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Abstract. In this paper, we present k sequences of generalized Van der Laan
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and Lucas polynomials. We give some properties of these polynomials. We
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1. Introduction

Fibonacci, Lucas, Pell and Perrin numbers have been known for a long time.
There are many studies, relations, and applications of them. Generalizations of
these numbers have been studied by many researchers.
Miles [14] de�ned generalized order-k Fibonacci numbers (GOkF) in 1960. Er
[1] de�ned k sequences of the generalized order-k Fibonacci numbers (kSOkF)
and gave matrix representation for these sequences in 1984. Kalman [2] obtained
a Binet formula for these sequences in 1982. Karaduman [3], Taşç¬and K¬l¬ç
[16] studied these sequences. K¬l¬ç and Taşç¬ [6] de�ned k sequences of the
generalized order-k Pell numbers (kSOkP) and obtained sums properties by
using matrix method. Kayg¬s¬z and Bozkurt [5] studied a generalization of
Perrin numbers. Y¬lmaz and Bozkurt [17] gave some properties of Perrin and
Pell numbers.
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Meanwhile, MacHenry [7] de�ned generalized Fibonacci polynomials (Fk;n(t)),
Lucas polynomials (Gk;n(t)) in 1999, studied these polynomials in [8] and de�ned
matrices A1(k) and D

1
(k) in [13]. Studies of MacHenry include most of other

studies mentioned above. For example, A1(k) is reduced to k sequences of the
generalized order-k Fibonacci numbers and A1(k) is reduced to k sequences of
the generalized order-k Pell numbers when t1 = 2 and ti = 1 (for 2 � i � k),
respectively. This analogy shows the importance of the matrices A1(k) and D

1
(k)

and generalized Fibonacci and Lucas polynomials. Based on this idea, Kayg¬s¬z
and Şahin de�ned k sequences of the generalized order-k Lucas numbers using
Gk;n(t) and D1

(k) in [4]:
In this article, we �rst present k sequences of generalized Van der Laan and Per-
rin polynomials (V ik;n(t) and R

i
k;n(t)) by using generalized Fibonacci and Lucas

polynomials. Then, we obtain generalized order-k Van der Laan and Perrin
numbers, k sequences of the generalized order-k Van der Laan and Perrin num-
bers by the help of these polynomials and matrices A1(k) and D

1
(k). In addition,

we examine relationships between them and explore some of the properties of
these sequences. We believe that, our results are important, especially, for those
who are interested in well known Fibonacci, Lucas, Pell and Perrin sequences
and their generalizations.
MacHenry [7] de�ned generalized Fibonacci polynomials Fk;n(t) and Lucas poly-
nomials Gk;n(t) as follows;

Fk;n(t) = 0; n < 0; Gk;n(t) = 0; n < 0;
Fk;0(t) = 1; Gk;0(t) = k;

Fk;n(t) =
kP
j=1

tjFk;n�j(t); Gk;1(t) = t1,

Gk;n(t) = Gk�1;n(t); 1 � n � k;

Gk;n(t) =
kP
j=1

tjGk;n�j(t); n > k

where ti (1 � i � k) are constant coe¢ cients of the core polynomial

(1.1) P (x; t1; t2; : : : ; tk) = x
k � t1xk�1 � � � � � tk:

In [13], matrices A1(k) and D
1
(k) are de�ned by using the following matrix,

(1.2) A(k) =

2666664
0 1 0 : : : 0
0 0 1 : : : 0
...

...
...

. . .
...

0 0 0 : : : 1
tk tk�1 tk�2 : : : t1

3777775 .

A1(k) is obtained by multiplying A(k) and A
�1
(k) by the vector t.

Derivative of the core polynomial (1.1) is

P�(x) = kxk�1 � t1(k � 1)xk�2 � � � � � tk�1;
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which is represented by the vector (�tk�1; : : : ;�t1(k�1); k): The matrix D1
(k) is

obtained by multiplying A(k) and A
�1
(k) by the vector (�tk�1; : : : ;�t1(k� 1); k).

