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1. Introduction

The monic simple Laguerre polynomials L,(x) may be defined by the explicit formula:
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or by the three-term recurrence relation

Ln1(0) = (x = 21 + 1) La(X) —n*Lp—1(x). (2)
The moments are
pn=L(x") = /x"e"‘ dx=n. (3)
0

The linearization formula reads as follows

Lny () Lny (%) = Y Ci’n, Lny (%),
n3

where

Ny !ny 12N2+n3—2sg)

Crin, = :
2 S;) (s —n)!(s —n)!(s — n3)!/(N2 + n3 — 2s)!n3!

Equivalently we have

ny!nyng12N2+n3—2sg)

L(Lp, X)Ly, X)Ly (%)) = . 4

(L 0Ly (9 Lns () ;:) (s —n)!(s —n)!(s —n3)!(N3 +n3 — 25)! “)

Given positive integers ni,ny, ..., n, such that n=nq + --- +ny, let S; be the consecutive integer

segment {n; +---+n;_1+1,...,n1 +---+n;} with np =0, then S{U---US} =[n]. A permutation o

of [n] is said to be a generalized derangement of specification (nq,...,ny) if i and o (i) do not belong

to a same segment S; for all i € [n]. Let D(nq,ny,...,n,) be the set of generalized derangements of
specification (nq,...,n,) then we have (see [5-7,13])

L(Lpy (x) ... Ly (x)) = > 1. (5)

o e€D(ny,ny,...,nk)

A g-version of (1) was studied by Garsia and Remmel [9] in 1980. Several g-analogues of the
recurrence relation (2) and moments (3) were investigated in the last two decades (see [2,4,18,19]) in
order to obtain new mahonian statistics on the symmetric groups. On the other hand, in view of the
unified combinatorial interpretations of several aspects of Sheffer orthogonal polynomials (moments,
polynomials, and the linearization coefficients) (see [8,14,20,22]) it is natural to seek for a g-version
of this picture.

As one can expect, the first result in this direction was the linearization formula for g-Hermite
polynomials due to Ismail, Stanton and Viennot [12], dated back to 1987. In particular, their formula
provides a combinatorial evaluation of the Askey-Wilson integral. However, a similar formula for g-
Charlier polynomials was discovered only recently by Anshelevich [1], who used the machinery of
g-Levy stochastic processes. Short later, Kim, Stanton and Zeng [15] gave a combinatorial proof of
Anshelevich’s result.

The object of this paper is to give a g-version of all the above formulas for simple Laguerre poly-
nomials. It is interesting to note that the corresponding moment sequence appears in the recent work
on enumeration of totally positive Grassmann cells [3,21].

The rest of this paper is organized as follows: We recall the definition of Al-Salam-Chihara poly-
nomials, prove their linearization formula introduce the new g-Laguerre polynomials in Section 2.
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In Section 3 we study the moment sequence of the g-Laguerre polynomials. In particular we shall
give a new proof of Williams’ formula for the corresponding moment sequence. We derive then the
linearization coefficients of our g-Laguerre polynomials in Section 4. Finally two technical lemmas will
be proved in Sections 5 and 6, respectively.

2. Al-Salam-Chihara polynomials revisited

The Al-Salam-Chihara polynomials Q(x) := Qn(X; @, 8|q) may be defined by the recurrence rela-
tion [16, Chapter 3]:

{QO(X)=17 Q-1(x)=0 6)
Qur1(®) = (2x— (@ +B)g") Q@) — (1 —¢")(1 —aBg" ) Qu-1(x), n>0.
Let Qn(x) =2"py(x) then
1 n 1 n n—1
XPn(X) = Pu1(X) + 5 (@ + B)g"Pr(X) + Z(l —q") (1 —aBq" ") pn_1(0). (7)
They also have the following explicit expressions:
) (o ﬁ Q)n M oou,qu”l|
Qn(x; o, Blg) = 3¢ aﬁ 0 q:q
7n ufl
= (au; Q) "201 ( _1q'8_n+1 o qu)
_(ﬂu—l. ) un ou cp=1,—1
= $q),U 201 51,,1“ B qu ),
where x = ¥t47" or x — cos @ if u = e'’.
The Al-Salam-Chihara polynomials have the following generating function
)1
(at, Bt; @)oo
G(t,x)=) Qnx a, Blg) =— - .
,12; ! @ @n (te te7?;q)og
They are orthogonal with respect to the linear functional [Eq:
1 7 2i6 ,—2if
— /(cos@)” (q.ap. e, e ’q.)"" de, (8)
T (acel?, =10, Belf Be=1%; q)
where x = cos6. Note that
Lg(Qu(?) = (@ Dn(@B; Dn-
Theorem 1. We have
Quy (OQu, () = Y C? (@, B3 0) Qs (0), 9)

ns 20

where
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(_1)N2+H3M
(@B; Pny

Z (01,8; q)n1+m3am2 ﬂn3+n27n17m272m3q(m22)+(
(G5 Dns+ny—ny—ma—2m3 (@5 Dmy (@ Dms+ny—n3 (@5 Dmz+nq—ny (@ Dimy ’

Cg?,ﬂz (a7 ﬂs CI) =

n3—+ny—ny—my —2m3)
2

mp,ms3

Proof. Clearly C,'.,’f,nz (a,B;q9 = ﬁq(in (%) Qny (%) Qg (x))/[Eq(Q,13 (x)Qny (x)). Using the Askey-Wilson
integral:

g

(q;q)oo/ @7 e @ (D0l Qe
2 1

‘;:1 (tjel? tje=1: q) oo [Ti<jck<a(titis Doo

one can prove [12, Theorem 3.5] that

A (atqtats, Bqtitats, o fq; q) t1ta,
Lq(G(t1,%)G(t2, 0)G(t3,%) = ot d) S
) El E) o0

tits, tats3
atqtats, Btitats

q; aﬂ) .

