}+\cdots+l_{r}+p_{1}+\cdots+p_{s}+1} .
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n} \sum_{l_{1}=0}^{i_{1}} \ldots \sum_{l_{r}=0}^{i_{r}} \sum_{p_{1}=0}^{j_{1}} \cdots \sum_{p_{s}=0}^{j_{s}}\binom{i_{1}}{l_{1}} \ldots\binom{i_{r}}{l_{r}}\binom{j_{1}}{p_{1}} \ldots\binom{j_{s}}{p_{s}} \\
& \times \frac{B_{i_{1}-l_{1}} \cdots B_{i_{r}-l_{r}} E_{j_{1}-p_{1}} E_{j_{s}-p_{s}}}{l_{1}+\cdots+l_{r}+p_{1}+\cdots p_{s}+1}
\end{aligned}
$$

$$
\begin{equation*}
p(x)=\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) x^{t}, \tag{2.6}
\end{equation*}
$$

Then, from (2.6), we have

$$
\begin{align*}
p^{(k)}(x)= & (n+r+s)(n+r+s-1) \cdots(n+r+s-k+1) \\
& \times \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n-k} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) x^{t}, \tag{2.7}
\end{align*}
$$

By (1.4) and (2.7), we get, for $k=1,2, \ldots, n$,

$$
\begin{aligned}
a_{k}= & \frac{1}{k!}\left\{p^{(k-1)}(1)-p^{(k-1)}(0)\right\} \\
= & \frac{1}{n+r+s+1}\binom{n+r+s+1}{k} \\
& \times \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n-k+1}\left\{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}} 0^{t}\right\} \\
& (n+r+s+1) \\
& \left({ }_{r}\right)\left(_{r}\right)
\end{aligned}
$$

$$
\left.\begin{array}{c}
=\frac{1 \quad k \quad 1}{n+r+s+1}\left\{\left.\sum_{\substack{0 \leq a \leq r \\
0 \leq c \leq s}}\right|^{\prime}| |^{\prime} \mid(-1)^{c} 2^{s-c}\right. \tag{2.8}\\
k+r-n-1 \leq a \leq r \\
s
\end{array}\right) \quad \sum_{t=0}^{n+a+1-k-r} \sum_{i_{1}+\cdots+i_{a}+j_{1}+\cdots+j_{c}=t} B_{i_{1}} \cdots B_{i_{a}} E_{j_{1}} \cdots E_{j_{c}} .
$$

Now, we look at a_{n} and a_{n-1}.

$$
\begin{align*}
a_{n} & =\frac{\binom{n+r+s+1}{n}}{n+r+s+1} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=1}\left\{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}} 0^{t}\right\} \\
& =\frac{\binom{n+r+s+1}{n}}{n+r+s+1}\left\{\frac{1}{2}(r+s)+1-\left(-\frac{1}{2}\right)(r+s)\right\} \\
& =\frac{r+s+1}{n+r+s+1}\binom{n+r+s+1}{n}=\binom{n+r+s}{n}, \\
a_{n-1} & =\frac{\binom{n+r+s+1}{n-1}}{n+r+s+1} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=2}\left\{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}} 0^{t}\right\} \tag{2.9}\\
& =\frac{\binom{n+r+s+1}{n-1}}{n+r+s+1}\left\{\frac{1}{6} r+1+\frac{1}{2} \frac{1}{2}\binom{r+s}{2}+\frac{1}{2}(r+s)-\frac{1}{6} r-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\binom{r+s}{2}\right\} \\
& \left.=\frac{1}{n+r+s+1}\binom{n+r+s+1}{n-1}\right\}
\end{align*}
$$

Therefore, by (1.3), (2.6), (2.8), (2.9), and (2.10), we obtain the following theorem.
Theorem 2.2. For $n \in \mathbb{N}$ with $n \geq 2$, one has

$$
\begin{align*}
& \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) x^{t} \\
& =\frac{1}{n+r+s+1} \sum_{k=1}^{n-2}\binom{n+r+s+1}{k} \\
& \times\left\{\sum_{\substack{0 \leq a \leq r \\
0 \leq c \leq s \\
k+r-n-1 \leq a \leq r}}\binom{r}{a}\binom{s}{c}(-1)^{c} 2^{s-c} \sum_{t=0}^{n+a+1-k-r} \sum_{i_{1}+\cdots+i_{a}+j_{1}+\cdots+j_{c}=t}^{\infty} B_{i_{1}} \cdots B_{i_{a}} E_{j_{1}} \cdots E_{j_{c}}\right. \\
& \left.-\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n-k+1} B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}\right\} B_{k}(x) \tag{2.11}\\
& +\frac{1}{2}\binom{n+r+s}{n-1} B_{n-1}(x)+\binom{n+r+s}{n} B_{n}(x)
\end{align*}
$$

