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of multiple analogues of hypergeometric zeta functions.
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1. Introduction and main results

The Bernoulli numbers Bn (n = 0,1,2, . . .) are rational numbers defined by the generating function

x

ex − 1
=

∞∑
n=0

Bn

n! xn (|x| < 2π
)
.

The following well-known formula for sums of two products of Bernoulli numbers is called Euler’s
formula:

n∑
i=0

(
n

i

)
Bi Bn−i = −nBn−1 − (n − 1)Bn (n � 1). (1.1)

Since B2n+1 = 0 for n � 1, Eq. (1.1) can be written as

n−1∑
i=1

(
2n

2i

)
B2i B2n−2i = −(2n + 1)B2n (n � 2). (1.2)
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These formulas (1.1) and (1.2) have been generalized in many directions. Dilcher [5] gave formu-
las for sums of N products of Bernoulli numbers (N = 1,2,3, . . .), which generalize (1.2). Agoh and
Dilcher [2,3] considered the following types of sums of products of Bernoulli numbers:

∑
i1�0,...,ir�0
i1+···+ir=n

n!
i1! · · · ir ! Bm1+i1 · · · Bmr+ir

for non-negative integers mi (1 � i � r) and gave some formulas for them. Petojević [17] and Petojević
and Srivastava [18] studied other types of sums of products of Bernoulli numbers. Many results on
sums of products of analogues of Bernoulli numbers are also known. For example, sums of products
of Carlitz’s q-Bernoulli numbers [14,19] and sums of products of Kronecker’s double series [15] were
studied.

In the article [5], Dilcher also gave formulas for sums of products of Bernoulli polynomials and
Euler polynomials. Here we state his formula on Bernoulli polynomials Bn(x):

Theorem 1.1. (See [5, Theorem 3].) Let (x1, . . . , xr) ∈ Rr and y = x1 + · · · + xr . Then the following identity
holds:

∑
i1�0,...,ir�0
i1+···+ir=n

n!
i1! · · · ir ! Bi1(x1) · · · Bir (xr)

= (−1)r−1r

(
n

r

) r−1∑
i=0

i∑
k=0

(
r − i − 1 + k

k

)[
r

r − i + k

]
(−y)k Bn−i(y)

n − i
(n � r), (1.3)

where
[r

k

]
are unsigned Stirling numbers of the first kind defined by

x(x + 1) · · · (x + r − 1) =
r∑

k=0

[
r

k

]
xk. (1.4)

Since Bn(0) = Bn , we obtain the following formula for sums of r products of the ordinary Bernoulli
numbers by setting x1 = · · · = xr = 0 in (1.3):

∑
i1�0,...,ir�0
i1+···+ir=n

n!
i1! · · · ir ! Bi1 · · · Bir = (−1)r−1

(
n

r

) r−1∑
i=0

[
r

r − i

]
r

n − i
Bn−i (n � r). (1.5)

We note that this formula (1.5) was proved by Vandiver [20, Eq. (140)] and it gives Euler’s formula
(1.1) when r = 2.

It is known that formulas like (1.1), (1.2) and (1.3) can be proved by the method of multiple
zeta functions (e.g., [4,6,7]). More precisely, these formulas can be obtained by expressing a certain
multiple zeta function in two ways and comparing special values of them at non-negative integers.
Chen [4, Theorems 3–5] gave some formulas, which include (1.3), for sums of products of generalized
Bernoulli polynomials and Euler polynomials by this method. The main results of this paper, which is
stated below, will be proved by essentially the same method.
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Table 1
Values of B N,n .

n 0 1 2 3 4 5 6 7 8

B1,n 1 − 1
2

1
6 0 − 1

30 0 1
42 0 − 1

30

B2,n 1 − 1
3

1
18

1
90 − 1

270 − 5
1134 − 1

5670
7

2430
13

7290

B3,n 1 − 1
4

1
40

1
160

1
5600 − 1

896 − 13
19200

7
76800

7453
14784000

B4,n 1 − 1
5

1
75

3
875

13
26250 − 19

78750 − 239
918750 − 289

3093750
5689

108281250

B5,n 1 − 1
6

1
126

1
504

1
2646 − 1

31752 − 431
4889808 − 31

598752 − 262
35756721

For a positive integer N , Howard [12,13] defined generalized Bernoulli numbers B N,n (n =
0,1,2, . . .) as

xN/N!
ex − T N−1(x)

