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1. Introduction and preliminaries
Let p be a fixed prime. Throughout this paper, Z,, Q,, C, will respectively denote the ring of p-adic integers, the field

of p-adic rational numbers and the completion of the algebraic closure of Q. For a uniformly differentiable (also called
continuously differentiable) function f : Z, — C, (cf. [1]), the Volkenborn integral of f is defined by

| s@auc = im Z £6).
Zp
Then it is easy to see that
[ e+ vae = [ s@we +ro. (1.1)
Zp Zp
Let | |, be the normalized absolute value of C,, such that |p|, = %, and let

-1
E= {reccpmp <pﬁ}. (12)

Assume that q,t € Cp, withq — 1,t € E, and so ¢° = exp(zlogq) and e* are, as functions of z, analytic functions on Z,.
By applying (1.1) to f, with f(z) = g“e%, we get the p-adic integral expression for the generating function for g-Bernoulli
numbers B, 4 (cf. [2,3]):

t o0
/ Fetdu(z) = °gq+ ZBM —1,t €E). (13)
Zp
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So we have the following p-adic integral expression for the generating function for the g-Bernoulli polynomials B, 4(x):
f ge®du(z) = lqu = anq(x) (q—1,t€E xe7). (1.4)
z
Here andpthroughout this paper, we will have many instances where we are able to interchange the integral and infinite

sum. That is justified by Proposition 55.4 in [1]. Let S; 4(n) denote the g-analogue of the kth power sum of the first n 4 1
nonnegative integers, namely

n
Siq(n) =Y _i'q = 0" +1%¢" + -+ n'q". (15)

In particular,

gt —1 1, fork=0,
Soq(n) = Zq = g1 e Se@= {0, fork > 0. (1.6)
From (1.3) and (1.5), one easﬂy derives the following identities: for w € Z.,
wf, getdu() -l
“ —Zq’ i Zskq(w—l)—(q 1,t €E). (1.7)

Jz, 4™ dn()

In what follows, we will always assume that the Volkenborn integrals of the various exponential functions on Z, are defined
forq — 1, t € E (cf. (1.2)), and therefore this will not be mentioned.

[4-8] are some of the previous works on identities of symmetry in two variables involving Bernoulli polynomials and
power sums. For a brief history, one is referred to those papers. In [9], the idea of [6] was adopted to produce many new
identities for symmetry in three variables involving Bernoulli polynomials and power sums.

In this paper, we will produce eight basic identities of symmetry in three variables w1, w,, w3 related to g-Bernoulli
polynomials and the g-analogue of power sums (cf. (4.8), (4.9), (4.12), (4.15), (4.19), (4.21), (4.23), (4.24)). These and most
of their corollaries seem to be new, since there have been results only concerning ldentltles of symmetry in two variables
in the literature. These abundant symmetries shed new light even on the existing identities. For instance, it is known that
(1.8)and (1.9) are equal (cf. [2, (2.20)]) and (1.10) and (1.11) are too (cf. [2, (2.25)]). In fact, (1.8)-(1.11) are all equal, as they
can be derived from one and the same p-adic integral. Perhaps [2] neglected to mention this. Also, we have a bunch of new
identities in (1.12)—(1.15). All of these were obtained as corollaries (cf. Corollaries 4.9, 4.12 and 4.15) to some of the basic
identities by specializing the variable w5 as 1. They would not be unearthed if more symmetries had not been available.

n

n oy ko kT
Z Bre.qw2 (W1Y1)Sn—k.qv1 (w2 — Dwy w, (18)
= \k
n
_Z m g ( )s (w1 — Dw k! (1.9)
= ) Brea1 (W2Y1)Sn—kqrz (w1 Wy "Wy ’
k=0

wq—1
! Z qwz By qu1 <w2y1 + 7’) (1.10)

i=0

wy—1
Z g Bn .q»2 <w1)’1 + 7’) (1.11)

i=0

n — —
= Z (, I )Bk,q"’T“’Z I1)Sigv2 (Wi — 1S i (w — DwkTm Tkt (1.12)
k+1+m=n <, [, m
n n wy—1
=w"! ()S_ i (wy — Dws ! w2iB, wiw +— 1.13
1 2\ n—k,qv1 (w2 — 1) Zq kgvivz | Y1 o (1.13)
n n wy—1
— 1 w _ -1 wiig -
- =0 (k)sn_k’q 2 (wi = Dwy Z g Brgrie <Y1 * 2) (114)
wi—1wy—1 j
(w1w2)" 1 qwzi+w113 g2 <y1 + — + 7> (1_‘15)
2 2 s