$$
\begin{aligned}
+\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n} \sum_{l_{1}=0}^{i_{1}} \cdots \sum_{l_{r}=0}^{i_{r}} \sum_{p_{1}=0}^{j_{1}} & \cdots \sum_{p_{s}=0}^{j_{s}}\left\{\binom{i_{1}}{l_{1}} \ldots\binom{i_{r}}{l_{r}}\binom{j_{1}}{p_{1}} \ldots\binom{j_{s}}{p_{s}}\right. \\
& \times B_{i_{1}-l_{1}} \cdots B_{i_{r}-l_{r}} E_{j_{1}-p_{1}} \cdots E_{j_{s}-p_{s}} \\
& \left.\times \frac{1}{l_{1}+\cdots+l_{r}+p_{1}+\cdots p_{s}+t+1}\right\}
\end{aligned}
$$

Consider the following polynomial of degree n :

$$
\begin{equation*}
p(x)=\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n}^{\infty} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) . \tag{2.12}
\end{equation*}
$$

Then, from (2.12), one has

$$
\begin{equation*}
p^{(k)}(x)=(r+s)^{k} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n-k} \frac{B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x)}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!} \tag{2.13}
\end{equation*}
$$

By (1.4) and (2.13), one gets, for $k=1,2, \ldots, n$,

$$
\begin{aligned}
a_{k} & =\frac{1}{k!}\left\{p^{(k-1)}(1)-p^{(k-1)}(0)\right\} \\
& =\frac{(r+s)^{k-1}}{k!} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n-k+1}\left\{\frac{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!}\right\} \\
& =\frac{(r+s)^{k-1}}{k!}\left\{\sum_{\substack{0 \leq a \leq r \\
0 \leq c \leq s \\
k+r-n-1 \leq a \leq r}}\binom{r}{a}\binom{s}{c}\right. \\
& -\sum_{i_{1}}^{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n-k+1} 2^{s-c} i_{i_{1}+\cdots+i_{a}+j_{1}+\cdots+j_{c}=n+a+1-k-r} \frac{B_{i_{1}} \cdots B_{i_{a}} E_{j_{1} \cdots E_{j_{c}}}^{i_{1}!i_{2}!\cdots i_{a}!j_{1}!\cdots j_{c}!}}{}
\end{aligned}
$$

Now look at a_{n} and a_{n-1} :

$$
\begin{align*}
a_{n} & =\frac{(r+s)^{n-1}}{n!} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=1}\left\{\frac{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!}\right\} \\
& =\frac{(r+s)^{n-1}}{n!}\left\{\frac{1}{2}(r+s)-\left(-\frac{1}{2}\right)(r+s)\right\}=\frac{(r+s)^{n}}{n!}, \\
a_{n-1} & =\frac{(r+s)^{n-2}}{(n-1)!} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=2}\left\{\frac{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!}\right\} \tag{2.15}\\
& =\frac{(r+s)^{n-2}}{(n-1)!}\left\{\frac{1}{2} \frac{1}{6} r+\frac{1}{2} \frac{1}{2}\binom{r+s}{2}-\frac{1}{2} \frac{1}{6} r-\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\binom{r+s}{2}\right\}=0 .
\end{align*}
$$

It is easy to show that

$$
\begin{align*}
a_{0}= & \int_{0}^{1} p(t) d t=\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n} \frac{1}{i_{1}!\cdots i_{r}!j_{1}!\cdots j_{s}!} \\
& \times \sum_{l_{1}=0}^{i_{1}} \cdots \sum_{l_{r}=0}^{i_{r}} \sum_{p_{1}=0}^{j_{1}} \cdots \sum_{p_{s}=0}^{j_{s}}\left\{\frac{B_{i_{1}-l_{1}} \cdots B_{i_{r}-l_{r}} E_{j_{1}-p_{1}} E_{j_{s}-p_{s}}}{l_{1}+\cdots+l_{r}+p_{1}+\cdots p_{s}+1}\binom{i_{1}}{l_{1}} \cdots\binom{i_{r}}{l_{r}}\binom{j_{1}}{p_{1}} \ldots\binom{j_{s}}{p_{s}}\right\} \tag{2.16}
\end{align*}
$$