Therefore
nm

. t 2ty
L’ n n n 1 2 3
Z o(Qn Qs 000 ) o s G, @

>

(
k>0

atitatsqk, Btitatsgt, af; Qe (@B)F
(t1t2gX, 130, t2t30% Qoo (@ Dk

(10)

Using the Euler formulas:

(-1"q® 1 1
(t; Qoo =y  ———t"; —— =y —"
o @ Dn Do =5 @ n

we can rewrite the sum in (10) as follows

(@p)k ol BlagkH2) (_gy o5y Hag(DHB)
@D =, (@ Dn (@ Dy

(@B Do Y

k>0

>

myq,my,m3 >0

mq+my+ms3)k M1 +my my+m3 my+ms
q( 1+my+ms3 ] t ts (1)

@ Dm; (G Dmy (G5 Dims

Substituting

(aﬁq“ +12+m1+m2+m3)k 1

(q; q)k = (Ol,Bqll +lz+m1+m2+m3; q)oo

k>0

in (11), we get



220 A. Kasraoui et al. / Advances in Applied Mathematics 47 (2011) 216-239

N
Z M2 (aﬁ)n1+m3ahﬂlzq(2)+(2) —1)11+lz’ (12)
VU253 @my (@ Dmy (@ Dms (@ D1, (@ D1

I1,l3,my,mz,ms3

where [{ + 1, +my +my =nq, l{ + b +my + m3 =ny and l; + I + my + m3 =ns.
. _ . . 62}
Since I +1; = N +n3 (mod 2), extracting the coefficient of @D, @ Dy @Dy

by (q, &B; q)n; we obtain (9) where I; is replaced by my. O

in (12) and dividing

We define the new g-Laguerre polynomials L,(x; q) by re-scaling Al-Salam-Chihara polynomials:

ﬂ)” <(q—l)x+y+1 1 >
Lix;q)= XY= ) Q| ———~——, —, ) 13
*:q) (q_l Wi NG Vyalg (13)

It follows from (7) that the polynomials L, (x; q) satisfy the recurrence:

Lnp1 (@) = (x — y[n + 1]y — [nlg) La(x: @) — y[n]3La—1(x: q). (14)

We derive then the explicit formula for L,(x):

n k—1
nlg[n o
Ln(9) =Y _(—1)" 2 [, ] gy T (= (1= ya /) Lilg)- (15)
k=0 ‘g Lkdq j=0
Thus
Lixq=x-y,

La(xq) =x* — (1+2y +qy)x+ (1 +q)y?,
L3(x:q) =X — (¢°y + 3y +q +2 +2qy)x*
+(@y* + ya® +q+2qy +3¢*y* + 1+ 4qy* + 2y + 3y%)x
— (Zq2 +29+q° + 1)y3.
A combinatorial interpretation of these g-Laguerres polynomials can be derived from the Simion

and Stanton’s combinatorial model for the a=s=u =1 and r =t = q special case of the quadrabasic
Laguerre polynomials [19, p. 313].

3. Moments of the g-Laguerre polynomials
Let S, be the set of permutations of [n]:={1,2,...,n}. For 0 € S, the number of crossings of o is
defined by
n n
@)=Y #{jli<i<o() <o)+ #{jli>i>a() >0},
i=1 i=1

while the number of weak excedances of o is defined by

wex(o) =#{i|1<i<nandi<o(@i)}.
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It is useful to have a geometric interpretation of these statistics by associating with each permuta-
tion o of [n] a diagram as follows: arrange the integers 1,2,...,n on a line in increasing order from
left to right and draw an arc i — o (i) above (resp. under) the line if i < o (i) (resp. i > o (i)). For
example, the permutation 0 =93 746 11 58 1 10 2 can be depicted as follows

Thus, the number of weak excedances of ¢ is the number of edges drawn above the line plus the
number of isolated points, while the number of crossings of o is the number of pairs of edges above
the line that cross or touch ( or ./ N\ ), plus the number of pairs of edges

under the line that cross (~oo_~ ).

Let ,uﬁ,[)(y,q) be the enumerating polynomial of permutations in S, with respect to numbers of

weak excedances and crossings:

(v, )=y Y@@, (16)

oeS,

It has been proved in [3,17,19] that the generating function of the moment sequence has the following
continued fraction expansion:

E(y,q,0):= Y i’ (y, " = , (17)

At
>0 1 ot —

2
1—b1t—i

where by = y[n + 1]+ [nly and Ap = y[n]é.
We derive then from the classical theory of orthogonal polynomials the following interpretation
for the moments of the g-Laguerre polynomials.

Theorem 2. The n-th moment of the q-Laguerre polynomials is equal to /Lff) (¥, Q). More precisely, let Lg be

the linear functional defined by Lq(x") = M,(P(y, q), then

Lq(Lny % @) Ln, (% 9)) = ™ (1119)*8nyny - (18)

The first values of the moment sequence are as follows

w9 =y,
1 (v.q) =y +y%
1wy D=y +G+ay*+y>
1 . =y+(6+49+q%)y* + (6 +49+¢*)y> + y*.