Right hand column of A1(k) contains sequence of the generalized Fibonacci poly-
nomials Fk;n(t). In addition, the right hand column of D1

(k) contains sequence
of the generalized Lucas polynomials Gk;n(t). Also in [8, 9, 10, 11, 12], authors
studied generalized Fibonacci and Lucas polynomials and obtained very useful
properties.
For easier reference, we have stated some theorems that will be used in following
sections.

Theorem 1.1. [8] Let Fk;n(t) and Gk;n(t) be the generalized Fibonacci and
Lucas polynomials, respectively. Then,

kX
j=1

@Gk;n(t)

@tj
tj = nFk;n+1(t):

Theorem 1.2. [13] Let A(k) be a k � k matrix as in (1.2). Then,

detA(k) = (�1)k+1tk

and

(1.3) detAn(k) = (�1)n(k+1)tnk :

The well-known Cordonnier (Padovan) sequence fCng is de�ned recursively by
the equation,

Cn = Cn�2 + Cn�3; for n > 3

where C1 = 1; C2 = 1; C3 = 1:Van der Laan sequence fVng is de�ned recursively
by the equation,

Vn = Vn�2 + Vn�3; for n > 3

where V1 = 1; V2 = 0; V3 = 1. Perrin sequence fRng is de�ned recursively by
the equation,

Rn = Rn�2 +Rn�3; for n > 3

where R1 = 0; R2 = 2; R3 = 3 [15]:
In this paper, we de�ne generalized order-k Van der Laan numbers vk;n and k se-
quences of the generalized order-k Van der Laan numbers vik;n with the help of k
sequences of generalized Van der Laan polynomials. Also, we de�ne generalized
order-k Perrin numbers rk;n and k sequences of the generalized order-k Perrin
numbers rik;n with the help of k sequences of generalized Perrin polynomials: In
addition, we present some relations between these polynomials and sequences.
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Moreover, we show that there is a parallel relationship between Van der Laan
and Perrin polynomials (numbers) as Fibonacci and Lucas polynomials (num-
bers).

2. Generalized Van der Laan and Perrin Polynomials

We de�ne generalized Van der Laan polynomial and k sequences of generalized
Van der Laan polynomials by the help of generalized Fibonacci polynomials
(Fk;n(t)) and matrices A1(k):

De�nition 2.1. Generalized Fibonacci polynomials (Fk;n(t)) are called gener-
alized Van der Laan polynomials, in the case of t1 = 0 for k � 3 . So, generalized
Van der Laan polynomials are

Vk;n(t) = 0; n < 0

Vk;0(t) = 1

Vk;n(t) =
kX
i=2

tiVk;n�i(t); n > 0

For k � 3, substituting t1 = 0, generalized Fibonacci polynomials (Fk;n(t)) and
matrices A1(k) are together reduced to the following polynomials. For n > 0 and
1 � i � k

(2.1) V ik;n(t) =
kX
j=2

tjV
i
k;n�j(t)

with boundary conditions for 1� k � n � 0;

V ik;n(t) =

�
1 if k = i� n;
0 otherwise,

where V ik;n(t) is the n-th term of i-th sequence.

De�nition 2.2. The polynomials derived in (2.1) are called k sequences of
generalized Van der Laan polynomials.

We note that for i = k and n > 0, V ik;n(t) = Vk;n(t):
In addition,

V(k) =

2666664
0 1 0 : : : 0
0 0 1 : : : 0
...

...
...

. . .
...

0 0 0 : : : 1
tk tk�1 tk�2 : : : 0

3777775
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is the generator matrix of k sequences of generalized Van der Laan polyno-
mials. Matrix V1(k) is obtained by multiplying V(k) and V

�1
(k) by the vector

v = (tk; tk�1; tk�2; : : : ; 0).
Note that it is also possible to obtain matrix V1(k) from matrix A1(k) by substi-
tuting t1 = 0.
Let eVn be generalized Van der Laan matrix, which is obtained by n-th power of
V(k) as;

(2.2) eVn = (V(k))n =
266664
V 1k;n�k+1(t) V 2k;n�k+1(t) : : : V kk;n�k+1(t)

...
... : : :

...

