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Abstract.  Generalizations of Binet’s theorem are used to produce generalized Pell
sequences from two families of silver means. These Pell sequences are also generated
from the family of Fibonacci polynomials. A family of Pell-Lucas sequences are also
generated from the family of Lucas polynomials and from another generalization of
Binet’s formula. A periodic set of cyclic constants are generated from the Lucas
polynomials. These cyclic constants are related to the Gauss-Wantzel proof of the
constructibility by compass and straightedge of regular polygons.

1.  Introduction

In the study of dynamical systems and chaos theory (SCHROEDER, 1991), hydrocarbon
chemistry (HOSOYA, 2005), studies of plant growth (see KAPPRAFF in another article in this
issue), and the geometry of regular polygons (KAPPRAFF et al., 2005), the golden mean and
its close relatives make their appearance through certain sequences, graphs, and irrational
numbers known as silver means. By sequences, we are referring to the Fibonacci sequence,
1, 1, 2, 3, 5, 8, ..., the Lucas sequence 1, 3, 4, 7, 11, 18, ... and their generalizations to Pell
and Pell-Lucas sequences. Fibonacci sequences have also been generalized in other ways.
KAPPRAFF (2002) discusses their generalizations to n-Fibonacci sequences. Kappraff et al.,
in another article in this issue, generalize the Fibonacci sequence, beginning with 11 to
sequences beginning with 111, 1111, ... The ratio of successive terms of these sequences
approach the diagonals of regular n-gons with unit edge for n odd just as the diagonal of
a regular pentagon with unit edge is the golden mean, these diagonals are generalizations
of the golden mean to the diagonals of other regular n-gons form elaborate algebraic
systems that we call “golden fields.” Two families of silver means generalize the golden
mean in a different way. As KAPUSTA has shown in this issue, silver means are the natural
result of a tightly woven system of geometry of the circle and the square.

Le Corbusier pondered the mysteries of the golden mean and was moved to comment:

Behind the wall, the gods play; they play with numbers of which the universe is made up.
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We have found that four families of polynomials are fundamental to this elegant mathematical
system and helps to shed light on these mysteries. The first two families are called
Fibonacci polynomials (F) of the first and second kind (KOSHY, 2001; KAPPRAFF, 2002).
They originate from Pascal’s triangle reconfigured so that their rows sum to the Fibonacci
numbers. KOSHY (2001) refers to them as Fibonacci polynomials (see Appendix A). The
F polynomials of the first kind, Kn

(1)(x), have all positive coefficients. The F polynomials
of the second kind, Kn

(2)(x), have alternating signs. These polynomials are discussed in
“Golden Fields” by Kappraff et al. in another article in this issue. The other two families
of polynomials are the Lucas polynomials of the first and second kind. They are derived
from a generalized form of Pascal’s triangle as shown by Hosoya in another article in this
issue and in Appendix B. The coefficients of the Lucas polynomials of the first kind,
Ln

(1)(x), sum to the Lucas numbers while the coefficients of Lucas polynomials of the
second kind, Ln

(2)(x), alternate in signs. KAPPRAFF and ADAMSON (2002) have shown that
Ln

(2)(x) represents the operator that generates the Mandelbrot set at the extreme point on the
real axis in a region of full-blown chaos. Based on this insight, generalized Mandelbrot sets
that resemble the standard one but somewhat more complex, were shown to be related to
the other Ln

(2)(x) polynomials of the Lucas family. In fact both the Kn
(2)(x) and the Ln

(2)(x)
polynomials work together. When roots of the Kn

(2)(x) are replaced into the Ln
(2)(x)

polynomials they lead to periodic trajectories of all lengths as KAPPRAFF and ADAMSON

(2002) and KAPPRAFF et al. (2005), have shown Since we will not refer to Lucas
polynomials of the first kind in this paper we omit the superscript and denote Lucas
polynomials of the second kind by Ln(x).