Combining the results of Corteel [3], Williams [21, Proposition 4.11] and the classical theory of
orthogonal polynomials, one can write the moments of the above g-Laguerre polynomials as a finite
double sum (cf. (33)). Here we propose a direct proof of this result. Actually we shall give such a
formula for the moments of Al-Salam-Chihara polynomials.
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Definition 3. Define the y-versions of the g-Stirling numbers of the second kind by

qu(n k, y)H —[jlg(1 = yg77)). (19)

k=1

The y-versions of g-Stirling numbers of the first kind can be defined by the inverse matrix or equiv-
alently

n—1 n
[T(X=1ilg(1=ya™)) = sqn.k, y)x*.
j=0 k=1

Remark 1. We have

Sqn, k, Y)g=1=Sn, k(1 — y)"_", Sq(n, k,0) = Sq(n, k),

where S(n, k) and Sq(n, k) are, respectively, the Stirling numbers of the second kind and their well-
known g-analogues, see [11].

Consider the rescaled Al-Salam-Chihara polynomials Py (x):
Pa(X) = Qu(((@ — DX +1/0* + 1)a/2; @, Blq)

—a” Z(q ik ¢ (aBd*; q), (1 — 9Fq@Da*

=0 (q; Dk
k—1 )
< [ (X =Tilg(1 — a7 /a?)). (20)
j=0

Lemma 1. The moments of the rescaled Al-Salam-Chihara polynomials P, (X) are

pn(e, B) =Y Sq(n. k. 1/0%) (@B g™ @ (1 — ) a2, (21)

k=1

Proof. Let L : X" — un(a,B) be the linear functional. We check that these moments do satisfy
L(Pp(X)) =0 for n > 0. Let a, be the coefficients in front of the product in (20), then we have,
using y-Stirling orthogonality,

J

L(Pn(X)) Zastq (k. j, 1/0? Z (j.t. 1/02) @ g~ D1 — e
j=

= a@piang @1 —g)Fa

k=0

“n @Ok g _
=« (aﬂ;cmZ
= @Dk

Note that the last equality follows by applying the g-binomial formula. O
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Lemma 2. Let p = 1/q. We have

k
i (@B rg” D (1 — g a2k i@, B) (22)
2T A =it —qija?)) 531~ lilgt(1 =g~ /a?)’
where
. .
. py = 2P0 g "a (p"Map/a; p)eo
n @i (@2/a®q)i (P2 /a?; p)oo
Proof. Note the following partial fraction decomposition formula:
tt RGN U MMt —ap ™
A—a)(Q —azt)...(1—aet)  ap---a P 1—a;t
Therefore
k .
tt -y Vie(i) (23)
[T, = lilgtd —qi/a?) S 1- gt —q 7 /a?)’
where
1 Tk aZ(k—i)q(lz‘)+l<—i2
)= — . . 0<i<k).
70 klq |:i:|q(q1_21/a2§Q)i(ql+21a2§Q)k—i ( )
Substituting this in (22) yields
5 )
(@B; @) [k o
i, p) =3 [ 121 /g2 11212
o @D Lilg (@ /a% q)i@ et Ok
o . .
_ @i g "o 3 @Bdsr g
@i @@ @O @ e
The result follows then by applying the {&; summation formula (see [10, IL5]). O
Theorem 4. The moments (¢, 8) have the explicit formula
nok k—i2 ,—2i (1 —i 7 2y\n
kKl ¢ o™ ([ilg(1 —q " /o) (@B; Ok
M”(a’ﬁ)=22|:i] (q.q)k (q172i/a2.q)‘(q1+2iaz.q) L (24)
k=1 i=1 q ’ > 4)i > Uk—i

Proof. By definition (19) we have

Sqn,k,y) =Sqn—1,k—1,y) + [klg(1 — yq_")Sq(n —1,k, ).
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Therefore
tk
D Sk, it = — . — (25)
n>k [Ti=1 (1 = [ilgt(1 —q~'y))
It follows from (23) and (25) that
,(k) k 1 ) ) : _ =iy
q K1 ik i ([ilg(1 —q~'y))
Sq(n, k, y) = [] ¥ q : , . (26)
! klg ; il @'y @@y Ore-i

Substituting this into (21) yields the desired formula. O

By Lemma 1 and (25) we obtain the generating function for the moments wn(c, B):

iu (o, PHt" = i (s Q)kq’(g)(l — q)*kO[katk -

The moment of g-Charlier polynomials corresponds to the 8 =0, « = —1/4/a(1 — q) case, while
that of g-Laguerre polynomials corresponds to the @ =1/,/y, af = q case. Therefore,

© I (agt)
pn (@, t" = — ; (28)
Z ,;0 151 (@ — qililgt +a(1 — @lilgt)
o0 o0 k’ t k
ZM#)(}/, =Y — a(aty) (29)
=0 =TT (@ — qililgt + [ilgty)
By Lemma 2, we obtain, setting p =1/q,
1 21 2i
© n (1—a(l —qp*)/(a(l —@)p'; p)o
(a,qt’ = , (30)
Z“ ; i14q” (@ — qililgt +alilat(1 — @)
- © n v -y
M (v, t" = — - . (31)
,; ; q”(q' — q'[ilgt + [ilgty)

We derive then the following polynomial formulae in a and y for the corresponding moments:

k-1 (-1

e o g (A=) (4 k- ”((n) - < i )> .
= ; Z (k=D Za—n' ) o)) B

. n i— n k—i n
1 (y.0) = Zy"Z( 1k — i1t "><(l.>q’ +<l._1>>. (33)

k= i=0

Note that (32) is simpler than the formula given in [15, Proposition 5].