V 1k;n�1(t) V 2k;n�1(t)
. . . V kk;n�1(t)

V 1k;n(t) V 2k;n(t) : : : V kk;n(t)

377775 :

Then, we have V(k) = eV1:
Corollary 2.1. Let eVn be as in (2.2). Then,

det eVn = (�1)n(k+1)tnk :
Proof. It is direct from Theorem 1.3.

We de�ne generalized Perrin polynomials and matrix R1(k) by the help of gen-
eralized Lucas polynomials (Gk;n(t)) and matrices D1

(k):

De�nition 2.3. Generalized Lucas polynomials (Gk;n(t)) are called generalized
Perrin polynomials, in case t1 = 0 for k � 3 . So, generalized Perrin polynomials
are;

Rk;0(t) = k

Rk;1(t) = 0

Rk;2(t) = 2t2

Rk;3(t) = t2Rk;1(t) + 3t3

Rk;4(t) = t2Rk;2(t) + t3Rk;1(t) + 4t4
...

Rk;k�1(t) = t2Rk;k�3(t) + � � �+ tk�1Rk;1(t) + ktk

and for n � k,

Rk;n(t) =
kX
i=2

tiRk;n�i(t):
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We obtain matrix R(k) by using row vector (�tk�1; : : : ;�t2(k � 2); 0; k). Let
k-th row of matrix R(k) be the vector

(�tk�1; : : : ;�t2(k � 2); 0; k)

and get i-th row of matrix R(k) by

(�tk�1; : : : ;�t2(k � 2); 0; k)(V(k))�(k�i)

for 1 � i � k � 1: So, it looks like

(2.3) R(k) =

2666664
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�(k�1)
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�(k�2)

...
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�1

(�tk�1; : : : ;�t2(k � 2); 0; k)

3777775
k�k

:

For k � 3, by substituting t1 = 0, generalized Lucas polynomials (Gk;n(t)) and
matrices D1

(k) are together reduced to polynomials R
i
k;n(t). That is, for n > 0

and 1 � i � k

(2.4) Rik;n(t) =
kX
j=2

tjR
i
k;n�j(t)

with boundary conditions for 1� k � n � 0;

R(k) = [ak+n;i] = R
i
k;n(t):

De�nition 2.4. The polynomials Rik;n(t) derived in (2.4) are called k sequences
of generalized Perrin polynomials.

For k � 3, by substituting t1 = 0, matrix D1
(k) is reduced to matrix R

1
(k).

Right hand column of R1(k) contains generalized Perrin polynomials Rk;n(t). i-
th column of matrix R1(k) contains i-th sequence of k sequences of generalized
Perrin polynomials.
Let eRn be generalized Perrin matrix obtained by R(k):(V(k))n as;
(2.5)

eRn = R(k):(V(k))n =
266664
R1k;n�k+1(t) R2k;n�k+1(t) : : : Rkk;n�k+1(t)

...
... : : :

...

R1k;n�1(t) R2k;n�1(t)
. . . Rkk;n�1(t)

R1k;n(t) R2k;n(t) : : : Rkk;n(t)

377775 :
Now, we give four Corollaries by using properties of generalized Fibonacci and
Lucas polynomials.
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Corollary 2.2. tr(V n(k)) = Rk;n(t), for n 2 Z.

Corollary 2.3. For n � 1,
V kk;n(t) = V

k�1
k;n�1(t); V

1
k;n(t) = tkV

k
k;n�1(t); R

k
k;n(t) = R

k�1
k;n�1(t) and

R1k;n(t) = tkR
k
k;n�1(t):

Corollary 2.4. For 1 � j � k;

kX
j=1

@Rkk;n(t)

@tj
tj = nV

k
k;n(t):

Theorem 2.1. For 1 � i � k;

Rik;n(t) = (�tk�1)V ik;n�k+1(t) + : : :+ (�t2(k � 2))V ik;n�2(t) + kV ik;n(t):

Proof. Using (2.2) and (2.5) we obtain

eRn = R(k) eVn
)

266664
R1k;n�k+1(t) R2k;n�k+1(t) : : : Rkk;n�k+1(t)

...
... : : :

...