In this paper we introduce these sequences and numbers as players on a mathematical
stage. Two families of silver means are introduced. By way of generalizations of Binet’s
Formula, these are used to generate Pell and Pell-Lucas sequences. These sequences are
also generated directly from the F polynomials of the first and second kinds and the L
polynomials of the second kind. Finally, Binet’s formula is generalized still further by use
of DeMoivre’s theorem to a family of cosines that generate, from Ln(x), a sequence of cyclic
constants. These cyclic constants reproduce the energy levels of a cyclically conjugated
hydrocarbon molecules, on the one hand, and information about the constructability of
regular polygons with compass and straightedge according to the Gauss-Wantzel Theorem.

2.  Generalized Binet’s Formula and Silver Means of the Second Kind

Consider the solution TN to the equation,

x
x

N N− = = ( )1
1 1  for  .

TN is called the N-th silver mean of the first kind, where for T1 = τ for τ = (1+ 5 )/2, the
golden mean. For arbitrary N as stated in KAPPRAFF (2002),

T eN

h
N

=
arcsin

,2
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and when expanded as a continued fraction (see appendix B of Growth of Plants by
KAPPRAFF, 2005) it takes the elegant form,

TN = 1 + 1/N + 1/N + 1/N + 1/...

KAPUSTA gives a geometric construction of the silver means of the first kind in another
paper in this issue.

The well known Binet’s formula states that,

Fk

k k

= − −( )
+

( )
−

−
τ τ

τ τ 1 2

where Fk is the k-th number of the Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, ... (3)

from which the ratio of successive terms approaches τ. It is also known that the following
generalized form of Binet’s formula holds for all values of N (KOSHY, 2001; KAPPRAFF and
ADAMSON, 2003),

G
T T

T Tk
N N
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N
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N N
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−
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− −( )

+
( )1 4

where Gk
(N) is the k-th term of a generalized Pell sequence satisfying the recursion,

G NG G G G Nk
N

k
n

k
n N N

+
( ) ( )

−
( ) ( ) ( )= + = = ( )1 1 0 11 5  where    and  .

When N = 2, T2 = θ = 1 + 2 , the silver mean, and Gk
(2) is the Pell sequence,

1, 2, 5, 12, 29, 70, ... (6)

The ratio of successive terms in Sequence (6) approaches θ, whereas the ratio of successive
terms of the generalized Pell sequences approach the N-th silver means. The first nine
members of the family of Fibonacci polynomials of the first kind, Kn

(1)(x), are listed in
Appendix A. When N replaces x in the sequence of Fibonacci polynomials of the first kind,
Kn

(1)(x), the N-th generalized Pell sequence of Eq. (5) results since the recursion formula
that generates Kn

(1)(x) is,

K x xK x K x K K xk k k+
( ) ( )

−
( ) ( ) ( )( ) = ( ) + ( ) = = ( )1

1 1
1

1
1
1

2
11 7  where    and  .

Consider another generalization of Binet’s theorem. Denote by SN, the solution to the
equation,
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x
x

N N+ = = ( )1
3 8  for  .

SN is called the N-th silver mean of the second kind and is given in KAPPRAFF (2002) by the
formula,

S eN

h
N

=
arccos

2

and can be expanded in another elegant family of continued fractions as shown by
KAPPRAFF (2002),

SN = 1 + 1/N + 1/N + 1/N + 1/...

Binet’s formula generates,

H
S S

S Sk
N N

k
N

k

N N
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−
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− −( )

+
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where Hk
(N) is the k-th term of a generalized Pell sequence satisfying the recursion,

H NH H H H N Nk
N

k
n

k
n N N

+
( ) ( )

−
( ) ( ) ( )= − = = ≥ ( )1 1 0 11 3 10  where   and   for  .

The sequence for N = 3 is:

1, 3, 8, 21, 55, ... (11)

The ratio of successive terms of this sequence approaches S3 = τ2. If N is replaced in the
Fibonacci polynomials of the second kind, Kn

(2)(x), given by equation (3b) of “Golden
Fields” by KAPPRAFF et al., in another article in this issue, the family of generalized Pell
sequences, Hk

(N) is obtained for since the recursion relation governing the Kn
(1)(x) is,

K x xK x K x K K xk k k+
( ) ( )

−
( ) ( ) ( )( ) = ( ) − ( ) = = ( )1

2 2
1

2
1

2
2
21 12  where    and  .