A. Kasraoui et al. / Advances in Applied Mathematics 47 (2011) 216-239 225

4. Linearization coefficients of the g-Laguerre polynomials

Define the linearization coefficients of the g-Laguerre polynomials by

Iy, ....om) =Lq(Ln, X @) ... Ly (x: @) k=1, ny,...,m = 0).
The following is our main result of this section.

Theorem 5. We have

I, .omy= Y WO, (34)

o€eD(ny,..., ny)

For brevity, if ny = ---=mn = 1, we shall write (1¥) := (n1, ..., n) and Dy := D(1¥). Hence D, is
just the set of usual derangements of [n]. Define also

dn(y,q) — Z ywex(a)qcr(o).

oeDy
A proof a la Viennot (cf. [12,15]) of (34) would use the combinatorial interpretations for the
moments and g-Laguerre polynomials to rewrite the left-hand side of (34) and then construct an
adequate killing involution on the resulting set. For the time being we do not have such a proof to

offer, instead we provide an inductive proof.
Since Lq(x;q) =x — y, writing (14) as

L1 (% Ln(%: @) = Lny1 (% @) + (yq + DInlgLn(X; @) + Y]z Lo—1(x; @),

we see immediately that

I(,n,n,....m)=In+1,n1,....,m) + (yq + Dinlgl(n,nq, ..., )
+ymgIn—1,m, ... ). (35)

Therefore, the sequence (I(n1,...,ng)) (k>1, nq,...,n, > 0) is completely determined by the recur-
rence relation (35) and the following items:

(i) the special values I(1%) for all k> 1,
(ii) the symmetry of I(nq, ..., ng) with respect to the indices nq, ..., n.

Our proof of Theorem 5 will consist in verifying that the right-hand side of (34) has the same special
values at (1¥) as the right-hand side, is invariant by rearrangement of the indices and satisfies the
same recurrence relation.

Lemma 3. We have I(1") =d,(y, q) foralln > 1

Proof. Since L{(x; q) =x — y, by definition,

1(1") = Lq((x — »)") Z( " "( )y (. 9).
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By binomial inversion and (16), it suffices to prove that

n

n
Yy gr@ = (k) Yedo 1y, @),

oeSy k=0
But the latter identity is obvious. O
Since the two cyclic permutations (1,2) and (1,2, 3, ..., k) generate the symmetric group S, the

ing two special cases.

Lemma 4. We have

Z ywex(o)qcr(c) — Z ywex(a)qcr(a). (36)
oe€D(ny,ny,..., ng) o€D(ny,nz,..., ng,nq)
Lemma 5. We have
Z ywex(o)qcr(cr) — Z ywex(o)qcr(a). (37)
oe€D(ny,ny,..., ng) o€D(ny,nq,n3,..., ng)

We postpone the proof of the above two lemmas to the next two sections.

Proof of Theorem 5. By Lemmas 3, 4 and 5, it suffices to check that

Yo w)= Y wO)+g+Dnlg Y, w()
oeD(1,n,nq,..., ng) oeDn+1,nq,..., ng) oeD(n,ny,...,Ng)
+ ylnl; > w, (38)

oeD(n—1,nq,...,1%)

where w(o) = yWe(@)ger@),

For derangements o € D(1,n,nq,...,n,) we will distinguish four cases. In each case, we shall
describe a mapping to compute the corresponding enumerative polynomial. The reader is refereed
to Table 1 and Table 4 in Section 5 for an illustration of these mappings in order to have a better
understanding of their properties.

(a) 0(1),0~1(1) > n + 1. We can identify such a derangement in D(1,n,nq,...,n;) with a de-
rangement in D(n + 1,nq,...,ng). So the corresponding enumerative polynomial is

Z ywex((r)qcl‘(ﬂ)'
oeD(n+1,nq,...,1x)

(b)y 6(1) e{2,...,n+1} and 67 '(1) > n+ 1. Let 6(1) = £. We define the mapping ¢ — ¢’ €
D(n,nq,...,n,) by

o'i)y=0c@+1)—1 if1<i<n;

o Yi)y=0"13() -1 if1<i<e—1;
o Tiy=c"1i+1)—1 ife<i<n
oi—-1)=0()—1 ifo()>i>n+1;

o Ni-1=0c"110) -1 ife (@) >i>n+1.
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Clearly w(o) = yq*~'w(c’). Moreover, for each given £ € {2, ...,n+ 1}, the above mapping is a bijec-
tion from permutations o € D(1,n,ny, ..., n) satisfying 0 (1) = ¢ and o ~1(1) > n+1 to permutations
in D(n,nq,...,n,). Summing over all £=2,...,n+ 1 yields the generating function:

qy [n]q Z ywex((r)qcr((r) )

oeD(n,ny,....,ng)

(c)o(1)y>n+1and o0~ 1(1) €{2,...,n+1}. Let c~1(1) = £. We define the mapping ¢ i o’ €

