Gen. Math. Notes, Vol. 9, No. 2, April 2012, pp.32-41
ISSN 2219-7184; Copyright © CICSRS Publication, 2012
www.i-csrs.org
Available free online at http://www.geman.in

Determinant and Permanent of Hessenberg Matrix and Fibonacci Type Numbers

Kenan Kaygısız ${ }^{1}$ and Adem Şahin ${ }^{2}$
${ }^{1}$ Department of Mathematics Faculty of Arts and Sciences Gaziosmanpaşa University 60240, Tokat, Turkey
E-mail: kenan.kaygisiz@gop.edu.tr
${ }^{2}$ Department of Mathematics Faculty of Arts and Sciences Gaziosmanpaşa University 60240, Tokat, Turkey
E-mail: adem.sahin@gop.edu.tr

(Received: 23-3-12/ Accepted: 10-4-12)

Abstract

In this paper, we obtain determinants and permanents of some Hessenberg matrices that give the terms of k sequences of generalized order- k Fibonacci numbers for $k=2$. These results are important, since k sequences of generalized order- k Fibonacci numbers for $k=2$ are general form of ordinary Fibonacci sequence, Pell sequence and Jacobsthal sequence.

Keywords: Fibonacci Numbers, Jacobsthal Numbers, k sequences of generalized order-k Fibonacci numbers, Pell Numbers, Hessenberg Matrix.

1 Introduction

Fibonacci numbers F_{n}, Pell numbers P_{n} and Jacobsthal numbers J_{n} are defined by

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \text { for } n>2 \text { and } F_{1}=F_{2}=1, \\
P_{n} & =2 P_{n-1}+P_{n-2} \text { for } n>1 \text { and } P_{0}=0, P_{1}=1, \\
J_{n} & =J_{n-1}+2 J_{n-2} \text { for } n>2 \text { and } J_{1}=J_{2}=1,
\end{aligned}
$$

respectively.
Generalizations of these sequences have been studied by many researchers.

Er [3] defined k sequences of generalized order- k Fibonacci numbers ($k \mathrm{SO} k \mathrm{~F}$) as; for $n>0,1 \leq i \leq k$

$$
\begin{equation*}
f_{k, n}^{i}=\sum_{j=1}^{k} c_{j} f_{k, n-j}^{i} \tag{1}
\end{equation*}
$$

with boundary conditions for $1-k \leq n \leq 0$,

$$
f_{k, n}^{i}= \begin{cases}1, & \text { if } i=1-n \\ 0, & \text { otherwise }\end{cases}
$$

where $c_{j}(1 \leq j \leq k)$ are constant coefficients, $f_{k, n}^{i}$ is the n-th term of i-th sequence of order k generalization.

Example $1.1 f_{k, n}^{1}$ and $f_{k, n}^{2}$ sequences are

$$
\begin{aligned}
& 0,1, c_{1}, c_{2}+c_{1}^{2}, 2 c_{1} c_{2}+c_{1}^{3}, c_{2}^{2}+c_{1}^{4}+3 c_{1}^{2} c_{2}, c_{1}^{5}+3 c_{1} c_{2}^{2}+4 c_{1}^{3} c_{2} \\
& c_{2}^{3}+c_{1}^{6}+5 c_{1}^{4} c_{2}+6 c_{1}^{2} c_{2}^{2}, c_{1}^{7}+4 c_{1} c_{2}^{3}+6 c_{1}^{5} c_{2}+10 c_{1}^{3} c_{2}^{2} \\
& c_{2}^{4}+c_{1}^{8}+7 c_{1}^{6} c_{2}+10 c_{1}^{2} c_{2}^{3}+15 c_{1}^{4} c_{2}^{2}, \ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& 1,0, c_{2}, c_{1} c_{2}, c_{2}^{2}+c_{1}^{2} c_{2}, 2 c_{1} c_{2}^{2}+c_{1}^{3} c_{2}, c_{2}^{3}+c_{1}^{4} c_{2}+3 c_{1}^{2} c_{2}^{2} \\
& 3 c_{1} c_{2}^{3}+c_{1}^{5} c_{2}+4 c_{1}^{3} c_{2}^{2}, c_{2}^{4}+c_{1}^{6} c_{2}+6 c_{1}^{3} c_{2}^{3}+5 c_{1}^{4} c_{2}^{2} \\
& 4 c_{1} c_{2}^{4}+c_{1}^{7} c_{2}+10 c_{1}^{3} c_{2}^{3}+6 c_{1}^{5} c_{2}^{2}, \ldots
\end{aligned}
$$

respectively.