=
∞∑

n=0

BN,n

n! xn, (1.6)

where T N−1(x) is the Taylor polynomial of ex of degree N − 1, i.e. T N−1(x) = ∑N−1
m=0 xm/m!. When

N = 1, the numbers B1,n are nothing but the ordinary Bernoulli numbers Bn . We list the numbers
BN,n for 1 � N � 5 and 0 � n � 8 in Table 1. Howard [13] himself referred to B N,n as AN,n and
gave many congruences about them. For example, he proved the congruence 2B2,n ≡ 1 (mod 4) for
n > 1 [12, Theorem 4.1]. These numbers B N,n were revisited by Hassen and Nguyen [10,11] in the
study of hypergeometric zeta functions, which are defined in the next section, and they call B N,n
hypergeometric Bernoulli numbers.

Here we explain why these numbers B N,n are called hypergeometric Bernoulli numbers. For real
numbers a and b with b > 0, the confluent hypergeometric function 1 F1(a,b; x) is defined by the
following infinite series:

1 F1(a,b; x) =
∞∑

n=0

(a)n

(b)n

xn

n! , (1.7)

where (a)n is the Pochhammer symbol defined by

(a)n =
{

a(a + 1) · · · (a + n − 1) (n � 1),

1 (n = 0).
(1.8)

The confluent hypergeometric function 1 F1(a,b; x) is a degenerate form of Gauss’s hypergeometric
function 2 F1(a,b, c; x), and which arises as a solution of a certain differential equation called Kum-
mer’s equation (cf. [1, Chapter 13]). By definition, we have ex − T N−1(x) = xN

1 F1(1, N + 1; x)/N! for
any positive integer N . Hence Eq. (1.6) can be expressed as

1

1 F1(1, N + 1; x)
=

∞∑
n=0

BN,n

n! xn (1.9)

and we may call BN,n hypergeometric Bernoulli numbers.
As a generalization of the left-hand side of (1.1) and (1.5), we set the sums of products of hyper-

geometric Bernoulli numbers as

SN,r(n) :=
∑

i1�0,...,ir�0
i +···+i =n

n!
i1! · · · ir ! BN,i1 · · · BN,ir (1.10)
1 r
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for positive integers N and r. Then Euler’s formula (1.1) can be written as

S1,2(n) = −nBn−1 − (n − 1)Bn (n � 1). (1.11)

The purpose of this paper is to give formulas similar to (1.11) for general S N,r(n). The following is
the main result of this paper, and it will be proved by the method of multiple zeta functions.

Main Theorem. Let N and r be positive integers. For any integer n � r − 1, we have

SN,r(n) = 1

Nr−1

r−1∑
i=0

A(N)
r

(
i;1 + N(r − 1) − n

)
(−1)i

(
n

i

)
i!BN,n−i, (1.12)

where A(N)
r (i; s) ∈ Q[s] (0 � i � r − 1) are polynomials defined by the following recurrence relation:

A(N)
1 (0; s) = 1,

A(N)
r (i; s) = s − 1

r − 1
A(N)

r−1(i; s − N) + A(N)
r−1(i − 1; s − N + 1) (r � 2). (1.13)

Here A(N)
r (i; s) are defined to be zero for i � −1 and i � r.

It can be proved by induction on r that the degree of A(N)
r (i;1 + N(r − 1) − n)

(n
i

)
is r − 1 as a

polynomial of n. Therefore we obtain the following corollary.

Corollary. Let N and r be positive integers. The number SN,r(n) has the following expression:

SN,r(n) =
r−1∑
i=0

Fi(n)BN,n−i (n � r − 1), (1.14)

where each Fi(X) ∈ Q[X] is a polynomial of degree r − 1, which depends only on N and r.