Therefore, by (1.3), (2.14), and (2.15), one obtains the following theorem.
Theorem 2.3. For $n \in \mathbb{N}$ with $n \geq 2$, one has

$$
\begin{aligned}
& \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) \\
& =\sum^{n-2} \frac{(r+s)^{k-1}}{}\left\{\quad \quad(r)(s)_{(-1)^{c} 2^{s-c}}\right.
\end{aligned}
$$

$$
\begin{align*}
& \angle k=1 \quad k!\mid \underset{\substack{0 \leq a \leq r \\
0 \leq c \leq s \\
k+r-n-1 \leq a \leq r}}{ }(a)(c) \\
& \times \sum_{i_{1}+\cdots+i_{a}+j_{1}+\cdots+j_{c}=n+a+1-k-r} \frac{B_{i_{1}} \cdots B_{i_{a}} E_{j_{1}} \cdots E_{j_{c}}}{i_{1}!i_{2}!\cdots i_{a}!j_{1}!\cdots j_{c}!} \\
& -\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n-k+1} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!} \tag{2.17}\\
& \left.\times B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}\right\} B_{k}(x)+\frac{(r+s)^{n}}{n!} B_{n}(x) \\
& +\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n} \sum_{l_{1}=0}^{i_{1}} \cdots \sum_{l_{r}=0}^{i_{r}} \sum_{p_{1}=0}^{j_{1}} \cdots \sum_{p_{s}=0}^{j_{s}}\binom{i_{1}}{l_{1}} \ldots\binom{i_{r}}{l_{r}}\binom{j_{1}}{p_{1}} \ldots\binom{j_{s}}{p_{s}} \\
& \times \frac{B_{i_{1}-l_{1}} \cdots B_{i_{r}-l_{r}} E_{j_{1}-p_{1}} E_{j_{s}-p_{s}}}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!\left(l_{1}+\cdots+l_{r}+p_{1}+\cdots p_{s}+1\right)} .
\end{align*}
$$

Take the polynomial $p(x)$ of degree n as follows:

$$
\begin{equation*}
p(x)=\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!t!} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) x^{t} . \tag{2.18}
\end{equation*}
$$

Then, from (2.18), one gets

$$
\begin{align*}
p^{(k)}(x)= & (r+s+1)^{k} \\
& \times \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n-k} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!t!} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) x^{t} . \tag{2.19}
\end{align*}
$$

By (1.4) and (2.19), one gets, for $k=1, \ldots, n$,

$$
\left.\begin{array}{rl}
a_{k}= & \frac{1}{k!}\left\{p^{(k-1)}(1)-p^{(k-1)}(0)\right\} \\
= & \frac{(r+s+1)^{k-1}}{k!} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n-k+1} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!t!} \\
& \times\left\{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}} 0^{t}\right\} \\
= & \frac{(r+s+1)^{k-1}}{k!}\left\{\sum_{\substack{0 \leq a \leq r \\
0 \leq \leq s \\
k+r-n-1 \leq a \leq r}}\binom{r}{a}\binom{s}{c}(-1)^{c} 2^{s-c} \sum_{t=0}^{n+a+1-k-r} \frac{1}{(n+a+1-k-r-t)!}\right. \tag{2.20}\\
& \times \sum_{i_{1}+\cdots+i_{a}+j_{1}+\cdots+j_{c}=t} \frac{1}{i_{1}!i_{2}!\cdots i_{a}!j_{1}!\cdots j_{c}!} B_{i_{1}} \cdots B_{i_{a}} E_{j_{1}} \cdots E_{j_{c}} \\
& -\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n-k+1} B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}
\end{array}\right\} .
$$