A direct consequence of (1) is

$$
\begin{equation*}
f_{k, n}^{2}=c_{2} f_{k, n-1}^{1}, \text { for } n \geq 0 \tag{2}
\end{equation*}
$$

Remark 1.2 Let $f_{k, n}^{i}, F_{n}, P_{n}$ and J_{n} be $k S O k F(1)$, Fibonacci sequence, Pell sequence and Jacobsthal sequence, respectively. Then,
(i) Substituting $c_{1}=c_{2}=1$ for $k=2$ in (1), we obtain $f_{k, n-1}^{1}=F_{n}$.
(ii) Substituting $c_{1}=2$ and $c_{2}=1$ for $k=2$ in (1), we obtain $f_{k, n-1}^{1}=P_{n}$.
(iii) Substituting $c_{1}=1$ and $c_{2}=2$ for $k=2$ in (1), we obtain $f_{k, n-1}^{1}=J_{n}$.

Remark 1.2 shows that $f_{k, n}^{1}$ is a general form of Fibonacci sequence, Pell sequence and Jacobsthal sequence. Therefore, any result obtained from $f_{k, n}^{1}$ holds for other sequences mentioned above.

Many researchers studied on determinantal and permanental representations of k sequences of generalized order- k Fibonacci and Lucas numbers. For example, Minc [7] defined an $n \times n(0,1)$-matrix $F(n, k)$, and showed that the permanents of $F(n, k)$ is equal to the generalized order- k Fibonacci numbers.

The author of $[5,6]$ defined two $(0,1)$-matrices and showed that the permanents of these matrices are the generalized Fibonacci and Lucas numbers. Öcal et al. [8] gave some determinantal and permanental representations of k-generalized Fibonacci and Lucas numbers, and obtained Binet's formula for these sequences. Yılmaz and Bozkurt [9] derived some relationships between Pell and Perrin sequences, and permanents and determinants of a type of Hessenberg matrices.

In this paper, we give some determinantal and permanental representations of k sequences of generalized order- k Fibonacci numbers for $k=2$ by using various Hessenberg matrices. These results are general form of determinantal and permanental representations of ordinary Fibonacci numbers, Pell numbers and Jacobsthal numbers.

2 The Determinantal Representations

An $n \times n$ matrix $A_{n}=\left(a_{i j}\right)$ is called lower Hessenberg matrix if $a_{i j}=0$ when $j-i>1$, i.e.,

$$
A_{n}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & 0 & \cdots & 0 \tag{3}\\
a_{21} & a_{22} & a_{23} & \cdots & 0 \\
a_{31} & a_{32} & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{n-1,1} & a_{n-1,2} & a_{n-1,3} & \cdots & a_{n-1, n} \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \cdots & a_{n, n}
\end{array}\right]
$$

Theorem 2.1 [2] Let A_{n} be an $n \times n$ lower Hessenberg matrix for all $n \geq 1$ and $\operatorname{det}\left(A_{0}\right)=1$. Then,

$$
\operatorname{det}\left(A_{1}\right)=a_{11}
$$

and for $n \geq 2$

$$
\begin{equation*}
\operatorname{det}\left(A_{n}\right)=a_{n, n} \operatorname{det}\left(A_{n-1}\right)+\sum_{r=1}^{n-1}\left[(-1)^{n-r} a_{n, r} \prod_{j=r}^{n-1} a_{j, j+1} \operatorname{det}\left(A_{r-1}\right)\right] \tag{4}
\end{equation*}
$$