The derivations of the identities are based on the p-adic mtegral expression for the generating function for the g-Bernoulli
polynomials in (1.4) and the quotient of integrals in (1.7) that can be expressed as the exponential generating function for
the g-analogue of power sums. We are indebted for this idea to the paper [2].
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2. Several quotient types for Volkenborn integrals

Here we will introduce several quotient types for Volkenborn integrals on Z, or Zg from which some interesting identities
follow owing to the built-in symmetries in w1, w;, ws. In the following, w1, w,, w3 are all positive integers and all of the

explicit expressions for integrals in (2.2), (2.4), (2.6) and (2.8) are obtained from the identity in (1.3).
P P g y

(a) Type Ab; (fori =0, 1,2, 3):

3—i
(w2w3x1+w1w3x2+w1w2)(3+w] wy w3 (JZ yj>>t
f 3 qw2w3x1+w1w3x2+w1w2x3e =1 d/L(X)

. Z
I(Alzg,) =2 : ’
(f rmmmerstagton)
p

with du(X) = du(x1)du(xz)dp(x3),

wiwyws| 3

3—i
t
B (wlw2w3)2—i(logq + t)3*ie <j:1 ) (qw1w2w3ew1w2w3t _ l)i
- (qwqu3ew2w3t _ 1)(qw1w3ew1w3t _ 1)(qw1w2ew]w2t _ 1)

(b) Type AL, (fori =0, 1,2, 3):

<w1x1 +wXy+w3X3+wiwyaws Ciiy]))t
=t /7 dp(xp)dp(x2)dp(x3)

i fzg qw1x1 +w2x2+w3X3e
1(AY3) =

3—i
1-i 3—i v (;;y’)[ WqWwaw3 qWiwa w3t _ 1)
_ (wiwaws) “'(logg +t)°'e (q e 1

(qW1em1t — 1)(gqr2e2t — 1)(g"3e™st — 1)

(c-0) Type AY,:

0 _ w1X1+waXy+ws3X: w1X1+woXy+wizx3+wrwsy+wiwiy+wiwry)t
I(AIZ) — /3q 141 2X2 3 Be( 1%1 2X2 3X3 W3y 1w3y 1w2y) d/,L(X])d/L(Xz)d,LL()Q)
Z
14

U)]U)zUJg(lqu + t)3e(w2wg+w]u}3+u11wz)yt
(qwlewlf _ 1)(qwzew2t _ 1)(un3ew3t _ 1) :
(c-1) Type Al,:

fZg qw]x1+wzx2+w3X3 e(w1x1+wzx2+u73X3)th (Xl)d/,L(Xz)d,LL (X3)

fZﬁ qwzwﬂﬁ»w] w3zy+w w223 e(wawszi+wq w322+w1w223)tdu (Zl )dﬂ (ZZ)dN« (23)

I(A}) =

_ (wlwzwg)’1(qw2w3ew2w3t _ ])(qw1w3ew1w3t _ 1)(qw1wzew1w2[ _ 1)

(qwlewﬁ _ 1)(qw2ew2t _ 1)(qw3euJ3t _ ])

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

All of the above p-adic integrals of various types are invariant under all permutations of w1, w,, ws, as one can see either
from p-adic integral representations in (2.1), (2.3), (2.5) and (2.7) or from their explicit evaluations in (2.2), (2.4), (2.6) and

(2.8).
3. Identities for g-Bernoulli polynomials

First, let’s consider Type A§3, foreachi=0, 1,2, 3.
(a-0) The following results can be easily obtained from (1.4) and (1.7):