This paper is organized as follows. In Section 2 we review hypergeometric zeta functions de-
fined by Hassen and Nguyen, and define their multiple analogues called multiple hypergeometric
zeta functions. In Section 3 we prove the Main Theorem by the method of multiple hypergeometric
zeta functions defined in Section 2. In the last Section 4 we give some examples. We give formula
(1.5) from our Main Theorem, and give explicit formulas for sums of r products of hypergeometric
Bernoulli numbers for r = 2,3 and 4.

2. Multiple hypergeometric zeta functions

Let r be a positive integer and s be a complex variable. We consider the following multiple zeta
function:

Zr(s) =
∑

m1�1,...,mr�1

1

(m1 + · · · + mr)s

(�(s) > r
)
. (2.1)

The right-hand side of (2.1) is absolutely convergent for �(s) > r. When r = 1, the function Z1(s) is
nothing but the classical Riemann zeta function ζ(s). By the usual method, we can obtain the integral
representation
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Zr(s) = 1

Γ (s)

∞∫
0

xs−1

(ex − 1)r
dx

(�(s) > r
)
, (2.2)

where Γ (s) is the gamma function. This is a simple generalization of the integral representation of
the Riemann zeta function:

ζ(s) = 1

Γ (s)

∞∫
0

xs−1

ex − 1
dx

(�(s) > 1
)
. (2.3)

We note that the function Zr(s) is a special case of the Barnes multiple zeta function ζr(s;α,ω)

defined by

ζr(s;α,ω) =
∑

m1�0,...,mr�0

1

(ω1m1 + · · · + ωrmr + α)s

(�(s) > r
)

(2.4)

for ω = (ω1, . . . ,ωr) ∈ Cr and α ∈ C with �(ωi) > 0 (1 � i � r) and �(α) > 0. In fact, it is clear that
Zr(s) = ζr(s; r, (1, . . . ,1)). The right-hand side of (2.4) is also absolutely convergent for �(s) > r. It
is known that the Barnes multiple zeta function ζr(s;α,ω) can be holomorphically continued to the
whole plane except for simple poles at s = 1,2, . . . , r. Moreover, its values at negative integers can be
expressed in terms of Bernoulli numbers (see, e.g., [16, Theorem 1]).

For a positive integer N and a complex variable s ∈ C with �(s) > 1, Hassen and Nguyen [11]
defined hypergeometric zeta functions ζN (s) as

ζN(s) = Γ (N + 1)

Γ (s + N − 1)

∞∫
0

xs+N−2

xN
1 F1(1, N + 1; x)

dx, (2.5)

or equivalently,

ζN(s) = 1

Γ (s + N − 1)

∞∫
0

xs+N−2

ex − T N−1(x)
dx. (2.6)

The right-hand side of (2.6) is convergent for �(s) > 1. When N = 1, the right-hand side of (2.6)
coincides with the integral representation (2.3) of the Riemann zeta function, i.e. ζ1(s) = ζ(s). Hassen
and Nguyen [11] proved that hypergeometric zeta functions can be meromorphically continued to the
whole plane and values of hypergeometric zeta functions at non-negative integers are expressed by
hypergeometric Bernoulli numbers B N,n .

Theorem 2.1. (See [11, Theorem 3.3].) The function ζN (s) is analytic on the whole plane except for simple poles
at {2 − N,3 − N, . . . ,1} whose residues are

Res
s=n

ζN(s) = (2 − n)

(
N

2 − n

)
BN,1−n (2 − N � n � 1).

Furthermore, for negative integers n less than 2 − N, we have

ζN(n) = (−1)−n−N+1
(

1 − n

N

)−1

BN,1−n.
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Remark 1. The right-hand side of (2.5) can be defined for any real number N > 0, hence ζN (s) can be
defined for any real number N > 0. Hassen and Nguyen [9] focused particularly on the function ζ 1

2
(s)

and gave some analytic properties of it. In this paper we only consider the case where N is a positive
integer.