R1k;n�1(t) R2k;n�1(t)
. . . Rkk;n�1(t)

R1k;n(t) R2k;n(t) : : : Rkk;n(t)

377775

=

2666664
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�(k)
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�(k�1)

...
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�1

(�tk�1; : : : ;�t2(k � 2); 0; k)

3777775
266664
V 1k;n�k+1(t) V 2k;n�k+1(t) : : : V kk;n�k+1(t)

...
... : : :

...

V 1k;n�1(t) V 2k;n�1(t)
. . . V kk;n�1(t)

V 1k;n(t) V 2k;n(t) : : : V kk;n(t)

377775 :

From the above matrix multiplication we get,

Rik;n(t) = (�tk�1)V ik;n�k+1(t) + : : :+ (�t2(k � 2))V ik;n�1(t) + kV ik;n(t):
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Example 1. We obtain R34;5(t) by using Theorem (2.1)

R34;5(t) = (�t3)V 34;5�4+1(t) + (�t2(k � 2))V 34;5�3+1(t) + kV 34;5(t)
= (�t3)V 34;2(t) + (�t2(4� 2))V 34;3(t) + kV 34;5(t)
= (�t3)t3 + (�2t2)(t4 + t22) + 4(t23 + t32) = 6t2t4 + 2t32 + 3t23:

Theorem 2.2. For 1 � i � k and positive integers n and m;

V ik;n+m(t) =
kX
j=1

V jk;m(t)V
i
k;n�k+j(t):

Proof. We know that eVn = (V(k))n. We may rewrite it as
(V(k))

n+1 = (V(k))
n(V(k)) = (V(k))(V(k))

n

) eVn+1 = eVn eV1 = eV1 eVn
and inductively

(2.6) eVn+m = eVn eVm = eVm eVn:
Consequently, any element of eVn+m is obtained by the product of a row of eVn
and a column of eVm; that is

V ik;n+m(t) =
kX
j=1

V jk;m(t)V
i
k;n�k+j(t):

Corollary 2.5. In (2.6), if we take n = m, we obtain

(eVn)2 = eVn eVn = eVn+n = eV2n:

Theorem 2.3. For 1 � i � k and n 2 Z;

Rik;n(t) = ktkV
i
k;n�k(t) + � � �+ 3t3V ik;n�3(t) + 2t2V ik;n�2(t):
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Proof.

eRn = R(k) eVn = R(k) eV1 eVn�1
)

266664
R1k;n�k+1(t) R2k;n�k+1(t) : : : Rkk;n�k+1(t)

...
... : : :

...

R1k;n�1(t) R2k;n�1(t)
. . . Rkk;n�1(t)

R1k;n(t) R2k;n(t) : : : Rkk;n(t)

377775

=

2666664
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�(k)
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�(k�1)

...
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�1

(�tk�1; : : : ;�t2(k � 2); 0; k)

3777775

2666664
0 1 0 : : : 0
0 0 1 : : : 0
...

...
...

. . .
...

0 0 0 : : : 1
tk tk�1 tk�2 : : : 0

3777775
266664
V 1k;n�k(t) V 2k;n�k(t) : : : V kk;n�k(t)

...
... : : :

...

V 1k;n�2(t) V 2k;n�2(t)
. . . V kk;n�2(t)

V 1k;n�1(t) V 2k;n�1(t) : : : V kk;n�1(t)

377775

=

2666664
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�(k�1)
(�tk�1; : : : ;�t2(k � 2); 0; k):(V(k))�(k�2)

...
(�tk�1; : : : ;�t2(k � 2); 0; k)

(ktk; : : : ; 3t3; 2t2; 0)

3777775
266664
V 1k;n�k(t) V 2k;n�k(t) : : : V kk;n�k(t)

...
... : : :

...

V 1k;n�2(t) V 2k;n�2(t)
. . . V kk;n�2(t)

V 1k;n�1(t) V 2k;n�1(t) : : : V kk;n�1(t)

377775 :

From the above matrix multiplication, we get

Rik;n(t) = ktkV
i
k;n�k(t) + � � �+ 3t3V ik;n�3(t) + 2t2V ik;n�2(t):

3 .Generalized order-k Van der Laan and Perrin Numbers

De�nition 3.1. For ts = 1; 2 � s � k, the generalized Van der Laan polynomial
Vk;n(t) and V1(k) together are reduced to

vk;n =
kX
j=2

vk;n�j
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with boundary conditions

vk;1�k = vk;2�k = : : : = vk;�2 = vk;�1 = 0 and vk;0 = 1;

which is called generalized order-k Van der Laan numbers (GOkV).