I(A(z)a) :/ qw2w3xl€w2w3(xl+w1y1)th(X1)/ qw1w3xzew1w3(x2+w23/2)tdu(x2)/ qw1wzxaew1wz(x3+W3y3)th(x3)
Zp Zp Zp

.\ By gras (w1y1) .\ By s () .\ By iz (w3y3)
(Z " 1l(w2w3t)k> (Z e (w1w3t)l> (Z T

k=0 =0 m=0

n=0 \k+[+m=n

o n
Z( Z (k I m>Bk,q"’2w3 (W1Y1)Bgu1v3 (W2Y2) B guiva (w3yz)wh M wk ™y

(3.1)
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where the inner sum is over all nonnegative integers k, I, m, with k + [+ m = n, and

n n!
= —. (3.2)
k,I,m k!l!m!
(a-1) Here we write I(A;3) in two different ways:
(1)
wW1wX3 ewlwz)gtd X
I(A;3) — l qr2esa ew2w3(x1+w1J/1)fd’u(Xl) q1vsr ew1w3(X2+w2y2)th(X2) w3 fZP d pxs)
ws Zp Zp fzp qw1w2w3X4ew1w2w3X4[dM(x4)
(w2w3f)k . (w1w3t) (w1w2t)

= <Z By gw2ws (Wiy1) ———— Z By quiws (way2) ———— Z Smqeiw2 (w3 — 1) —————] (3.3)
w3 k: =i m=0
> n "

= Z Z (/ I ) By, qw2ws (w1y1) By qwiws (WaY2)Sm, qgwiwz (w3 — 1)wll+mw§+mw§+lfl =. (3.4)
n=0 \k+I+m=n <, L, m n

(2) Invoking (1.7), (3.3) can also be written as

w3—1

wy .
2 : ) wiws | Xp+way2+ 5t
qw1w21/ wzwy(lewzwg(X1+W1y1)td/¢L(x‘l)f qu.]wy(ze 1 3(2 2Y2 w3)d/¢L(X2)
Zp

S wqwyi S (wzwgt)k (U)]'LU3I')
= — Z q 1w2 ZBk,qwzuG (wﬂﬁ)T ZB[ qr1ws | waya2 + < 17‘
i=0 : :

1(A)s)

k=0 =0
00 " n w3—1 ) ¢n
= 2 (w37 () Braraes orynwiwh Y7 g By gores <w2}/2 + —z) = (35)
n=0 k=0 i=0 w3 n
(a-2) Here we write I(A§3) in three different ways:
(1)
, - . wo .[Zp qw1w3xzew1w3x2tdﬂ(xz) ws pr qwleX3ew1w2X3th(x3)
— WaW3X] QW2 W3 (X1 +w1Y1
I(Azg) - wyws / q e dﬂ(xl)fzp qwlw2w3X4ew1w2uJ3X4th(x4) pr qw1w2w3X4ew1w2w3X4tdlu(X4)

1 (w w t) o (wiwst)!
o (Z By, qw2w3 (wy) ———— 23 ) (;Sl’qug (wy, — ])11'3>
(Z Smgrrva (w3 — 1)(“““’2” ) (36)

o0 n
n _ AN
E E Bk,qwzw3 (u)]y1 )Sl,q"’1“’3 (w2 — 1)Sm,qwlwz (w3 —_ ])wa+m w12<+m ]U)I3(+l 1 —. (3.7)
; k,l,m n!
k+1+m=n

n=0

(2) Invoking (1.7), (3.6) can also be written as

1 wy—1

j :qw1w3i/ qwszXlew2w3(x1+w1y1+wz ) dﬂ(xl)
i— Zp

Waws 4=

wo pr qw1 WX3 W1 w2><3th (X3)

T, et

1wl wowst)¥ wiwyt
= — Z qw]w3l (ZBk 293 <w1y1 + 7) (wpwst) Zsl o (w5 — 1)( 1W2 ) (38)
2W3

wy—1

o0 n n tn
(w; 1 Z <k) Sn_tquina (w3 — 1)wn ko < Z qw1w313k qu2v3 (u}ﬂ/l + 21)) ot (3.9)
0

n=l k=0 i=0

1(A3)