Theorem 2.2 Let $f_{2, n}{ }_{n}$ be the first sequence of $2 S O 2 F$ and $Q_{n}=\left(q_{r s}\right)_{n \times n}$ be a Hessenberg matrix defined by

$$
q_{r s}=\left\{\begin{array}{cl}
i^{|r-s|} \cdot \frac{c_{r-s+1}}{c_{2}^{(r-s)}} & , \text { if }-1 \leq r-s<2 \\
0 & , \text { otherwise }
\end{array}\right.
$$

that is

$$
Q_{n}=\left[\begin{array}{cccccc}
c_{1} & i c_{2} & 0 & 0 & \cdots & 0 \tag{5}\\
i & c_{1} & i c_{2} & 0 & \cdots & 0 \\
0 & i & c_{1} & i c_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & c_{1} & i c_{2} \\
0 & 0 & 0 & 0 & i & c_{1}
\end{array}\right]
$$

Then,

$$
\begin{equation*}
\operatorname{det}\left(Q_{n}\right)=f_{2, n}^{1}, \tag{6}
\end{equation*}
$$

where $c_{0}=1$ and $i=\sqrt{-1}$.

Proof. To prove (6), we use the mathematical induction on m. The result is true for $m=1$ by hypothesis.

Assume that it is true for all positive integers less than or equal to m, namely $\operatorname{det}\left(Q_{m}\right)=f_{2, m}^{1}$. Then, we have

$$
\begin{aligned}
\operatorname{det}\left(Q_{m+1}\right)= & q_{m+1, m+1} \operatorname{det}\left(Q_{m}\right)+\sum_{r=1}^{m}\left[(-1)^{m+1-r} q_{m+1, r} \prod_{j=r}^{m} q_{j, j+1} \operatorname{det}\left(Q_{r-1}\right)\right] \\
= & c_{1} \operatorname{det}\left(Q_{m}\right)+\sum_{r=1}^{m-1}\left[(-1)^{m+1-r} q_{m+1, r} \prod_{j=r}^{m} q_{j, j+1} \operatorname{det}\left(Q_{k, r-1}\right)\right] \\
& +\left[(-1) q_{m+1, m} q_{m, m+1} \operatorname{det}\left(Q_{k, m-1}\right)\right] \\
= & c_{1} \operatorname{det}\left(Q_{m}\right)+\left[(-1) i c_{2} i \operatorname{det}\left(Q_{k, m-1}\right)\right] \\
= & c_{1} \operatorname{det}\left(Q_{m}\right)+c_{2} \operatorname{det}\left(Q_{k, m-1}\right)
\end{aligned}
$$

by using Theorem 2.1. From the hypothesis of induction and the definition of 2SO2F, we obtain

$$
\operatorname{det}\left(Q_{m+1}\right)=c_{1} f_{2, m}^{1}+c_{2} f_{2, m-1}{ }^{1}=f_{2, m+1}^{1} .
$$

Therefore, (6) holds for all positive integers n.

Example 2.3 We obtain $f_{2,6}^{1}$, by using Theorem 2.2

$$
\begin{aligned}
\operatorname{det}\left(Q_{6}\right) & =\operatorname{det}\left[\begin{array}{cccccc}
c_{1} & i c_{2} & 0 & 0 & 0 & 0 \\
i & c_{1} & i c_{2} & 0 & 0 & 0 \\
0 & i & c_{1} & i c_{2} & 0 & 0 \\
0 & 0 & i & c_{1} & i c_{2} & 0 \\
0 & 0 & 0 & i & c_{1} & i c_{2} \\
0 & 0 & 0 & 0 & i & c_{1}
\end{array}\right] \\
& =c_{2}^{3}+c_{1}^{6}+5 c_{1}^{4} c_{2}+6 c_{1}^{2} c_{2}^{2} \\
& =f_{2,6}^{1} .
\end{aligned}
$$

