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ON SOME OPERATIONAL REPRESENTATIONS 

OF g-POLYNOMIALS 

M U M T A Z A H M A D K H A N , Aligarh 

(Received August 9, 1993) 

1. INTRODUCTION 

In an earlier paper [16] the present author defined the Tfc,q,x-operator by the 
relation 

(1) Tk,qtX = x{l - q){[k] + qkxDq,x}, 

where fc is a constant, |g| < 1, [fc] is a q-number and Dq,x is the g-derivative with 
respect to x. 

The present paper gives applications of the T^,^-operator in finding operational 
representations for certain g-polynomials. In a separate communication it has been 
demonstrated how successfully this operator can be used to obtain generating func
tions and recurrence relations for g-Laguerre and other polynomials. 

Some of the results obtained in this paper are g-analogues of those obtained by 
Al-Salam [5], Mittal [19] and Rainville [20] while the rest are believed to be new. 

2 . DEFINITIONS AND NOTATION 

For most of the definitions and the notation needed in this paper, the reader is 
referred to the papers by Agarwal and Verma [2], Hahn [9], Khan [13-18] and to the 
books by Exton [8] and Slater [21]. However, definitions of some g-polynomials are 
given below: 

The g-Jacobi polynomials are defined by 

( - l ) n ( O 7 ) ^ n 7 + n ( n - l ) / 2 

(1) Jn(q,7,P;x) = { l) ( g ; ; L 1 ) n 2<Pi[<r\9/5+'l-1;<f Y ^ r ] 
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and 

(2) PŮ0)(x) = ij^P:l^i[q-n,q1+a+í3+n;ql+a;x]. 
\Q)n 

Here the g-polynomial (2.1) is due to Hahn [10]. 
The g-Rice and generalized g-Rice polynomials are given by the relations 

(3) 

and 

HnЖp,x)=3<P2[q-n,q1+n,qt;q,q 

(4) H£gn(t,p,x) = {±-p^3^2{q--,q^+^,q^,q^:qp-x}. 
\Q)n 

Further, the g-polynomial due to Al-Salam and Carlitz [7] is defined by 

(5) U^(x)=xn(-) m 
\X/ n xq1 n; q 

For a = — 1 this polynomial gives the q-analogue of the Hermite polynomial. 

Besides, the reader is referred to the papers by Jackson [12] and Khan [14] for 

g-Laguerre polynomials and Abdi [1] and Ismail [11] for g-Bessel polynomials. 

3. RESULTS USED 

Some of the results of Khan [16] required in this paper are listed below: 

(1) T ^ r c ^ [ ^ 

(2) 

(3) 

(4) 

T£q = *n(- - q)n II (I* + i] + Qk+J*Dg) 
j=0 

n-1 

= xn(l-q)nl[x-1(l-q)-1Tk+j,q, 

F(Tk,q){xaf(x)} = xaF(Tk+a,q)f(x), 

T£q{u(x)v(x)} = J2 (") qkrTk
n-rv(qrx)T^,qu(x). 

r=0 ^ A 
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4 . OPERATIONAL REPRESENTATIONS 

Here we give certain operational formulae and derive certain results for q-
Laguerre polynomials. Besides, certain operational representations of some other 
^-polynomials will also be obtained. 

Using (3.2) the following equivalent forms are obtained. 

(i) {X(i - qa) + q
aTKq}

nf(x) = rfcH.a,,/r» 
n - 1 

= xn(i - q)
n n x~lQ- - q)~lTk+a+jtqf(x), 

3=0 

(2) {qa(l + x)Tk,q + x(l - qa) - x2qa}nf(x) 

= xn(l - q)n [ [ {x(l + x)qk+a+Wq - ^ S ^ l + [k + a+j]}f(x), 
3=0 Q 

and 

(3) J ] {q«TKq + x(l - q°) - ^~}f(x) 
3=0 q 

n — 1 j 

= xn(l-q)nY[{Xq^^Dq-^- + [k + a + j}}f(x). 
j=o q 

Formulae (4.2) and (4.3) are obtained by applying (4.1) to eq(—x)f(x) and 
Eq(x)f(x), respectively 

Now the left hand side of (4.2) can also be written as 

E„(~x)T^q{eq(-x)f(x)} = x-aEq(-x)Tlq{xaeq(-x)f(x)}. 