Now we introduce multiple hypergeometric zeta functions. Let N and r be positive integers. For
s ∈ C with �(s) > 1 + N(r − 1), multiple hypergeometric zeta functions are defined as

ζN,r(s) = Γ (N + 1)r

Γ (s + N − 1)

∞∫
0

xs+N−2

(xN
1 F1(1, N + 1; x))r

dx. (2.7)

The right-hand side of (2.7) is absolutely convergent if �(s) > 1 + N(r − 1). When r = 1, the function
ζN,1(s) is the ordinary hypergeometric zeta function ζN (s). When N = 1, the function ζ1,r(s) is equal
to Zr(s) because x1 F1(1,2; x) = ex − 1. Therefore we can say that our functions ζN,r(s) are multiple
analogues of hypergeometric zeta functions.

To investigate the sums of products of hypergeometric Bernoulli numbers, it is convenient to treat
the following modified zeta function:

ζ̃N,r(s) := 1

Γ (2 − s − N)Γ (N + 1)r
ζN,r(s). (2.8)

Since Γ (1 − s)Γ (s) = π/ sin(π s), the function ζ̃N,r(s) has an expression

ζ̃N,r(s) = sin(π(s + N − 1))

π

∞∫
0

xs+N−2

(xN
1 F1(1, N + 1; x))r

dx (2.9)

for �(s) > 1 + N(r − 1).
Let us show that the function ζ̃N,r(s) can be continued to an entire function by the contour integral

method. For a complex variable s, we put

IN,r(s) = 1

2π i

∫
γ

(
w N

1 F1(1, N + 1; w)
)−r

(−w)s+N−1 dw

w
. (2.10)

Here the contour γ is taken to be along the real axis from ∞ to δ > 0, counterclockwise around the
circle of radius δ with center at the origin, and then along the real axis from δ to ∞. We let −w have
argument −π when we are going towards the origin and argument π when we are going towards ∞.
Moreover we suppose that δ is sufficiently small such that there are no roots of w N

1 F1(1, N + 1; w)

inside the circle of radius δ with center at the origin except for the trivial zero w = 0. Then the
integral (2.10) converges for all s and IN,r(s) defines an entire function. We remark that the integral
in (2.10) is independent of the choice of δ by Cauchy’s theorem.

Proposition 2.2.

(i) We have IN,r(s) = ζ̃N,r(s) for �(s) > 1 + N(r − 1). Therefore, the function ζ̃N,r(s) can be continued to an
entire function.

(ii) For an integer n, we have

IN,r
(
1 − N + (Nr − n)

) =
{

(−1)Nr+n SN,r(n)/n! (n � 0),

0 (n < 0).
(2.11)
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Proof. (i) We decompose the integral path as follows:

IN,r(s) = 1

2π i

δ∫
∞

(
xN

1 F1(1, N + 1; x)
)−r

e(s+N−1)(log x−π i) dx

x

+ 1

2π i

∫
|w|=δ

(
w N

1 F1(1, N + 1; w)
)−r

(−w)s+N−1 dw

w

+ 1

2π i

∞∫
δ

(
xN

1 F1(1, N + 1; x)
)−r

e(s+N−1)(log x+π i) dx

x
. (2.12)

Under the condition �(s) > 1 + N(r − 1), the second term of (2.12) vanishes when δ tends to zero.
Therefore we have

IN,r(s) = eπ i(s+N−1) − e−π i(s+N−1)

2π i

∞∫
0

xs+N−2

(xN
1 F1(1, N + 1; x))r

dx

= sin(π(s + N − 1))

π

∞∫
0

xs+N−2

(xN
1 F1(1, N + 1; x))r

dx

= ζ̃N,r(s)

and the assertion holds.
(ii) When s is an integer, the first and third terms of (2.12) cancel each other. Therefore

IN,r
(
1 − N + (Nr − n)

) = 1

2π i

∫
|w|=δ

1

1 F1(1, N + 1; w)r
(−1)Nr−n w−n dw

w

= (−1)Nr−n

2π i

∫
|w|=δ

∞∑
m=0

SN,r(m)

m! wm−n dw

w
. (2.13)

By the residue theorem, this value is equal to (−1)Nr+n SN,r(n)/n! for n � 0 and equal to zero for
n < 0. �

Since ζN,r(s) = Γ (2 − s − N)Γ (N + 1)r ζ̃N,r(s), we can obtain the following theorem on the function
ζN,r(s). This theorem is a generalization of Theorem 2.1.