(3) Invoking (1.7) once again, (3.8) can be written as

wy—1w3—1

I(A 3) — Z Z q11)1103l+11)1w2]f qwzugxlew2w3(xl+wl}’1+w l+w3 ) dlt(?ﬁ)
i=0 j=
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(a-3):

1(A3)
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wy—1w3—1

(wawst)"
wiw3i+wiwyj B, wow 71
w2w3ZZ( E:nq23<wm+ + J) o

00 wy—1w3—1 wq "
Z ((w2w3) Z Z qw1w31+w1leB qu2v3 <w1Y1 + 71 + ])) n‘ (310)

i=0 j=0

LW @Uen ) wy f, g e (xy)
WiWLW3 pr qUIwawsxaew1w2w3xald ; (x4) pr qUiIw2w3xaew1waw3ald y (x4)

ws [, g du(xs)

fZ qU1w2wsxaew1waw3ald ; (x4)

(wzwst) (w1w3t)
v, (ZSI« grans = Y2000 (37, sy - 1y 0

1=0

(Z Smquiva (w3 — D=t el (w‘wzt) )

m=0
> n
Z( Z (k | m) Sk,gw2ws (W — DSy gwiws (wp — 1)
n=0 \k+I4+m=n [
"
X Sm’qu%]wz (u)3 — 1)wl1+m1w’2(+m]w§+l]> E (311)

(b) For Type Ai13 (i =0,1,2,3), we may consider analogous things to the ones in (a-0), (a-1), (a-2), and (a-3). However,
these do not lead us to new identities. Indeed, if we substitute wows, wiws, wiw, respectively for wy, w,, ws in (2.1),
this amounts to replacing t by wiw,wst and q by ¢*1"2"3 in (2.3). So, upon replacing w1, w,, w3 respectively by
waws, wiws, wiwy and dividing by (wyw,ws)", in each of the expressions (3.1), (3.4), (3.5), (3.7), (3.9)-(3.11), we will get
the corresponding symmetric identities for Type A3, (i =0, 1, 2, 3).

(c-0):

(c-1):

1(A%,)

1(Aly)

/qw1x16w‘(x1+w2y)tdu(x1)/ qwzxzewz(X2+u)3y)fdM(X2)/ qwaxaewa(x3+w1)/)td’u(x3)
Zp

o B g (w2y) o Bigv2 (w3y) o B gvs (w1y) m
(Z T Kl 2 (w1f)k> (Z — M = (U)zl')l> <mz_oq m! ! (wst) )

n=0 =0
o0 n
n kolom) ¢
Z Z Bk,q"’l (WZY)BI,q“’Z (w3.V)Bm,q“’3 (wl.V)u)]wzwg —- (3.12)
n=0 \k+IH+m=n k l’ m n!
Wy @O s f, g R p(xy) wy f, qUHe ()

WiWHW3 fZ qw]w223ew1w223td'u(z3) fZ qwzw3zlew2w3zltd'u(zl) fZ un3wlzZEUJ3w]zztd'u(Zz)

( f) ( t) ( t)'"
wW1WrWs3 (Z s" q"1 (wz w1 ) (Z Sl q"2 (UJ3 2 ) (Z Sm q*3 (w1 — 1) w3 )

f"

a n
N (/ )sk,qw1 (wy — DS gv2 (w3 = DS vz (wr — Dwf~wh  wi ™" ) —. (3.13)
= k, I, m n!

k+l4+m=n

4. Main theorems

As we noted earlier in the last paragraph of Section 2, the various quotient types for Volkenborn integrals are
invariant under any permutation of wi, w;, ws. So the corresponding expressions in Section 3 are also invariant under
any permutation of wy, w,, ws. Thus our results concerning identities of symmetry will be immediate consequences of this
observation.
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However, not all permutations of an expression in Section 3 yield distinct ones. In fact, as these expressions are obtained
by permuting w1, w,, w3 in a single case labeled by them, they can be viewed as a group in a natural manner and hence it
is isomorphic to a quotient of Ss. In particular, the number of possible distinct expressions are 1, 2, 3, or 6. (a-0), (a-1(1)),
(a-1(2)), and (a-2(2)) give the full six identities of symmetry, (a-2(1)) and (a-2(3)) yield three identities of symmetry, and
(c-0) and (c-1) give two identities of symmetry, while the expression in (a-3) yields no identities of symmetry.