We have proven in Appendix A to “Golden Fields” that Kn
(2) are related to the derivatives

of the Chebyshev polynomials. The ratio of successive terms of these Hk
(N) sequences

approach the silver means of the second kind, SN.

3. Lucas Polynomials and Generalized Binet’s Formula, and Silver Means of the Second
Kind

Consider the sequence of Lucas polynomials of the second kind described by HOSOYA
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(2005), KOSHY(2001), KAPPRAFF(2005), and defined by the recursion,

L x xL x L x L L xk k+ ( ) = ( ) − ( ) = = ( )1 1 13  where    and  1 2 .

The Lucas polynomials are generated from a generalized form of Pascal’s equation as
described in Appendix B where the first seven members of the family are listed. They are
related to the Chebyshev Polynomials and satisfy the following important relation,

L mm 2 2 14cos cos .θ θ( ) = ( )

By setting x = N for N     3 in the Lucas polynomials, we generate a family of sequences
with the following recursion,

L NL L a a Nk
N

k
N

k
N

+
( ) ( )

−
( )= − = = ( )1 1 2 15  where    and  0 1 .

For example, N = 3 results in the Pell-Lucas sequence,

Lk
(3): 2, 3, 7, 18, 47, ..., (16)

alternate terms from the Lucas sequence: 2, 1, 3, 4, 7, 11, 18, 29, ...
We are also able to generate Pell-Lucas sequences, Lk

(N), directly from the following
generalization of Binet’s formula,

L S S Nk
N

N
k

N
k( ) −= + = ( )  for  3 17.

where Lk
(N) is the k-th term of the N-th Lucas-Pell sequence. For example, replacing S3 =

τ2 into Eq. (17) results in Sequence (16).
The Pell and Pell-Lucas sequences have many interesting properties that have been

extensively written about in the literature (KOSHY, 2001; KAPPRAFF, 2002). We will not go
into them here.

4.  Cyclic Constants in the Lucas Polynomials

Consider, the principal rot of unity, EN = exp((2π)/(N)i) satisfying the equation,

xN = 1.

Using De Moivre’s Theorem,
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In other words, EN satisfies the equations,

x
x N

x
x

i
N

+ = − = ( )1
2

2 1
2

2
19cos sin .

π π
  and  

There is an analogy between Eqs. (1), (8) and (18), on the one hand, and Binet’s formula
given by Eqs. (9) and (17).

If x = 2cos(2π/N) is now replaced in the Lucas polynomials Lk(x) instead of N, a
periodic sequence with period N results as a consequence of Eq. (14). For example, if x =
2cos(2π/7) the following sequence of cyclic constants results,
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In Huckel molecular orbital method, Eq. (20) represents the energy levels of a cyclic
conjugated hydrocarbon molecule (STREITWEISER, 1961; HEILBRONNER and BOCK, 1968;
TANG et al., 1986).

In general the sequence for any odd value of N is:

C
j

N
C C j k

N
j
N

N j
N

j
n( )

−
( ) ( )= = ≤ ≤ = −

2
2

0
1

2
cos .

π
  where    for  

It is interesting that these periodic sequences arise from movement around the adjacent
vertices of the regular N-gon, whereas replacing 2cos(2π/7) into the Lucas polynomials,
seen as the operator x   a Lk(x), gives rise to periodic trajectories xj = 2coskj(2π/7). For
example if k = 2 the operator is, x   a  x2 – 2 and 2j = 1, 2, 4, 8, ..., i.e., the trajectory point
progresses around the vertices in a geometric progression. This represents the operator of
the Mandelbrot set at the leftmost point on the real axis, c = –2, a point of full-blown chaos.
This is discussed in great detail in KAPPRAFF and ADAMSON (2005) and by Kappraff et al.
in another paper in this issue.
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5.  Gauss’ Theory of the Non-constructibility of Regular Polygons