Theorem 2.3.

(i) The function ζN,r(s) defined by (2.7) can be holomorphically continued to the whole plane except for
possible simple poles at s = (1 − N) + 1, (1 − N) + 2, . . . , (1 − N) + Nr. The residue of ζN,r(s) at s =
(1 − N) + n (1 � n � Nr) is

(N!)r

(n − 1)!(Nr − n)! SN,r(Nr − n). (2.14)
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(ii) Let u be an integer with u � 0. Then we have

ζN,r(1 − N − u) = (−1)u(N!)ru!
(Nr + u)! SN,r(Nr + u).

Proof. (i) By definition, we have ζN,r(s) = Γ (2 − s − N)Γ (N + 1)r ζ̃N,r(s). The gamma factor Γ (2 −
s − N) has simple poles at s = (1 − N) + i for i � 1 and ζN,r(s) vanishes when s = (1 − N) + i for
i � Nr + 1 by Proposition 2.2(ii). Therefore ζN,r(s) has possible simple poles at s = (1 − N) + 1,

(1 − N) + 2, . . . , (1 − N) + Nr.
The residue of ζN,r(s) at s = 1 − N + n (1 � n � Nr) is equal to

lim
s→1−N+n

(
s − (1 − N + n)

)
ζN,r(s)

= lim
s→1−N+n

(
s − (1 − N + n)

)
Γ (2 − s − N)(N!)r ζ̃N,r(s)

= lim
s→1−N+n

−(n + 1 − s − N)
Γ (n + 2 − s − N)

(2 − s − N) · · · (n + 1 − s − N)
(N!)r ζ̃N,r(s)

= (−1)n

(n − 1)! (N!)r ζ̃N,r(1 − N + n).

By Proposition 2.2(ii) again, this value is equal to

(N!)r

(n − 1)!(Nr − n)! SN,r(Nr − n).

(ii) When s = 1 − N − u (u � 0), we obtain from Proposition 2.2(ii) that

ζN,r(1 − N − u) = Γ
(
2 − (1 − N − u) − N

)
Γ (N + 1)r ζ̃N,r(1 − N − u)

= (−1)u(N!)ru!
(Nr + u)! SN,r(Nr + u)

and this completes the proof. �
Remark 2. Since BN,0 = 1, we have SN,r(0) = 1 for any N and r. Thus the function ζN,r(s) has a proper
simple pole at s = 1 + N(r − 1) with residue (N!)r/(Nr − 1)!. The author does not know whether or
not the residue (2.14) of ζN,r(s) at s = 1 − N + n vanishes for some N , r and n.

3. Proof of the Main Theorem

In this section we prove our Main Theorem. First we give the following recurrence relation of
ζ̃N,r(s):

Lemma 3.1. For r � 2, we have

ζ̃N,r(s) = (−1)N

N

(
s − 1

r − 1
ζ̃N,r−1(s − N) + ζ̃N,r−1(s − N + 1)

)
. (3.1)
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Proof. It suffices to show (3.1) for �(s) > 1 + N(r − 1) because both sides of (3.1) are holomorphically
continued to the whole plane. We recall the following properties of the confluent hypergeometric
function:

d

dx

(
xN

1 F1(1, N + 1; x)
) = NxN−1

1 F1(1, N; x), (3.2)

1 F1(1, N; x) = 1 + x

N
1 F1(1, N + 1; x) (3.3)

for any N > 0. Then, for any s ∈ C with �(s) > 1 + N(r − 1), we have

∞∫
0

xs+N−2

(xN
1 F1(1, N + 1; x))r

dx

= 1

N

( ∞∫
0

NxN−1
1 F1(1, N; x)

(xN
1 F1(1, N + 1; x))r

xs−1 dx −
∞∫

0

1

(xN
1 F1(1, N + 1; x))r−1

xs−1 dx

)

= 1

N

∞∫
0

(
1

−r + 1

(
xN

1 F1(1, N + 1; x)
)−r+1

)′
xs−1 dx

− 1

N

∞∫
0

xs−1

(xN
1 F1(1, N + 1; x))r−1

dx.