Here we will just consider the cases of Theorems 4.8 and 4.17, leaving the others as easy exercises for the reader. As for
the case of Theorem 4.8, in addition to (4.14)-(4.16), we get the following three cases:

n _ _
Z Bigu2w3 (w1y1)Stquiw2 (w3 — 1)Sp gurws (w — Dwi M wi ™™ TwiH1, (4.1)
r - \k,ILm
+I4+m=n
n _ _
By g3 (W2y1)Sgvaws (Wi — 1Sy quiwa (w3 — Dwh Mwktm=Typkt=1, (4.2)
r - \k,I,m
+I+m=n
n _ _
Z By quivz (w3y1)Syquiws (wy — 1S guaws (wy — Dwh M wi ™ wi+, (4.3)
r - \k,I,m
+I+m=n

But, by interchanging | and m, we see that (4.1)-(4.3) are respectively equal to (4.14)-(4.16).
As regards Theorem 4.17, in addition to (4.24) and (4.25), we have

n 1= _
E Sk,q"” (wZ — ])Sl’qwz (u)3 — 1)Sm,q"’3 (U)] — 1)11))1{ lwlz 1w;n ], (44)
r - \k,I,m
+I4+m=n
n 1= _
§ Skgrz (W3 — 1)S;gus (w1 — DS e (wy — Dwk ™ wl w1 (4.5)
r - \k,ILm
+Il+m=n
n 1= _
> Skge1 (w3 — 1)S;gw3 (W — DS quz (wr — Dwt wl wd ™, (4.6)
r - \k,ILm
+Il+m=n
n 1= _
E Sk,q"’3 (U)Z — ])Sl,qwz (UJ1 — 1)Smyq"'1 (U)3 - 1)w§ 111)12 le 1. (4.7)
r - \k,I,m
+I+m=n

However, (4.4) and (4.5) are equal to (4.24), as we can see by applying the permutations k — I, | — m, m — k for (4.4)
and k — m,l — k,m — Ifor (4.5). Similarly, we see that (4.6) and (4.7) are equal to (4.25), by applying permutations
k—1L,l—- m,m— kfor(4.6)and k - m,l — k, m — lfor (4.7).

Theorem 4.1. Let w., w;, w3 be any positive integers. Then the following expression is invariant under any permutation of
w1, Wo, W3, SO it gives us six symmetries:

n
H+m_ k+m_ k+l
(k | m>3k.qu3 (w1y1)By gw1ws (W2Y2)Bm gwiwz (w3yz)wy " wy ™ ws
k+l4+m=n [
_ n H+m_ k+m_ k+l
= kL m By qwaws (w1y1)By qviwa (W3Y2) By gwiws (Way3)wy  ws w,
k+1l+m=n [
_ n I+m, k+m. k+l
- k, 1, m By qu1ws (way1) By guaws (W1Y2) B guiwa (wsys)wy " wy ™ ws
k+Il+m=n (e
_ n B B B H+m, k+m k+l
= kL m ) Bearis (w2y1)B1, g1z (W3Y2) B graws (wiy3)w, " wy ™ wy
k+1+m=n [
_ n B B B I+m_ k+m_ k+l
= kL m ) Bra (w3y1) By gwaws (W1Y2)Bm gwiws (wayz)ws " wy™ w,
k+1+m=n ’
n I+m_ k+m_ k+l
= E Bi,qwiwa2 (w3y1) By gwiws (WaY2) B gwaws (w1ys)wy " wy wyT . (4.8)
k+1+m=n

k,I,m

Theorem 4.2. Let w1, w,, w3 be any positive integers. Then the following expression is invariant under any permutation of
w1, Wa, W3, SO it gives us six symmetries:

n
m, & k-1
E <, | )Bk,qwzwa (W1y1)Brgu1ws (W2Y2)Sm ge1w2 (w3 — DwiMwstMwit
k+14+m=n <, [, m
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n
I+m_ k+m_ k+1—1
= (k I m) By quaws (W1y1) By gwiwa (W3Y2)Sm quivs (wa — Dwi ™ ws™ w,
k+14+-m=n ’
n
I+m_ k+m_ k+1—1
= <k I m) Bk,qwlw3 (w2y1)Bl.q“’2w3 (w1y2)5m,qw1w2 (U_)3 - 1)w2 wy Wy
k+I4+m=n [
n I+m_ k+m_ k+I1—1
= kL m Bygw1ws (w2y1) By guivz (W3y2)Sm,qraws (w1 — Dwy " ws " wy
k+14+m=n [
_ n S H+m, k+m k+l—1
= K Lm By quiva (W3y1) By gwiws (WY2)Sm quaws (w1 — Dws  wy " wy
k+14+m=n o
_ n S H+m, k+m k+l—1
= K Lm By quiva (W3y1) By gwaws (W1Y2)Sm qeiws (W — Dws wi™ wy ' .
k+14+m=n o

Putting ws = 1in (4.9), we get the following corollary.

Corollary 4.3. Let wq, w; be any positive integers.

n n
n _ n _
> (k) Biguz (W1y1)Ba—kgu1 (way2)wi “wh = (,{) Big1 (way1)Ba_i vz (wry2)wh ™ wf
k=0 k=0

n _
(k I m) B g1v2 (V1)Bigv1 (W2y2) S qva (w1 — DwsTMpk+!

k+1+m=n
n
k=1
= E Bi,qw1 (w2y1) By qviwa (¥2)Sim,qw2 (w1 — 1)w12+mw1<+1
\ - \k,I,m
k+14+m=n

n _
E By gv12 (V1)Bgv2 (W1Y2)Sm,qv1 (wz — Dwi ™M wkH!
\  \k,I,m
k+1+m=n

n
Lrm. k-1
By qv2 (W1Y1)Brgw1wz (V2)Sm,qo1 (w2 — Dwy™Mw,
; _\k Im
k+1+m=n

Letting further w, = 1in (4.10), we have the following corollary.

Corollary 4.4. Let w4 be any positive integer.

n n

Z (Z) Bk,q(wlyl)ank,q“’l (yZ)w?_k = Z (:) By g1 (_yl)Bn—k,q(wlyz)wll<

k=0 k=0

k,l,m

n k=1
> Bigv1 (¥1)Bi.gu1 (¥2)Sm,g (w1 — Dwy™ .
k+14+m=n

(4.9)

(4.10)

(4.11)

Theorem 4.5. Let w1, w;, w3 be any positive integers. Then the following expression is invariant under any permutation of

w1, Wo, W3, SO it gives us six symmetries:

n wq—1
n ; w
n—1 n—k_  k wyws3i 2.
Wy Z ( )Bk,qwl'”z (w3y)wz "wy E 42" Brkguivs | way2 + —i
k=0 k i—0 w1

I
._As:r
L
(]
—~

n wy—1
n . w
—k, k 3,
)Bk,qus (way)wy " wy E gV By_g quiwa | wy, + —i
k=0 k i=0 W1

n wy—1

n : w

n—1 n—k .k wqwsi 1.

=w, (I()Bk,qwlw2 (wsyw; " wy 2 , q """ By, qvavs3 <w1y2 + w l)
i=0 2

n wy—1
n : w
-1 —k, k 3.
=t 3 (1) B otk 3 B e (e + 220)
i=0 2
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n n w3—1 w
n—1 n—k_ k i 1.
= w3 ( {) By quiws (way)wy wy E q"1"2 By qvaws (wlYZ + uT’)
i=0 3

=

w3—1
n - w
n—1 n—k, k wiwyi 2.
= w; < )Bl<,qwzw3 (wiyDwi “w, E q " By quiws | way2 + —i) .

o0k =0 w3

Letting w3 = 1in (4.12), we obtain alternative expressions for the identities in (4.10).