D(n,ny,...,n) by

o'i)y=0(@)—1 if1<i<e—1;

oc'i=0c@l+1) -1 ife<i<n;

o liy=c"li+1) -1 if1<i<n;

o'i—-1=0c(@)—-1 ifo(i)>i>n+1;

o Wi-1)=0"1{) -1 ifo @) >i>n+1.
Clearly w(o) = q*2w(c’). Moreover, for each given £ € {2,...,n + 1}, the above mapping is a bijec-
tion from permutations o € D(1,n,ny, ..., n) satisfying 0 ~1(1) = ¢ and o (1) > n+1 to permutations
in D(n,nq,...,n,). Summing over all £ =2,...,n+ 1 yields the generating function:

Z ywex(a)qcr(rr) )

(d) o(1), 071 (1) €{2,...,n+1). Let o(1) =¢; and o~ '(1) = €. Then we define the mapping
oo’ eDn—1,nq,...,n) by

oc'iy=0@+1)—-2 if1<i<l—2;

oc'()=0c@{+2)—2
o liy=c"1i+1) -2
o' Ni)y=0""1i+2) -2
o'(i—-2)=0()—2

ife, —1<i<n—1,
if1<i<e; —2;
ift1—1<i<n—-1;
ifo(i)>i>n+1;

o Ni-2)=0c"110)—-2 ife (@) >i>n+1.

Clearly w(o) = yqit2=Yw(o’). Moreover, for each given ¢1,¢, € {2,...,n + 1}, the above map-
ping is a bijection from permutations o € D(1,n,n1, ..., n) satisfying o (1) =¢; and o ~1(1) = ¢, to
permutations in D(n — 1,ny,...,n,). Summing over all ¢1,¢, € {2,...,n + 1} yields the generating
function:

Z ywex(a)qcr(a) )

oeDn—-1,nq,..., ng)

yinl;

Summing up we obtain (38). O

When k = 2, Theorem 5 reduces to the orthogonality of the g-Laguerre polynomials (18). When
k =3, we can derive the following explicit formula from Theorem 1.
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Theorem 6. We have

n1lgnalqn3lyslyy®
I(ni,ny,n3) =)

S (n1 +nz +n3 —2s)!g(s —n3)!q(s —nz)lq(s —n1)lg

" Z [m +ny+n3— 25} ykq(k51)+(n1+nz+;3—23—k).
k q

k

Proof. By Theorem 1 with a= % and b = ,/yq we have

ﬁ >n1+n2n3 Cn3

I(n1,n2,n3) = Lq(Lns (x; q)2)<q = no.n, (@, b; @)

_ _ my M+1
B Z M1 lqnalqnalg(ny + my)lgyn2tns=—me=msg(7)+(57)
M!gmalq(m3 4+ nq1 —n3)lg(m3 +n1 —ny)lgmsly

my,m3

where M =n3 +ny —ny —my — 2ms. Substituting s =ny +ms and k =n3 +ny —ny —my — 2ms in the
last sum yields the desired formula. O

Remark 2. It would be interesting to give a combinatorial proof of the above result as in [12,15].
When g =1 such a proof was given in [23].

We end this section with an example. If n= (2, 2, 1), by Theorem 6 we have

12.2)=)" 2!g2!g1Ygslqy" 2. [5 X 25] T TERA R
~ 5 —29)lg(s = Dlg(s = 2)lg(s — 2)lq k=0 kg

=1+9°1+qy)y*. (39)

On the other hand, the sixteen generalized derangements in D(2, 2, 1), depicted by their diagrams
and the corresponding weights are tabulated as follows

2.2 3.3
1@ v 1@ v
2.2 3.3
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Table 1
The mapping & :0 — o’.
o — o’
1 k k+1 i o) n — 1 i—k o@)—-k n—k n
o) i o(i)—k i—k
1 k n — 1 n—k n
o(i)—k n—k n—k+i
1 i k o (i) n — 1
a (i) k i
1 n N 1 i—k n—k n—k+o (i)
3,2 2
3.4 3.2
2

Summing up we get Y, cpa1) YV*qU7 = y2(1+qy)(1 +49)3, which coincides with (39).

5. Proof of Lemma 4

For each fixed k € [n] define the two subsets of S;:

"Sn:{GGSn ]o"(i)>kfor1<i<k},

Sk=loeSa|om+1—i)<n+1—kfor1<i<k}.

We first define a simple bijection @ : o — ¢’ from kS, to S’,{ as follows: for 1 <i<n,
o(i+k)—k, ifl<i<n—kando(i+k)>k;
o'i)=4o0(+k+n—k if1<i<n—kando(i+k) <k;
o(i+k—n)—k ifn—k+1<i<n

The map is illustrated by the diagrams of permutations in Table 1.
For example, consider the permutation o € 3S;s, whose diagram is given below.
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Table 2
Forms of crossings in Li(o) and R;(o”).
i Li(o) Ri(0”)
1
1 k n 1 n—k n
1 k n 1 n—k n
1 k n 1 n—k n
5 m m
1 k n 1 n—k n
k n—k
1 n 1 n
3 . ]\ > <
1 k n 1 n—k n
1 k n 1 —k n
k —k
1 n 1 n

The main properties of @, are summarized in following proposition.