Calculating the first term by integration by parts, we obtain that

∞∫
0

xs+N−2

(xN
1 F1(1, N + 1; x))r

dx

= 1

N

∞∫
0

s − 1

r − 1

xs−2

(xN
1 F1(1, N + 1; x))r−1

dx − 1

N

∞∫
0

xs−1

(xN
1 F1(1, N + 1; x))r−1

dx.

Therefore

ζ̃N,r(s) = sin(π(s + N − 1))

π

∞∫
0

xs+N−2

(xN
1 F1(1, N + 1; x))r

dx

= s − 1

r − 1
· (−1)N sin(π((s − N) + N − 1))

Nπ

∞∫
0

x(s−N)+N−2

(xN
1 F1(1, N + 1; x))r−1

dx

− (−1)N−1 sin(π((s − N + 1) + N − 1))

Nπ

∞∫
x(s−N+1)+N−2

(xN
1 F1(1, N + 1; x))r−1

dx
0
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= (−1)N

N

(
s − 1

r − 1
ζ̃N,r−1(s − N) + ζ̃N,r−1(s − N + 1)

)

and this completes the proof. �
Proposition 3.2. For r � 1, we have

ζ̃N,r(s) = (−1)N(r−1)

Nr−1

r−1∑
i=0

A(N)
r (i; s)ζ̃N,1

(
s − N(r − 1) + i

)
. (3.4)

Proof. We prove (3.4) by induction on r. The case r = 1 is clear. We assume that the case r − 1 holds.
Then, by Lemma 3.1, we have

ζ̃N,r(s) = (−1)N

N

(
s − 1

r − 1
ζ̃N,r−1(s − N) + ζ̃N,r−1(s − N + 1)

)

= (−1)N

N

(
s − 1

r − 1

(−1)N(r−2)

Nr−2

r−2∑
i=0

A(N)
r−1(i; s − N)ζ̃N,1

(
s − N − N(r − 2) + i

)

+ (−1)N(r−2)

Nr−2

r−2∑
i=0

A(N)
r−1(i; s − N + 1)ζ̃N,1

(
s − N + 1 − N(r − 2) + i

))

= (−1)N(r−1)

Nr−1

(
s − 1

r − 1

r−2∑
i=0

A(N)
r−1(i; s − N)ζ̃N,1

(
s − N(r − 1) + i

)

+
r−1∑
i=1

A(N)
r−1(i − 1; s − N + 1)ζ̃N,1

(
s − N(r − 1) + i

))

= (−1)N(r−1)

Nr−1

r−1∑
i=0

(
s − 1

r − 1
A(N)

r−1(i; s − N) + A(N)
r−1(i − 1; s − N + 1)

)

× ζ̃N,1
(
s − N(r − 1) + i

)
=

r−1∑
i=0

(−1)N(r−1)

Nr−1
A(N)

r (i; s)ζ̃N,1
(
s − N(r − 1) + i

)
.

Hence the case r also holds and this completes the proof. �
We are now in a position to prove the Main Theorem.