Corollary 4.6. Let w1, w, be any positive integers.

n n

n _ n
Z (k> Brgvz2 (W1Y1) Bk gv1 (wayn)w!*wk = Z <k) By qv1 (W2Y1)Bn_i quz2 (w1y2) w)

k=0 k=0
n w1—1
n : w
n—1 k i 2.
=wj Yy (l >Bk,qu’2 VOS> q"2 By pgun <w2y2 + *l>
=0 K i=0 W1
n n wy—1 i
n—1 n—k i
= w, Z (l > Bk,q"” (w2y1)w2 Z q“’Z’Bn,k’quQ <y2 + —)
=0 K i—0 w1
n n wy—1 w
-1 i 1.
= wg (I >B’<-qw1"’2 (y1)w’1< Z qwlanfk,q“’Z <w1}'2 + 71)
=0 K i—o w2
n wy—1 .
-1 n n—k . wii !
= w, By, qw2 (w1y1)wy Z q " Bykquiw2 [ Y2+ — .
ook i=0 w2

—k, k
wy

Putting further w, = 1in (4.13), we have the alternative expressions for the identities for (4.11).

Corollary 4.7. Let w1 be any positive integer.

n

n " /n
Z <k) Bigv1 (V1) Bnk g (wiy2)wk = Z (k) Big»1 (V2)Bnk g (wiy1) wk
=0

k=0

n wi—1

— n . i
= w;l 1 (k) Bk,q“«’] (V1) Z qanfk.q“’l (y2 + w71> .

k=0 i=0

Theorem 4.8. Let w1, w,, w3 be any positive integers. Then we have the following three symmetries in wy, wa, ws:

n
2 -1 —1
(I I ) Bk'qwzwg‘ (wly])sl’qwlug (wZ — ])Smyqquz (u)3 — 1)u)!l+mu)12{+m w’;+l
k+I+m=n ¢ L m

n
§ : -1 —1
= ( ) Bkqu1w3 (wzy‘l)squ“"lu’Z (u)3 — 1)Sm’q"’2“’3 (wl — 1)w12+mu)§+m wlf+l

k+I+m=n k’ I’ m

= 3 —1 m —
( ) qP1w (w3y1) 1.g"2w3 (U)] I)Sm,qmﬂ” (w2 )w[ u)k+m 1w
k+14+m=n q +

k,1,m

Putting w3 = 1in (4.14)—(4.16), we get the following corollary.

Corollary 4.9. Let wq, w, be any positive integers.

n

k+1-1
b .

n
n —k, k=1 n
Z <k) Bi g2 (W1Y1)Sn—k qv1 (w2 — Dw] wy™ ' = Z <k) By qv1 (W2y1)Sn—k,qv2 (w1 — Dw

k=0 k=0

n _ _
= E By gviva (¥1)Stgv2 (W1 — 1S qur (wy — Dwkt™ Tkt
P - \k,I,m
+I+m=n

Letting further w, = 1in (4.17), we get the following corollary. This is also obtained in [2, (2.22)].

n—k_ k-1

2

Wy

2357

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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Corollary 4.10. Let w, be any positive integer.

BuoCwiyn) = Y () Bram OSu-sglwr = Dk~ (4.18)

k=0

Theorem 4.11. Let w, w,, w3 be any positive integers. Then the following expression is invariant under any permutation of
w1, Wo, W3, SO it gives us six symmetries:

LI (M
i 1; (k)s”—keq"”“’z (w3 = Dwy~“wy™ Z q">"> By guivs (wzyl + l)

i=0

n w1—1
_ n ,
— wrl1 1 2 :(k Sn_ kg3 (wy — 1)wn k -1 § : qw2u3lBk g2 <w3y1 + —l)

k=0 i=0

wy—1

_ n
a3 (st Dot S g, (s 2)
k=0 i—0
n n wy—1 )
=wg” )S” kqu2vs (wi — Dwy™ ‘ Il<71 Z q""" By gu1v2 <w3J/1 + *1>
o K i=0
n n w3—1
= wg*1 )Sn—k,qus (wy — 1)11)']1 Z qw1wlek qu2v3 <w1y1 + 7l>
k=0 k i—0
n n w3z—1
= w3 (k) Snteqrana (wy = D~ wi™" 37 g2 By gunes <w2y1 + *1> ' (4.19)
k=0 i—0

Putting w3 = 1 in (4.19), we obtain the following corollary. In Section 1, the identities in (4.17), (4.20) and (4.22) are
combined to give those in (1.8)-(1.15).