Proposition 7. For each positive integer k € [n], the map @y : kS, — S,’; is a bijection such that for any
o kS, there holds

(wex, cr)Py (o) = (wex, cr)o. (40)

We first show how to derive Lemma 4 from Proposition 7. Let n = nqy + --- + ng. Then
D(ny,ny,...,ng) €™MS;. By definition of &y, for any 0 € ™S, and i € [n — ny] satisfying o (i +n1) >
n1, we have i — @y, (0)(i)) =i+n; —o(i+ny1), so @y, (D1, n2,...,n)) € D(n2,n3, ..., Nk, ). Since
the cardinality of D(nq,np,...,ny) is invariant by permutations of the n;'s and @, is bijective, we
have @,, (D(ny,ny,...,nk)) =D(n2,n3, ..., Nk, n1). The result follows then by applying (40).
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Proof of Proposition 7. It is easy to see that @ is a bijection. Let o € kS, and ¢’ = &y (o). The

equality wex(o’) = wex(o) follows directly from the definition of &j. It then remains to prove that

cr(o’) = cr(o). We first decompose the crossings of o and ¢’ into three subsets. Set
Lio)={G.))|k<i<j<o@ <o(ori>j>o()>o(j) >k},
Lyo)={Gl.))|i<j<k<o@ <o(ori>j>k>o(@)>0c())},

Ls(o)={G, ) |i<k<j<o@ <o(ori>j>o@)>k=0o()}

and

Ri(o")={G, p)|i<j<o'()<o'()<n—korn—k>i>j>0o'(i)>0'(j)},
Ry(o’)={G, p|i<j<n—k<o'()<o'(jori>j>n—k=>0'()>0'(j)},
Ri(o")={G, p|i<j<o'®<n—k<o'(ori>n—k=>j>o(@)>0()}
The crossings in L;j’s and R;’s are illustrated in Table 2. Clearly, we have cr(o) = 2?21 |Li(o)| and
cr(0’) =Y | [Ri(0”)| since o €¥S, and o’ € SX.
By the definition of @&y, it is readily seen (see Row 1 in Table 3) that (i, j) € L1(o) if and only

if i—k,j—k)eRi(c’), and thus |L1(o)| =|R1(c")|. Similarly, we have (see Row 2 in Table 3) that
|L2(0)| = |R2(0”)|. It then remains to prove that |L3(o)| = |R3(c”)|. Let

Lao)={G,j)|o()<k<j<i<o(ori<k<o(j) <o)< j}.

Then it is not difficult to show (see Row 4 of Table 3) that |R3(c’)| = |L4(0)|. The result will thus
follow from the identity:

L3(0)| = |La(o)|, Vo eks,. (41)
Suppose o ([1,k]) = {i1,i2, ..., ik}< and o~V ([1,k]) = {j1. j2. .- -, jk}<- Then
k

IL3@)| =) ([{t|k<e<is<o@}]|+|{e|£> js > o) >k}

s=1

),

k
ILa@)| =) ([{t]t>is>0@ >k} +|{t|k<t<js<o@®}]).

s=1

For i € [n] define the set Aj(0) ={j|j <i<o(j)}. Then it is easily seen that
A =[{ili=i=o(}|=]Ai(c7")| (42)
Noticing that, for s € [Kk],

Helk<e<is<o@}|=|{e]|e<is<o@}| - |{¢]|t<k<is<o@]}]
= |Ai(@)| = [{t 11 > is}

)
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Table 3
Effects of the mapping @, on the crossings of o and o”’.
o — o’
k i j o; 0j i—k j—k oi—k oj—k n—k
X ; j o i—k i—k  oj—k -k
X o o i ; oj—k o —k ji—k i—k n—k
oi —k oj—k n—k n—k+i n—k+j
i J k Oi gj y
gj ok J i
j—k i—k n—k n—k+oj n—k+ oj
o —k n—k n—k+i
i k j o 0j j—k oj—k
n—k n—k+i
i k j oj ji—k oj—k
o X oi j i o —k i—k R
j—k n—k n—k+oj
Oj k i .
] 0; j—k i—k oj—k n—k n—k+o;
k
Oi J i j—k i—k n—k n—k+oj
5 i oj—k o —k j—k n'—k n—k+i
i k O

Hele>js>ow@ >k} =|{t|t>js>a@}|—|{t|t>js>k>0)}

=|{e|e>js>a@}| = |tt] je > js)|

=[A; (0™ = x (7 Gs) > js) = |{€ 1 Ge > js)

and
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{e]€>is> 0@ >k} =|Ai(c™h)| = |{t]je > is}].
{elk<t<is<o@}|=|A5@)]+x (07" Us) < js) = it 1ie = s},
we can rewrite |L3(0)| and |L4(0)|, using (42), as follows

k

[Ls@)|=A =Y (x(07"Gs) > Js) + [{t lie > is}| + [{t | e > Js}), (43)
s=1
k
|L4(0)| =A+ Z(X(G_l(js) < ]s) - |{t [ je > is}| - |{t lir > ]s}|)a (44)
s=1
where A = Z§:1(|Ai5(0)| + A (0)D.
Since |{t | i; > is}| = [{t | j; > js}| =k — s, we have
k
D (e tie > i)+ [{t | je > js}]) =kt — 1),
s=1
Also,
k k
Yo(telje> i + [t lie > js}|) = Y (x e > is) + x (e > js)) =K.
s=1 s,t=1

Substituting the above values into (43) and (44) leads to
k
|L3(0)] = [Lao)| =k =D (x (07" (o) > is) + x (0" (fs) < Js)) =0,
s=1

where the last equality follows from the fact that o ~1(js) # js for all s € [k]. This proves Eq. (41) and
completes the proof of Proposition 7. O

6. Proof of Lemma 5

Let Ny :=nq7 +ny <n and define

S = (o e Sy: (i,0() ¢ [1,n11> U[ng + 1, N2 ]2},

Hence, in the graph of any permutation in S\"""
or [n1+1,N>].