Gauss showed that the heptagon cannot be constructed using an unmarked straightedge
and compass whereas a pentagon and a 17-gon can. But also the nonagon can also not be
constructed although Gauss did not prove this. It appears that in his proof of the
constructability of certain regular polygons Gauss unknowingly derived one set of cyclic
polynomials in his proof. We refer to the case for N = 7 in BOLD (1982) The Gauss-Wantzel
proof is rather technical calling upon the elements of Galois theory. However the essence
of the proof is to show that if the cyclotomic equation of xN = 1 has a factor that is an
irreducible polynomial of degree higher than 2 then the polygon is not constructible. To
show that a regular n-gon is constructible, it is sufficient to show that the real part of the
roots, cos(2πk/N) for 1 ≤ k ≤ N – 1 of the cyclotomic polynomial, must be roots of quadratic
factors. All N-gons for N even are constructible as are certain odd valued ones such as N
= 5, 15, and 17. In fact, it has been proven that N-gons for N prime are constructible if N
is a Fermat prime of the form N = 1 + 22n

. For example N = 5, 17, and 65537 for n = 1, 2,
and 3 have been shown to be constructible. Following BOLD (1982), we shall demonstrate
that 2cos(2π/N) is the root of irreducible cubics for N = 7 and 9, and therefore they are not
constructible.

Let’s consider the case for N = 7 and the solutions to,

x7 = 1 (21)

the roots of unity, Rk for 0 ≤ k ≤ 6 where R = exp((2π/7)i) = cos(2π/7) + isin(2π/7). These
points lie at the vertices of a regular heptagon in the complex plane. Excluding the root, x
= 1, leads to the cyclotomic equation for the other six roots,
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where we have used the fact that R–k = RN–k and 2cosj(2π/N) = 2cos(N– j)(2π/N). But,

r r r R R R R R R

r r r r r r

r r r
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1 2 3 4 5 6
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2
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=
( )

.

Therefore the cyclotomic polynomial has led to the irreducible cubic polynomial,

x3 + x2 – 2x – 1. (25)

Therefore the heptagon is non-constructible. Notice that r1, r2, r3 are the cyclic constants
2cosk(2π/7) for k = 1, 2, 4.

Next consider the nonagon which was not studied by Gauss. Its vertices are determined
by the nine roots of unity,

x9 = 1. (26)

We find that,

x x x x9 3 6 31 1 1−( ) = −( ) + +( )
therefore, x6 + x3 + 1 has the same roots as x9 – 1 except for the cubic roots of unity. But
the cubic roots of unity are R3, R6, and R9 where R = exp((2π/9)i) = cos(2π/9) + isin(2π/9),
since each of their cubes equals 1. As a result, the other six powers of R must be the roots
of x6 + x3 + 1. In the manner of Gauss, we pair these powers as follows,

r R R R R

r R R R R

r R R R R
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π

and find that,

r1 + r2 + r3 = R1 + R2 + R4 + R5 + R7 + R8 = a.

But because the sum of these six roots must equal the coefficient of x5 in the polynomial
x6 + x3 + 1 it follows that a = 0.

From a similar analysis, r1r2 + r1r3 + r2r3 = –3 and r1r2r3 = 1 resulting in the irreducible
cubic polynomial,
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x3 – 3x + 1.

It follows that the nonagon is non-constructible. Once again the roots of this polynomial
are the cyclic constants for k = 1, 2, and 4.

6.  Conclusion

We have generalized Binet’s formula to the two families of silver means and used
these formulas to generate generalized Pell and Pell-Lucas sequences. Binet’s formula was
again generalized, with the help of DeMoivre’s theorem, to produce a sequence of cyclic
constants, 2cosj(2π/N), with period N when x = 2cos(2π/N) is replaced successively into the
Lucas polynomials. These cyclic constants arise naturally in the Gauss-Wantzel proof of
the nonconstructibility of certain N-gons.

Appendix A:  The Fibonacci Polynomials

Consider Pascal’s triangle.

Table A1.  Pascal’s triangle.