When k = 3, it is reduced to ordinary Van der Laan numbers.

De�nition 3.2. For ts = 1, 2 � s � k; V ik;n(t) can be written explicitly as

(3.1) vik;n =
kX
j=2

vik;n�j

for n > 0 and 1 � i � k; with boundary conditions

vik;n =

�
1 if i� n = k;
0 otherwise

for 1 � k � n � 0; where vik;n is the n-th term of i-th sequence. This general-
ization is called k sequences of the generalized order-k Van der Laan numbers
(kSOkV).

When i = k = 3; we obtain ordinary Van der Laan numbers and for any integer
k; vkk;n = vk;n.

Example 2. By substituting k = 3 and i = 2, we obtain the generalized order-3
Van der Laan sequence as;

v23;�2 = 0; v
2
3;�1 = 1; v

2
3;0 = 0; v

2
3;1 = 1; v

2
3;2 = 1; v

2
3;3 = 1; v

2
3;4 = 2; : : :

We give some properties of kSOkV by using properties of k sequences of gener-
alized Van der Laan polynomials.

Corollary 3.1. Using (3.1), we obtain

V �n = An1

where

(3.2) A1 =

266666664

0 1 0 0 : : : 0 0
0 0 1 0 : : : 0 0
0 0 0 1 � � � 0 0
...
...
...

. . .
...
...

0 0 0 0 : : : 0 1
1 1 1 1 : : : 1 0

377777775
k�k

=

2664
0
0 I
0
1 : : : 1 0

3775
k�k
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where I is a (k � 1)� (k � 1) identity matrix and V �n is a matrix as;

(3.3) V �n =

266664
v1k;n�k+1 v2k;n�k+1 : : : vkk;n�k+1

...
... : : :

...

v1k;n�1 v2k;n�1
. . . vkk;n�1

v1k;n v2k;n : : : vkk;n

377775
which is contained by k � k block of V1(k) for ti = 1, 2 � i � k:

Proof. It is clear that V �1 = A1 and V �n+1 = A1V
�
n by (3.1): So, by induction,

we have V �n = An1 .

Corollary 3.2. Let V �n be as in (3.3). Then,

detV �n =

�
1 if k is odd,
(�1)n if k is even.

Proof. Obvious from (1.3).

Corollary 3.3. For 1 � i � k and any positive integers n and m

vik;n+m =
kX
j=1

vjk;mv
i
k;n�k+j :

Proof. Obvious from Theorem (2.2).

Corollary 3.4. For n > 1� k,

(3.4) v1k;n = v
k
k;n�1 = v

k�1
k;n�2:

Proof. It is obvious from (3.1) that these sequences are equal with index
iteration.

Lemma 3.1. For n > 1� k + i and 1 < i � k,

(3.5) v ik;n = v
i�1
k;n + v kk;n�i:
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Proof. Assume for n > 1 � k + i; v ik;n � v
i�1
k;n = tn and show tn = v kk;n�i:

First we obtain initial conditions for tn by using initial conditions of i-th and
(i� 1)-th sequences of kSOkV simultaneously as follows;

n n i v ik;n v i�1k;n tn = v
i
k;n � v

i�1
k;n

1� k 0 0 0
2� k 0 0 0
...

...
...

...
i� k � 2 0 0 0
i� k � 1 0 1 �1
i� k 1 0 1

i� k + 1 0 0 0
...

...
...

...
0 0 0 0

Since initial conditions of tn are equal to the initial condition of v kk;n with index
iteration, then we have,

tn = v
k
k;n�i:

We give the following Theorem by using generalization of MacHenry in [8].