We now construct a mapping I"™-") : g > ¢’ from S\ to "™ a5 follows. Fori =1, ..., n:

there is no arc between any two integers in [1,n1]

(1) If i > Ny and o (i) > Na, set /(i) = o (i).
(2) Suppose

{(i,o®) |i<o@) <N} ={G1,N2+1—j1),....Gp, N2+ 1= jp)}.
{(o@).1) |o@) <i <Np}={(ki.,Na+1—4£1),.... (ke. N2+ 1—£g)}.

Then set 6/(js) =Ny +1—is and 0'(N2 +1 — ki) = ¢; for any s € [p] and t € [q].
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Table 4
The mapping '™ : g > ¢,
o N o’
1 N i o@) n N 1 N i o (i)
o (i) i o (i) i
r— 0
1 N> n — 1 Ny
N> Ny
1Ti m N2 +1—ji n — 1 je m Ny +1—i;
ke m Ny +1—4¢ b M Ny +1—k;

1 Cj N3 Ta(j) n — 1 ej Na Ta(j)

1 ej N, SpG)y  n 1 fi N, SB()

(3) Let C ={i e [1,N2]: o(i) > Ny} and D = {i € [1,N3]: o~1(i) > Ny}. It is clear that |C|=|D|.
Suppose C = {c1,C2,...,Cu}<, D = {d1,da,...,dy}<, 0(C) = {r1,12,...,7u}< and o~ 1(D) =
{s1,52,...,Su}<. Then, there are (unique) permutations o, 8 € Sy satisfying o (c;) = rg() and

o~ 1(d;) =sp) for each 1 < i< u. Let

E=[1,NaI\{j1,---,jp, No+1—kq,....N2+1—kg},
F=[1.N2J\{No+1—i1,eee Nat1—ip L1, ... Lq)

Clearly, we have |E| = |C| and |F| = |D|. Suppose E ={e1,...,ey}< and F ={f1,..., fu}<. Then

set 0/ (e;) =74 and o'(s;) = fgq) for each 1 <i<u.

The mapping is illustrated in Table 4.
For example, if we consider the permutation in Sl(gA) whose diagram is given by

then the diagram of I"™-"2)(¢) is given by
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It is not hard to check that /@:m2) ; SM12) _y gn2:m) ¢ \vel| defined and bijective because each

step of the construction is reversible. Actually we can prove, the details are left to the reader, that
(rm)y=1 = pa.nm),

Proposition 8. For each positive integers ny, ny, n, with Ny < n, the map I"™"-"2) is a bijection from S("1 M2)
to S™™ such that for each o € S, we have

(wex, cr) "™ (g) = (wex, cr)o. (45)

We first derive Lemma 5 from the above proposition. Let n = ny + ny + --- + ng. Then

Dy, na,...,m) C S By definition of '™, for any o € ™M™ and i > N, satisfying
o (i) > Ny, we have i — I (g) (i) =i — o (i), so I'™"2)(D(nq,ny,...,n)) C Dy, ns, ..., Nk, N1).
Since the cardinality of D(nq,ny,...,n;) doesn't depend on the order of the n;’s and I"™"2) js a

bijection, we have

r™m)(py,ng, ... ,ng)) =Dz, n3, ..., Mk, My).
Lemma 5 then follows from (45).

Proof of Proposition 8. It was shown above that I"(":") is bijective. Let ¢ € S,S"l‘"” and o’ :=
™2 (g). The equality wex(c’) = wex(o) is an immediate consequence of the definition of I"("1-12),
It then remains to prove that cr(c’) = cr(o). The idea is the same as for the proof of Eq. (4). We first
decompose the number of crossings of ¢ and ¢’. For each permutation y € Sy, set

G () ={G.j) | N2 <i<j<y@) <y()ori>j>y(i)>yQ)>Na},
GIM )y ={G, j)|i<j<y@d<y()<NaorNa=i>j>y@ >yl
G )y =G, j) |i<j<Na<y@) <y()ori>j>N=y(i) >y},
G () ={G. ) [i<Na<j<y@ <y()ori>j>y@) >N >y}
MMy ={G. ) |i<j<ydH <Ny <y()ori>Na>j>y(i) >y}

Clearly, for any y € S, we have cr(y) =Y, |G§"1’"2)(y)|. In particular,
5 5
cr(o) = Z|G§"1’”2)(0)] and cr(o’) = Z|Gl(”2’”1)(a’) | (46)
i=1 i

The crossings of Gf”""Z)'s and Gf”z’"‘)’s are illustrated in Table 5. By the definition of I"("1-12),
it is readily seen (see Row 1 in Table 6) that ngl‘"”(o) = Gﬁ"z‘"l)(a/) and thus |G§"1‘"2)(o)| =
IG{"™(¢")|. Similarly, we can prove (see Table 6) that |G\"""™ (o) = |G{"™™ (¢")| for i =2,3,4.
It remains to prove that |G§"1’"2)(a)| = |Gg"2’"1>(a/)|. This will follow from the following lemma.