        1                             1
      1   1                           2
    1   2   1                        4

    1   3   3   1                     8
  1   4   6   4   1                16
1   5   10 10  5  1             32

1   6   15 20 15 6  1           64
     …

The integers of Pascal’s triangles can be reorganized so that its diagonals become rows that
sum to the Fibonacci numbers as in Table A1. We refer to this as the Fibonacci-Pascal
triangle.

Table A2.  Fibonacci-Pascal triangle.

                                             Sum

1    10                       1                1
2    11                       1                 x

3    12   10                       2                 12 +x
4    13   21                       3                 xx 23 +
5    14   32   10                        5                 13 24 ++ xx
6    15   43   31                        8                 xxx 34 35 ++
7    16   54   62    10                13               165 246 +++ xxx
8    17   65  103   41                21               xxxx 4106 357 +++
9    18   76  154   102    10      34              110157 2468 ++++ xxxx

etc.                                  etc.
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The superscripts in Table A1 are exponents, and the integers are coefficients of a sequence
of polynomials called Fibonacci polynomials of the first kind, Kn

(1)(x), discussed in KOSHY

(2001). Inserting x = 1 into these polynomials yields the Fibonacci numbers. If x = 2, the
Pell sequence is obtained in which the ratio of successive terms approaches the silver mean
(the positive solutions of x – (1/x) = 2). The other integers result in sequences whose ratios
approach higher order silver means of the first kind, TN (solutions of x – (1/x) = N). where
the sequences satisfy the recursion, an+1 = Nan + an–1 for integer values of N. If the signs
of these polynomials alternate, they are the Fibonacci polynomials of the second kind, Kn

(2),
which satisfy the recursion relation,

K x xK x K x K K xn n n
2

1
2

2
2

1
2

2
21( )

−
( )

−
( ) ( ) ( )( ) = ( ) − ( ) = = ( ) starting with  and A1.

These polynomials play an important role in “Golden Fields” by Kappraff et al. in another
article in this issue. Replacing integer values of into the Fibonacci polynomials with
alternating signs yields another family of generalized Pell sequences satisfying the
recursion, an+1 = Nan – an–1 in which the ratio of successive terms approach higher order
silver means of the second kind (the positive solutions of x + (1/x) = N).

The Lucas polynomials, Lm(x), can be expressed in terms of the derivatives of the
Chebyshev polynomials, Tm(x),

K x
n

dT
x

dxn

n

( ) =





2 2 .

The proof is given in Appendix A of “Golden Fields.”

Appendix B:  The Lucas Polynomials

Consider a modified version of Pascal’s triangle.

Table B1.  A generalized Pascal’s triangle.

         2
     2      1
 2      3       1

 2      5       4       1
 2     7       9       5       1

 …
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Reorganizing Table B1 so that the diagonals become columns yields,

Table B2.  Lucas-Pascal’s triangle.

    Sum

0    20               2              2

1    11               1              x

2    12      20               3              x2 - 2

3    13     31               4              x3 - 3x

4    14   42   20              7              x4 - 4x2 + 2

5    15   53   51             11             x5 - 5x3 + 5x

6    16   64   92    20     18             x6 - 6x4 + 9x2 - 2

7    17   75 143    71     29             x7 - 7x5 + 14x3 - 7x
       etc.                                  etc.

The integers in each row of the Table B2 sum to the Lucas Numbers. The superscripts in
the table are exponents, and the integers are coefficients of a sequence of polynomials with
alternating signs known as the Lucas Polynomials of the second kind, Ln(x), which play an
important role in “Golden Fields” by Kappraff et al. in another article in this issue.
Beginning with L0 = 2 and L1 = x, the Lucas polynomials with alternating signs are
generated by the recursive formula:

Ln(x) = xLn–1(x) – Ln–2(x).

The Lucas polynomials, Lm(x), can be expressed in terms of the Chebyshev polynomials,
Tm(x), of the first kind,

1

2
2L x T xm m( ) = ( ).

The recursion relation for Tm is,

Tm = 2xTm–1 – Tm–2

which is related to a recursion for the Pells sequence.
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