Theorem 3.1. For n � 1 and 1 � i � k,

v ik;n = v
k
k;n�1 + v

k
k;n�2 + � � �+ v kk;n�i =

iX
m=1

vkk;n�m:

Proof. Writing equality (3.5) recursively, we have

vi+1k;n � v
i
k;n = vkk;n�i�1

vi+2k;n � v
i+1
k;n = vkk;n�i�2

...

vk�2k;n � vk�3k;n = vkk;n�k+2

vk�1k;n � vk�2k;n = vkk;n�k+1

and by adding these equations side by side, we obtain

vk�1k;n � vik;n = vkk;n�k+1 + vkk;n�k+2 + � � �+ vkk;n�i�2 + vkk;n�i�1:
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Then, by using the equation vk�1k;n = vkk;n+1 and (3.1), we obtain

vik;n = vkk;n+1 � (vkk;n�k+1 + vkk;n�k+2 + � � �+ vkk;n�i�2 + vkk;n�i�1)
= vkk;n�1 + v

k
k;n�2 + � � �+ vkk;n�k+1

�(vkk;n�k+1 + vkk;n�k+2 + � � �+ vkk;n�i�2 + vkk;n�i�1)
= vkk;n�1 + v

k
k;n�2 + � � �+ vkk;n�i:

Now we initiate the generalized Perrin numbers.

De�nition 3.3. For ts = 1; 2 � s � k, the generalized Perrin polynomials
Rk;n(t) and the matrix R1(k) together are reduced to

(3.6) rk;n =
kX
j=2

rk;n�j

with boundary conditions

rk;1�k = (k � 2); rk;2�k = : : : = rk;�2 = rk;�1 = �1 and rk;0 = k;

which is called generalized order-k Perrin numbers (GOkR).

When k = 3, it is reduced to ordinary Perrin numbers; (1; (�1); 3; 0; 2; 3; 2; 5; 5; 7; : : :)
with iterating index by two. We rewrite matrix (2.3) for ts = 1, 2 � s � k and
we obtain

R(k1) = [an;i]k�k =

2666664
((�1); (�2); : : : ; (k � 2); 0; k):(A1)�(k�1)
((�1); (�2); : : : ; (k � 2); 0; k):(A1)�(k�2)

...
((�1); (�2); : : : ; (k � 2); 0; k):(A1)�1

((�1); (�2); : : : ; (k � 2); 0; k)

3777775 :

De�nition 3.4. For ts = 1, 2 � s � k; Rik;n(t) can be written explicitly as

rik;n =
kX
j=2

rik;n�j

for n > 0 and 1 � i � k; with boundary conditions

rik;n = [ak+n;i]k�k = R(k1)

for 1� k � n � 0; where rik;n is the n-th term of i-th sequence. This generaliza-
tion is called k sequences of the generalized order-k Perrin numbers (kSOkR).
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Although de�nitions look similar, the initial conditions of this generalization
are di¤erent from the generalization in [5]. These initial conditions arise from
polynomials.
When i = k = 3; we obtain ordinary Perrin numbers and for any integer k � 3;
rkk;n = rk;n.

Corollary 3.5. For 1 � i � k;

rik;n = kv
i
k;n � (vik;n�k+1 + : : :+ (k � 2)vik;n�2):

Corollary 3.6. For 1 � i � k;

rik;n(t) = kv
i
k;n�k + � � �+ 3vik;n�3 + 2vik;n�2:

Conclusion 3.1. There are a number of studies on Fibonacci and Lucas num-
bers and on their generalizations. In this paper, we showed that these studies
can be transferred to the Van der Laan and Perrin numbers. Since our def-
initions of these numbers are polynomial based, it can be applied to a great
number of areas.
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4. Kayg¬s¬z, K. and Şahin, A.(2012): New Generalizations of Lucas Numbers. Gen.
Math. Notes, 10(1), 63-77.
5. Kayg¬s¬z, K. and Bozkurt, D. (2012): k-generalized Order-k Perrin Number Rep-
resentation by Matrix Method, Ars Combin., 105, 95-101.
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16. Taşç¬, D. and K¬l¬ç, E.(2004): On the Order-k Generalized Lucas Numbers. Appl.
Math. Comput., 155(3), 637-641.
17. Y¬lmaz, F. and Bozkurt, D.(2011): Hessenberg Matrices and the Pell and Perrin
Numbers. J. Number Theory., 131, 1390-1396.

103