Lemma 6. Let nq, ny and n be positive integers with Np <nand y € S,E"' ), Suppose that

B(V):{(l’y(l))‘l<V(l)<N2}Z{(ll,ll),(12s12)77(1p»]p)}s (47)
B(y ) ={(y@).1) | y() <i <N} = {(kn. €1). (ka, €2), ... (kg. £} (48)
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Table 5
Forms of the crossings in Gf”""“(y) and Gf"z’""(y).
i 6" () "™ (y)
1
1 N2 n 1 N n
1 N2 n 1 N> n
Nz NZ
1 n 1 n
2
1 m N2 n 1 ny Ny n
ny Ny n Na
: ; T~z i
3 1 N2 n 1 N2 n
Ny N>
T T~ 7 — n 1T T~ —n
T AN
4 1 N2 n 1 N2 n
1 N n 1 N2 n
Ny Na
1 T~ > n 1 T~ X
5 /Y\
1 n N n 1 ny N3 n
1 n N n 1 ny N3 n
n Ny 2 N
1 \M n 1 \M n
withiy <ip <--- <ipandky <ky <--- <kg. Then we have
p q
ny,n . . p+q
|Gg™ ”(y)\=Z<Jr—zr)+2<zr—kr—1)—( 5 ) (49)
r=1 r=1

Indeed, suppose
B(0) ={(i1,Na+1—j1),.... (ip. N2+ 1—jp)},
B(o™") ={(a, Na+1—21), ... (ke, Na + 1= £g)},
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Table 6
Effects of the mapping I"™"2) on the crossings of o and o”.
o — o'
Ny n Ny n
1 i j 0oi oj 1 i j oi Oj

Na
- - —
1 is  ir M Na+1—js Na+1—je
ks ke m1 Np+1—4¢s Np+1-—4¢
1 N>

1 G N J T gj
1 Ci N> T J
1 d N aj SBi J

=

1 Je Jjs M2

Ny +1—1i;

Ny +1—is

I €s N2 Ny+1—k Np+1—ks

N2

1 e; ej No T Ta;
fi i N, Sy S;
1
1 e N j Ta o
1 e N J
1 fi Ny gj S; J

then, by construction of o’/, we have

B(o

B(o') ={(j1. N2+ 1—ip), ...
/—1

a(jp!N2+1 _ip)}y

):{(E]aNZ_'_l_k1)a---a(KQ7N2+l_kq)}'

By symmetry, the identity (49) is also valid on 8,2"2’"’). Applying (49) to ¢’ and o leads to

|Gé"1’"2)(a)\ = |G(5”2‘"1)(0/)|. The proof of Proposition 8 is thus completed. O

Proof of Lemma 6. For any y € S, by definition, we have

[T )| = |{G. ) |[i<i<y@D<Na<y(D}+[{G.D]|y() <y <j< N2 <i|

+H{ili<y® <N <2 D).

(50)
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Now, by the definition of B(y) we get

Ha.p|i<i<y@<Na<y(D} =) |{x|ir<x<ijr<N2 <y}

r=1

p
Z (txlir <x < ji}] = [{x [ir <x < jr, ¥ (0 < N2}|).

p

For any r € [1, p], we have |{x|i; <x < j-}|=j-—ir—1 and

{x[ir <x < jr.y ) < N2}
Hx|ir <x<jr, x<y @ <No}|+ [{x]ir <x < jr, y®) <x<N2}|

[t 1ir <ie < jr}| +|{t1ir < € < jr}| (by definition of B(y) and B(y "))

:’{t|ir<it}|+|{t|zt<jr s

because, by definition of S,S"“"Z), (47) and (48), for any integers r and t, we have i <nq, kr <ny,
jr >nq and ¢; > nq, therefore i; < jr and i, < ¢;.
Summing over all r yields

=

@D ]i<i<y@®<N2 <y} =Z (Gr—ir = 1= [{t1ir <ig)| = [{t1 & < Jr)]). (51)

It follows that

G, ) |y () <y <j<Na <il
=|{G@.)]|i<i<y'OH<N2 <y ()}

L=}

=Y (b —kr = 1= [{t [k <ke}| = [{t | Jc < &:}]). (52)

r=1

As [{i|i<y(@) <Nz <y} =I{t|y(r) > Na}|, plugging (51) and (52) into (50) leads to

p q p
G () =3 Gr—ir =D+ Y =k =D+ |{t [ ¥ G0 > N} | = > it 1ir < i}
r=1 r=1 r=1
14 q q
=Y Hetee < jid| =D ie Tk <ked| = D Je ] je < €}, (53)
r=1 r=1 r=1

Since the i;’s and k;’'s are distinct we have

2 p G q
Z}{t|ir<it}{=<2> and Z|{t|kr<kt}|=(2>. (54)
r=1

r=1
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On the other hand,

p q p
Dolelee < |+ Helje < et = |{t 1 e # jirl
r=1 r=1 r=1

=pq—|{t|jc e {1, ta. ..., Lg}}|
k
=pg— Y _|{t| o) <Nz}

s=1

) (55)

where the last identity follows from the definitions of B(y) and B(y~!). Inserting (54) and (55) in
(53) we get (49). This concludes the proof of Lemma 6. O
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