Corollary 4.12. Let w1, w; be any positive integers.

w1—1 wy—1
TY g (wa+ 22) = a3 g (s + 20)

i=0 i=0

n
(k)Bk a1 (W2y1)Sn—k,qv2 (w1 — Dwy~ kwlf !

k=0
" /n
= ( )Bk g2 (W1Y1)Sn_kgv1 (W — Dw!Fwk™!
= \k
n n wi—1
= w;’—l Z (] )Snfk,q"’l (wz — 1)w -1 Z qwz By g2 <y1 =+ —)
k=0 < i=0 Wi
n n wy—1
= u); 1 Z (] )Sn,k’qwz (u)1 — 1)u) Z qw1 Bk QU2 <y1 =+ 7) . (420)
k=0 < i=0
Letting further w, = 1 in (4.20), we get the following corollary. This is the multiplication formula for g-Bernoulli

polynomials (cf. [2, (2.26)]) together with the relatively new identity mentioned in (4.18).

Corollary 4.13. Let w be any positive integer.

wy—1
Bn,q(w1y1) ! Z an g1 (}ﬁ + 7)

i=0 w1

n

Z n B S -1 k—1
k k,q”1 1) n#(,q(wl )w1

k=0
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Theorem 4.14. Let w1, w,, w3 be any positive integers. Then we have the following three symmetries in wy, wo, ws:

wi—1wy—1
(w]wz)n 1 Z Z qw2w31+w1wz]B P12 <w3}’1 —+ 71 —+ 7])

i=0 j=0
wy—1w3—1
— (wzwa)n 1 Z Z qw1w3l+w1w7JB 723 (wl.V1 + 7, + ])
i=0 j=0
w3—1wy—1
= (wsw)"! Y Y By g (wzyl +fz+*1> (421)
i=0 j=0 w1

Letting w3 = 1in (4.21), we have the following corollary.

Corollary 4.15. Let wq, w; be any positive integers.

wi—1 wy—1
Y "By (wzy1 - —J) =wi"' Y " Bygn (wm - —l)

Jj=0 i=0

wi—T1wy—1 i ]
_ (w‘le)n 1 Z Z qwzH—wl]B qu1v2 <y] + w— —+ w7> . (422)
i=0 j=0 1 2

Theorem 4.16. Let w1, w,, w3 be any positive integers. Then we have the following two symmetries in wy, wa, ws:

n
E By gv3 (w1Y)By g1 (W2Y) By gz (w3y) wiwhwh'
P k,I,m
+Il4+m=n
n

= By gv2 (w1Y)B1 g1 (w3Y) B qvs (woy) whw! w'. (4.23)
‘ - \k,I,m
+l+m=n

Theorem 4.17. Let w1, w,, w3 be any positive integers. Then we have the following two symmetries in w1, wy, ws:

n

Z Sk,qw3 (LU1 - ])Sl,q“’l (wz 1)Sm q2 (u)3 - 1)w l lw;” 1 (4.24)
P - \k,I,m
+Il+m=n

n

= > Skqvz (w1 — 1)S;gu1 (w3 — 1)Spgv3 (wy — Dwk™ w1, (4.25)

‘ k,l,m

+I+m=n

Putting w3z = 11in (4.24) and (4.25) and multiplying the resulting identity by w;w,, we get the following corollary.

Corollary 4.18. Let w1, w, be any positive integers.

n

. /n n
Z (k) Sk,qw1 (wz - 1)Sn—k,q(w1 - 1)wl1< = Z (k) Sk,qw2 (wl - 1)Sn—k,q(w2 - 1)w12<

k=0 k=0
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