Thus, we get the identity 

(4) T£ч{xaeq(-x)f(x)} 

n(q)neq(-x) £ ^±^qL\:+;\xqn+a+k-\ l) J(x) 
fť0 (l)rX 

Similarly, we have 

(5) Tlq{xaEq(x)f(x)} 
n 

(n\„RjT.nn\S^ 
(n)rX 

xa+n(q)nEq(xqn) J2 ţ^чL
(:Żr

k-l)(xq
n)TZJ(x). 

r=0 
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Next, considering the operator o(Pi[—,Qa+k', —tTk,q], we obtain 

(6) o<Pi[-,qa+k-.-tTk,q]xa+n = xa+n

lV>1[qk+a+n,qk+a;-xt]. 

One can also easily obtain the operational formulae 

(7) ^i[-,q

a+k;Tk,q]{{l_
X

xt)kJ = {l_
X

xt)k+J<,({l_x

X

tqk+a]) 

and 

(8) oVi 
1 

nk + oc. 
. Ч ' 

Tk,q 

q . {». 
xa \ 

- Xt)k + a f (1 

xa 

~ Xt)к + a 
• ( z__ ^ 
q\\l-xtak+a}J' 

E, 

As this stage we consider the following g-polynomials: 

(A) q-Laguerre Polynomials. We shall obtain certain formulae and operational 

representations of G-Laguerre polynomials. Putting f(x) = 1 in (4.4) and (4.5) and 

taking different values of a and k, we get a number of operational representations 

for the g-Laguerre polynomials qLn (x,l) and qLn (x), e.g., 

(9) T£q{xaeq(-x)} = xa+n(q)neq(-x)qLn
a+k-1\xqn+a+k-\l), 

(10) Tk\q{xaEq(x)} = xa+n(q)nEq(xqn)qLla+k-1\xqn) 

are obtained by taking f(x) = 1 in (4.4) and (4.5). 

By a simple change of variable, we also note that 

(11) T-Jx«e g ( -Ax)}=.T a + "(g) n e ? ( -A.T) ? 4 Q + f c - 1 ) (A.TQ n + a + i - 1 , l ) 

and 

(12) T£q{xaEq(\x)} =xa+n(q)nEq(\xqn)qLn
a+k-1\\xqn). 

Now (4.11) and (4.12) can also be written as 

(13) {qa(l+\x)Tk,q + x(l-qa)-\x2qa}n-l=Xn(q)n qLn
a+k-1\\xqn+a+k-1, 1) 

and 

(14) {qaTk,q + x(l - qa) - \x2}n • 1 = xn(q)n qLn
a+k~iy> (\xqn). 

Further, (4.9) gives 

TJT<q{xa+neq(-x)qLn
a+k-1>>(xqn+a+k-\\)} = ^ , [ i - r y / e , ( - i ) } ] . 
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Hence 

(15) TZq{xa+neq{-x)qL<£+k-l\xqn+a+k-\\)} 

= M_i±_.^+m+ne9(-x)9L^+*-1) {xqm+n+a+k-\ 1). 

Similarly, (4.10) gives 

(16) TZq{xa+nEq{xqn)qlJ£+k-x\xqn)} 

_(j)^x«+rn+nEqixqm+n)qL(«+k-l)ixqm+n) 

\Q)n 

Using the g-analogue of Rummer's transform (4.6) yields 

oЫ-;qa+k;-tтk,q]xa+n = xa+n

Єq(-xt)lV}1 

which can alternatively be written as 

r n ; xtqn+a+k-1 

~k-\-ot. 

(17) ofi[-;q ;-tik,q\x 

(q)n 

(qk+a)n 
'^—xa+neq(-xt)qLІa+k-íî(xtqn+a+k-\l). 

-tTy k,q 

L^+a; 
a+n _ (q)nXa+n 

c ~ iqk+a\ "q\-*-"i li E.ixtq^L^+^Hxtq1^). 

Similarly, 

(18) o^i 

Also, we have 

(10) (l + ^_)_I-._f^ifli.)(V«/,.1,. 

As an immediate consequence of the Leibniz formula (3.4) and the formula (4.9) 

we get 

(20) qLn
a+'3+kHxqrl+a+l3+k,l) 

= X_ (0 + r) qr(k+a)(i + x)r ,E!r_+
r
fc"1)(^a+n+fc-M), 

r=0 ^ r A 

and using (3.4) and (4.10) we obtain 

(21) 4Lla+V+kHxqn) = £ (" + Г ) q^k+a\Lt+

r

k~l)(xqn). 
г=0 
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Formula (4.20) is obtained by putting u = x1+(3 and v = xaeq(-x) in (3.4), while 
(4.21) is obtained by putting u = x1+(3 and v = xaEq(x) in (3.4). On the other hand, 
if we put u = x^Eq(u,x), v = xaeq(-Xx) in (3.4) and then employ (4.11) and (4.12), 
we get the following addition-like theorem, involving the G-Laguerre polynomials 