Theorem 2.4 Let $f_{2, n}^{1}$ be the first sequence of $2 S O 2 F$ and $B_{n}=\left(b_{i j}\right)_{n \times n}$ be a Hessenberg matrix, where

$$
b_{i j}=\left\{\begin{array}{cll}
-c_{2} & , & \text { if } j=i+1 \\
\frac{c_{i-j+1}}{c_{2}^{(i-j)}}, & \text { if } 0 \leq i-j<2 \\
0, & \text { otherwise }
\end{array}\right.
$$

that is

$$
B_{n}=\left[\begin{array}{cccccc}
c_{1} & -c_{2} & 0 & \cdots & 0 & 0 \\
1 & c_{1} & -c_{2} & \cdots & 0 & 0 \\
0 & 1 & c_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & c_{1} & -c_{2} \\
0 & 0 & 0 & \cdots & 1 & c_{1}
\end{array}\right]
$$

Then,

$$
\operatorname{det}\left(B_{n}\right)=f_{2, n}^{1},
$$

where $c_{0}=1$.
Proof. Since the proof is similar to the proof of Theorem 2.2 by using Theorem 2.1, we omit the detail.

Example 2.5 We obtain $f_{2,4}^{1}$ by using Theorem 2.4 that

$$
\begin{aligned}
\operatorname{det}\left(B_{5}\right) & =\operatorname{det}\left[\begin{array}{cccc}
c_{1} & -c_{2} & 0 & 0 \\
1 & c_{1} & -c_{2} & 0 \\
0 & 1 & c_{1} & -c_{2} \\
0 & 0 & 1 & c_{1}
\end{array}\right] \\
& =c_{2}^{2}+c_{1}^{4}+3 c_{1}^{2} c_{2} \\
& =f_{2,4}^{1} .
\end{aligned}
$$

Corollary 2.6 If we rewrite Theorem 2.2 and Theorem 2.4 for $c_{i}=1$, then we obtain $\operatorname{det}\left(Q_{n}\right)=F_{n+1}$ and $\operatorname{det}\left(B_{n}\right)=F_{n+1}$, respectively, where F_{n} 's are the ordinary Fibonacci numbers.

Corollary 2.7 If we rewrite Theorem 2.2 and Theorem 2.4 for $c_{1}=2$ and $c_{2}=1$, then we obtain $\operatorname{det}\left(Q_{n}\right)=P_{n+1}$ and $\operatorname{det}\left(B_{n}\right)=P_{n+1}$, respectively, where P_{n} 's are the Pell numbers.

Corollary 2.8 If we rewrite Theorem 2.2 and Theorem 2.4 for $c_{1}=1$ and $c_{2}=2$, then we obtain $\operatorname{det}\left(Q_{n}\right)=J_{n+1}$ and $\operatorname{det}\left(B_{n}\right)=J_{n+1}$, respectively, where J_{n} 's are the Jacobsthal numbers.

3 The Permanent Representations

Let $A=\left(a_{i, j}\right)$ be an $n \times n$ matrix over a ring. Then, the permanent of A is defined by

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)},
$$

where S_{n} denotes the symmetric group on n letters.
Theorem 3.1 [8] Let A_{n} be $n \times n$ lower Hessenberg matrix for all $n \geq 1$ and $\operatorname{per}\left(A_{0}\right)=1$. Then, $\operatorname{per}\left(A_{1}\right)=a_{11}$ and for $n \geq 2$

$$
\begin{equation*}
\operatorname{per}\left(A_{n}\right)=a_{n, n} \operatorname{per}\left(A_{n-1}\right)+\sum_{r=1}^{n-1}\left[a_{n, r} \prod_{j=r}^{n-1} a_{j, j+1} \operatorname{per}\left(A_{r-1}\right)\right] . \tag{7}
\end{equation*}
$$

Theorem 3.2 Let $f_{2, n}^{1}$ be the first sequence of $2 S O 2 F$ and $H_{n}=\left(h_{r s}\right)$ be an $n \times n$ Hessenberg matrix, where

$$
h_{r s}=\left\{\begin{array}{cl}
i^{(r-s)} \cdot \frac{c_{r-s+1}}{c_{2}^{(r-s)}} & , \text { if }-1 \leq r-s<2, \\
0 & , \text { otherwise }
\end{array}\right.
$$

that is

$$
H_{n}=\left[\begin{array}{cccccc}
c_{1} & -i c_{2} & 0 & \cdots & 0 & 0 \tag{8}\\
i & c_{1} & -i c_{2} & & 0 & 0 \\
0 & i & c_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & c_{1} & -i c_{2} \\
0 & 0 & 0 & \cdots & i & c_{1}
\end{array}\right]
$$

Then,

$$
\operatorname{per}\left(H_{n}\right)=f_{2, n}^{1},
$$

where $c_{0}=1$ and $i=\sqrt{-1}$.