Proof of the Main Theorem. By Proposition 3.2, we have

ζ̃N,r
(
1 + N(r − 1) − n

)
= (−1)N(r−1)

Nr−1

r−1∑
i=0

A(N)
r

(
i;1 + N(r − 1) − n

)
ζ̃N,1

(
1 − (n − i)

)

= (−1)N(r−1)

Nr−1

r−1∑
A(N)

r
(
i;1 + N(r − 1) − n

)
(−1)N+n−i BN,n−i

(n − i)! (3.5)

i=0
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for n � r − 1. On the other hand, by Proposition 2.2(ii), we have

ζ̃N,r
(
1 + N(r − 1) − n

) = IN,r
(
1 + N(r − 1) − n

)
= (−1)n+Nr SN,r(n)/n!. (3.6)

By comparing (3.5) and (3.6), we obtain that

SN,r(n) = 1

Nr−1

r−1∑
i=0

A(N)
r

(
i;1 + N(r − 1) − n

)
(−1)i

(
n

i

)
i!BN,n−i (3.7)

for n � r − 1 and this proves (1.12). �
4. Examples

In this section we give some examples. Let us first consider the case N = 1 in the Main Theorem.
In this case we can give the known formula (1.5).

We recall some properties of Stirling numbers, which are easily proved by (1.4):

[
r

r

]
= 1 (r � 1), (4.1)

[
r

k

]
+ r

[
r

k + 1

]
=

[
r + 1

k + 1

]
(r � 1, k � 0) (4.2)

(cf. [8]). These formulas are used to prove the following lemma.

Lemma 4.1. For r � 1 and 0 � i � r − 1, we have

A(1)
r (i; s) =

[
r

r − i

]
Γ (s)

(r − 1)!Γ (s − r + 1 + i)
. (4.3)

Proof. We prove the lemma by induction on r. By A(1)
1 (0; s) = 1 and (4.1), Eq. (4.3) holds for r = 1

and i = 0. We assume that (4.3) holds for some r and all i = 0,1, . . . , r − 1. Then, by the recurrence
relation (1.13) and the inductive assumption, we have

A(1)
r+1(i; s) = s − 1

r
A(1)

r (i; s − 1) + A(1)
r (i − 1; s)

= s − 1

r

[
r

r − i

]
Γ (s − 1)

(r − 1)!Γ ((s − 1) − r + 1 + i)

+
[

r

r − (i − 1)

]
Γ (s)

(r − 1)!Γ (s − r + 1 + (i − 1))

=
([

r

r − i

]
+ r

[
r

r − i + 1

])
Γ (s)

r!Γ (s − (r + 1) + 1 + i)
.
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Using (4.2), we obtain

A(1)
r+1(i; s) =

[
r + 1

(r + 1) − i

]
Γ (s)

r!Γ (s − (r + 1) + 1 + i)
,

and this means (4.3) holds for the case r + 1. �
Now we can deduce formula (1.5). In fact, we obtain from Lemma 4.1 that

A(1)
r (i; r − n) =

[
r

r − i

]
Γ (r − n)

(r − 1)!Γ (−n + 1 + i)

=
[

r

r − i

]
1

(r − 1)! (−n + i + 1) · · · (−n + r − 1)

=
[

r

r − i

]
(−1)r−i+1

(r − 1)! (n − i − 1) · · · (n − r + 1)

=
[

r

r − i

]
(−1)r−i+1

(r − 1)!
(n − i − 1)!

(n − r)!
for n � r. By this equation and our Main Theorem, we get

S1,r(n) =
r−1∑
i=0

A(1)
r (i; r − n)(−1)i

(
n

i

)
i!Bn−i

=
r−1∑
i=0

[
r

r − i

]
(−1)r+1

(
n

r

)
r

n − i
Bn−i

and this proves formula (1.5).
We end this paper with examples of formulas for sums of products of hypergeometric Bernoulli

numbers:

SN,2(n) = − 1

N

(
(n − N)BN,n + nBN,n−1

)
(n � 1).

SN,3(n) = 1

2N2

(
(n − N)(n − 2N)BN,n

− n(4N − 3n + 2)BN,n−1 + 2n(n − 1)BN,n−2
)

(n � 2).

SN,4(n) = − 1

6N3

(
(n − N)(n − 2N)(n − 3N)BN,n

+ (
6n3 − n2(22N + 8) + 3n(2N + 1)(3N + 1)

)
BN,n−1

− n(n − 1)(−11n + 18N + 15)BN,n−2 + 6n(n − 1)(n − 2)BN,n−3
)

(n � 3).
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