Now look at a_{n} and a_{n-1} :

$$
\begin{align*}
a_{n}= & \frac{(r+s+1)^{n-1}}{n!} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=1} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!t!} \\
= & \times\left\{B_{i_{1}}(1) \cdots B_{i_{r}}(1) E_{j_{1}}(1) \cdots E_{j_{s}}(1)-B_{i_{1}} \cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}} 0^{t}\right\} \\
= & \frac{(r+s+1)^{n-1}}{n!}\left\{\frac{1}{2}(r+s)+1-\left(-\frac{1}{2}\right)(r+s)\right\} \\
n! & (r+s+1)=\frac{(r+s+1)^{n}}{n!}, \\
a_{n-1}= & \frac{(r+s+1)^{n-2}}{(n-1)!} \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=2} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!t!} \tag{2.21}\\
& \times\left\{B_{i .}(1) \cdots B_{i}(1) E_{i .}(1) \cdots E_{i}(1)-B_{i .} \cdots B_{i} E_{i .} \cdots E_{i} 0^{t}\right\}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{(r+s+1)^{n-2}}{(n-1)!}\left\{\frac{1}{2} \frac{1}{6} r+\frac{1}{2}+\frac{1}{2} \frac{1}{2}\binom{r+s}{2}+\frac{1}{2}(r+s)-\frac{1}{2} \frac{1}{6} r-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\binom{r+s}{2}\right\} \\
& =\frac{(r+s+1)^{n-2}}{(n-1)!} \frac{r+s+1}{2} \\
& =\frac{(r+s+1)^{n-1}}{2(n-1)!} .
\end{aligned}
$$

From (2.18), one can derive the following identity:

$$
\begin{align*}
a_{0}= & \int_{0}^{1} p(t) d t \\
= & \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n} \frac{1}{i_{1}!\cdots i_{r}!j_{1}!\cdots j_{s}!t!} \int_{0}^{1} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) x^{t} d t \\
= & \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n} \frac{1}{i_{1}!\cdots i_{r}!j_{1}!\cdots j_{s}!t!} \sum_{l_{1}=0}^{i_{1}} \cdots \sum_{l_{r}=0}^{i_{r}} \sum_{p_{1}=0}^{j_{1}} \cdots \tag{2.22}\\
& \times \sum_{p_{s}=0}^{j_{s}}\binom{i_{1}}{l_{1}} \cdots\left(\begin{array}{l}
i_{r} \\
l_{r} \\
l_{r}
\end{array}\right)\binom{j_{1}}{p_{1}} \cdots\binom{j_{s}}{p_{s}} B_{i_{1}-l_{1}} \cdots B_{i_{r}-l_{r}} E_{j_{1}-p_{1}} E_{j_{s}-p_{s}} \frac{1}{l_{1}+\cdots+l_{r}+p_{1}+\cdots p_{s}+t+1} .
\end{align*}
$$

Therefore, by (1.3), (2.20), (2.21), and (2.22), one obtains the following theorem.
Theorem 2.4. For $n \in \mathbb{N}$ with $n \geq 2$, one has

$$
\begin{aligned}
& \sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}+t=n} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!j_{1}!\cdots j_{s}!t!} B_{i_{1}}(x) \cdots B_{i_{r}}(x) E_{j_{1}}(x) \cdots E_{j_{s}}(x) x^{t} \\
&=\sum_{k=1}^{n-2} \frac{(r+s+1)^{k-1}}{k!}\left\{\sum_{\substack{0 \leq a \leq r \\
0 \leq \leq s \\
k+r-n-1 \leq a \leq r}}\binom{r}{a}\binom{s}{c}(-1)^{c} 2^{s-c} \sum_{i=0}^{n+a+1-k-r} \frac{1}{(n+a+1-k-r-t)!}\right. \\
& \times \sum_{i_{1}+\cdots+i_{a}+j_{1}+\cdots+j_{c}=t} \frac{1}{i_{1}!i_{2}!\cdots i_{a}!j_{1}!\cdots j_{c}!} B_{i_{1}} \cdots B_{i_{a}} E_{j_{1}} \cdots E_{j_{c}} \\
&\left.-\sum_{i_{1}+\cdots+i_{r}+j_{1}+\cdots+j_{s}=n-k+1} \frac{B_{i_{1}}!\cdots B_{i_{r}} E_{j_{1}} \cdots E_{j_{s}}!\cdots i_{r}!j_{1}!\cdots j_{s}!}{}\right\} B_{k}(x) \\
&+\frac{(r+s+1)^{n-1}}{2(n-1)!} B_{n-1}(x)+{ }^{(r+s+1)^{n}}
\end{aligned}
$$