Proof. This is similar to the proof of Theorem 2.2 using Theorem 3.1.
Example 3.3 We obtain $f_{2,3}^{1}$ by using Theorem 3.2 that

$$
\begin{aligned}
\operatorname{per}\left(H_{4,3}\right) & =\operatorname{per}\left[\begin{array}{ccc}
c_{1} & -i c_{2} & 0 \\
i & c_{1} & -i c_{2} \\
0 & i & c_{1}
\end{array}\right] \\
& =2 c_{1} c_{2}+c_{1}^{3} \\
& =f_{2,3}^{1} .
\end{aligned}
$$

Theorem 3.4 Let $f_{2, n}^{1}$ be the first sequence of $2 S O 2 F$ and $L_{n}=\left(l_{i j}\right)$ be an $n \times n$ lower Hessenberg matrix given by

$$
l_{i j}=\left\{\begin{array}{cl}
\frac{c_{i-j+1}}{c_{2}^{(i-j)}} & , \quad \text { if } 0 \leq i-j<2 \\
0, & \text { otherwise }
\end{array}\right.
$$

that is

$$
L_{n}=\left[\begin{array}{cccccc}
c_{1} & c_{2} & 0 & \cdots & 0 & 0 \\
1 & c_{1} & c_{2} & \cdots & 0 & 0 \\
0 & 1 & c_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & c_{1} & c_{2} \\
0 & 0 & 0 & \cdots & 1 & c_{1}
\end{array}\right]
$$

Then,

$$
\operatorname{per}\left(L_{n}\right)=f_{2, n}^{1},
$$

where $c_{0}=1$.
Proof. This is similar to the proof of Theorem 2.2 by using Theorem 3.1.
Corollary 3.5 If we rewrite Theorem 3.2 and Theorem 3.4 for $c_{i}=1$, we obtain $\operatorname{per}\left(H_{n}\right)=F_{n+1}$ and $\operatorname{per}\left(L_{n}\right)=F_{n+1}$, respectively, where F_{n} 's are the Fibonacci numbers.

Corollary 3.6 If we rewrite Theorem 3.2 and Theorem 3.4 for $c_{1}=2$ and $c_{2}=1$, we obtain $\operatorname{per}\left(H_{n}\right)=P_{n+1}$ and $\operatorname{per}\left(L_{n}\right)=P_{n+1}$, respectively, where P_{n} 's are the Pell numbers.

Corollary 3.7 If we rewrite Theorem 3.2 and Theorem 3.4 with $c_{1}=1$ and $c_{2}=2$, then we obtain $\operatorname{per}\left(H_{n}\right)=J_{n+1}$ and $\operatorname{per}\left(L_{n}\right)=J_{n+1}$, respectively, where J_{n} 's are the Jacobsthal numbers.

3.1 Binet's formula for 2 sequences of generalized order-2 Fibonacci numbers (2SO2F)

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be the power series of the analytical function f such that

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \text { when } f(0) \neq 0
$$

and

$$
A_{n}=\left[\begin{array}{ccccc}
a_{1} & a_{0} & 0 & \cdots & 0 \\
a_{2} & a_{1} & a_{0} & \cdots & 0 \\
a_{3} & a_{2} & a_{1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{1}
\end{array}\right]_{n \times n}
$$

Then, the reciprocal of $f(z)$ can be written in the following form

$$
g(z)=\frac{1}{f(z)}=\sum_{n=0}^{\infty}(-1)^{n} \operatorname{det}\left(A_{n}\right) z^{n}
$$

whose radius of converge is $\inf \{|\lambda|: f(\lambda)=0\},[1]$.
Let

$$
\begin{equation*}
p_{k}(z)=1+a_{1} z+\cdots+a_{k} z^{k} . \tag{9}
\end{equation*}
$$