9 L n
a ) (x , l ) and qLn

a)(x): 

(22) ,4 a + ^ + f c - 1 } ( [A + n]xqn+a-H3+k-\ 1) 

From (4.13) and the shift rule (3.3) we have the following formula: 

/oq\ (fljm+n r (a+k-1) , m+n+a+k-l i\ 
( 3 ) (^U^^" ^ '^ 

___ /n\ t_<r
,.r-r(r+cH-.-c-l) 

— V^ [ M r(n+r+a+fc-l)/„_m+n+r+„ + „-l -,\ 
_ ^ W , («fc+°)r ' L m ( 9 , 1 } ' 

Similarly, we obtain 

(r,A\ {Q)m+n (a+k-l), nrn+n\ _ \~* ____r___^ - (n+r+a+/e_i) , m v 
( ) (9 ) m (9*+«)n' W + n ( ? ) " ^ 0 («)r(? fc+«)- " m [ i ) -

(B) q-Bessel Polynomials. Here we shall give three operational representations for 

o-Bessel Polynomials. One can obtain many others 

(25) Tn
+ntqeq(q

n+1/x) = ^ ( - i r < 7 - " < n + 1 ' e , ( g / _ ) J ( < z ; c , n ; _ ) . 

To obtain (4.25), eq(q
n+1 /x) is replaced by its equivalent infinite series and Ty

c\nq 

is operated on the variable x of the series. We then use the q-analogue of Kummer's 
transform and finally the resulting finite i<Di series is written in reverse order. 

Similarly, we also have 

(26> T-><© - <i$^*H"+ ' ,^©* c -"' ,"«''+ '> 

and 

(97) I " e ('-) - (g )»(g 1 - c ) " ( -» )"g > n ( 3 ' t + 1 ) - n c , (l)j(q.c-in n-T,»+ 1) (-<) Ic-n„e^J- ( .T 9)n ( g i-c)2 n
 e ' U J l ? , C - n ' " " X f y h 
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(C) q-Jacobi Polynomials. We give here the following operational representations 

for the g-Jacobi polynomials Jn(g, c.,/3; x) due to Hahn [10] and the g-Jacobi poly-
a , / i " 
•><7 nomials P7l^q (x): 

(хд1-а)ао(дь+п~1)п(-х)п 

( ~ 9 b - 2 a ) o o - ( l / 2 ) n ( n - l ) + . : 
(28) Ta",,(l - xV — Wfr-a-l = ;7_ t_._rV„(l/2)n(n-\);na UM^X) 

and 

(29) 7_*+1,,(l - -*T n)-+n = xn(l - x)b(q)nPn°ib)(x). 

Also, we have 

(30) __v_ ,,(i - x)b =
 {q)nllZ^~xn p{n:tn)w) 

and 

(3D -?+___„(1 - _)6 = Mli l___^l^p( : -">) ( ^n ) . 

Relations (4.30) and (4.31) can alternatively be written as follows: 

Jn(g,a, 1 + a + b-n;crgn+a-1) 

(32) T-q(l-x)h 

___ (ga+6)n(l-xgb)oo(-a:)" 

gi n ( n-1 ) + n a(l--rg6)oo 

(33) Fn_n)_(l-x)6 

( g a + b ) n ( l - ^ ) 0 0 ( - a ; ) - g — + ^ + 1 ) / 2

 y , a _ x 

= 7-J-3 T̂ Jn(g,a - n, 1 + a + b-n;xga 1 ) . 
(1 — xg joo 

(D) Generalized q-Rice Polynomials. Using (3.1) we have the following operational 

representation for the generalized g-Rice polynomials Hn,q. (£,p, x): 

(34) T£Ziq 2<Pi\q-nrf\q*\x] = xn+e(ql+»+n)p(q)nHn»f\Z,p,x). 

If we put a = 0 = j3, (4.34) reduces to 

(35) Tlq 2<Pi[q-n,q*;qp;x} = xn(q)nHn,q(Z,P,x). 

(E) A q-polynomial of Al-Salam and Carlitz. One can easily obtain the following 

operational representation for Un (x): 

(37) (1 - „ ) ( - l ) ^ ( " - 1 ) / 2 e 0 ( i T 1 _ n , ? , _ a ) G n ( a 9 - 1 , g ) = Un«Hx) 

where Gn(x,q) is the Szego polynomial defined by 

(38) Gn(x,q) = jr(n)Qr(r-n)*r-
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