Then, the reciprocal of $p_{k}(z)$ is

$$
\frac{1}{p_{k}(z)}=\sum_{n=0}^{\infty}(-1)^{n} \operatorname{det}\left(A_{k, n}\right) z^{n}
$$

where

$$
A_{k, n}=\left[\begin{array}{ccccc}
a_{1} & 1 & 0 & \cdots & 0 \tag{10}\\
a_{2} & a_{1} & 1 & \cdots & 0 \\
a_{3} & a_{2} & a_{1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{k} & a_{k-1} & a_{k-2} & \cdots & 0 \\
0 & a_{k} & a_{k-1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & \cdots & a_{k} & \cdots & a_{1}
\end{array}\right]_{n \times n}
$$

Inselberg [4] showed that

$$
\begin{equation*}
\operatorname{det}\left(A_{k, n}\right)=\sum_{j=1}^{k} \frac{1}{p_{k}^{\prime}\left(\lambda_{j}\right)}\left(\frac{-1}{\lambda_{j}}\right)^{n+1} \quad(n \geq k) \tag{11}
\end{equation*}
$$

if $p_{k}(z)$ has distinct zeros λ_{j} for $j \in\{1,2, \ldots, k\}$; where $p_{k}^{\prime}(z)$ is the derivative of polynomial $p_{k}(z)$ in (9).

Theorem 3.8 Let $f_{2, n}^{1}$ be the first sequence of $2 S O 2 F$. Then, for $n \geq 2$ and $\left(c_{1}\right)^{2}+4 c_{1} c_{2}>0$,

$$
\begin{equation*}
f_{2, n}^{1}=\sum_{j=1}^{k} \frac{1}{p^{\prime}\left(\lambda_{j}\right)}\left(\frac{-1}{\lambda_{j}}\right)^{n+1} \tag{12}
\end{equation*}
$$

where $p(z)=1+c_{1} z-c_{2} z^{2}$ and $p^{\prime}(z)$ denotes the derivative of polynomial $p(z)$.
Proof. This is immediate from Theorems 2.4 and (11).
Corollary 3.9 Let $f_{2, n}^{2}$ be the second sequences of $2 S O 2 F$. Then,

$$
f_{2, n+1}^{2}=c_{2} \cdot \sum_{j=1}^{k} \frac{-1}{p^{\prime}\left(\lambda_{j}\right)}\left(\frac{1}{\lambda_{j}}\right)^{n+1}
$$

for $n \geq 2$.
Proof. One can easily obtain the proof from (2) and Theorem 3.8.

Acknowledgements

The authors would like to express their pleasure to the anonymous reviewer for his/her careful reading and making some useful comments, which improved the presentation of the paper.

References

[1] E.T. Bell, Euler algebra, Trans. Amer. Math. Soc., 25(1923), 135-154.
[2] N.D. Cahill, J.R. D'Errico, D.A. Narayan and J.Y. Narayan, Fibonacci determinants, College Math. J., 33(3) (2002), 221-225.
[3] M.C. Er, Sums of Fibonacci numbers by matrix method, Fibonacci Quart., 23(3) (1984), 204-207.
[4] A. Insenberg, On determinants of Toeplitz-Hessenberg matrices arising in power series, J. Math. Anal. Appl., 63(1978), 347-353.
[5] G.-Y. Lee and S.-G. Lee, A note on generalized Fibonacci numbers, Fibonacci Quart., 33(1995), 273-278.
[6] G.-Y. Lee, k-Lucas numbers and associated bipartite graphs, Lineer Algebra Appl., 320(2000), 51-61.
[7] H. Minc, Encyclopaedia of Mathematics and its Applications, Permanents, (Vol.6), Addison-Wesley Publishing Company, London, (1978).
[8] A.A. Öcal, N. Tuğlu and E. Altınışık, On the representation of k-generalized Fibonacci and Lucas numbers, Appl. Math. Comput., 170(2005), 584-596.
[9] F. Yılmaz and D. Bozkurt, Hessenberg matrices and the Pell and Perrin numbers, J. Number Theory., 131(2011), 1390-1396.

