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Abstract. We prove that distinct functions in the Selberg class S are linearly independent
over the ring F of p-finite Dirichlet series. As a consequence, S has unique factorization if and
only if primitive functions of S are algebraically independent over F .

Résumé. Nous montrons que les fonctions dans la classe de Selberg S sont linéairement
indépendantes sur l’anneau F des séries de Dirichlet p-finies. Comme conséquence, S a
une factorization unique si et seulement si les fonctions primitives de S sont algébriquement
indépendantes sur F .
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Roughly speaking, the main conjecture about the Selberg class S (see the survey paper [4]
for the basic definitions, conjectures and properties of S) is that S can be essentially identified
with the class of suitably normalized automorphic L-functions. Based on such conjecture, one
may guess that S contains only countably many essentially different functions, although S itself
is certainly not countable since it contains all shifts Fθ(s) = F (s + iθ), θ ∈ R, of any entire
function F ∈ S. However, one may guess that S becomes a countable set provided shifts are
not counted. This is the countability problem for S. This problem was communicated to us
by Peter Sarnak, and we now understand that it was independently raised also by Ram Murty
and Eduard Wirsing.

In order to state the problem in a rigorous form, we consider the equivalence relation in S
F (s) ≈ G(s) ⇔ G(s) = Fθ(s) for some θ ∈ R.

Denoting by P the set of all primitive functions in S, a formulation of Sarnak’s problem is the
countability conjecture

P/≈ is countable.

Observe that we need to consider P/≈, since S/≈ is still an uncountable set. In fact, for a
given primitive character χ(mod q) with q ≥ 2, the functions ζ(s)Lθ(s, χ), θ ∈ R, are all in S
and non-equivalent under ≈. We refer to section 9 of [4] for another version of the countability
conjecture, involving a suitable normalization of the whole class S. Such normalization, and
hence the statement of the other version of the conjecture, require the assumption of Selberg
orthonormality conjecture (see section 4 of [4]). However, the two versions of the countability
conjecture are equivalent under Selberg’s conjecture.

An approach to the countability conjecture may run as follows. We believe that, modulo
shifts, there are only countably many possibilities for the functional equations satisfied by the
functions in S, and in fact several conjectures (for example the degree and modulus conjectures,
see section 9 of [4]) point to this direction. Moreover, we believe that the vector space formed
by the meromorphic Dirichlet series satisfying a functional equation of such type and the
Ramanujan hypothesis has at most countable dimension. This is in fact known when the
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degree d satisfies 0 ≤ d ≤ 1, see sections 3 and 5 of [4], in which case the dimension is actually
finite. We remark that Brian Conrey, David Farmer and Amit Ghosh have brought to our
attention an interesting example, due to Hecke, of a vector space of meromorphic Dirichlet
series with functional equation; see chapter 2 of [2]. Hecke proved that such a vector space is
infinite dimensional, and it is not difficult to show that in fact it has an uncountable basis.
However, we believe that such Dirichlet series do not satisfy Ramanujan hypothesis.

If the above assumptions are correct, the countability conjecture would then follow from a
suitable linear independence property of functions in S, ensuring that each functional equation
has in fact at most countably many solutions in S.

As a small step towards the countability conjecture, in this note we prove the required linear
independence property. Although the proof is short and simple, we believe that the result is of
some independent interest as well. In order to state our result in a general form, we need to
define the p-finite Dirichlet series. A Dirichlet series

D(s) =
∞∑

n=1

c(n)n−s,

absolutely convergent in some right half plane, is called p-finite if there exists a positive integer
M such that c(n) = 0 whenever n has a prime factor p such that p - M . In this case, the
arithmetical function c(n) is called p-finite as well. We denote by F both the ring of p-finite
Dirichlet series and the ring of p-finite arithmetical functions. Observe that F contains all
Dirichlet polynomials. We have

Theorem 1. Distinct functions in S are linearly independent over F .

In particular, Theorem 1 implies

Corollary 1. Distinct functions F1, ..., FN ∈ S are linearly independent over C.

We note that Selberg [6] and Bombieri-Hejhal [1] already observed the result in Corollary 1,
under the assumption that F1(s), ..., FN(s) are pairwise orthogonal, see section 7 of [4]. More-
over, special cases of Theorem 1 are already known in the literature, see for example Lemma
8.1 of [3] where Dirichlet L-functions are considered. However, in such special cases one usually
exploits special properties of the involved functions. For instance, the proof of Lemma 8.1 of
[3] is based on the fact that Dirichlet L-functions formed with distinct primitive characters are
pairwise orthogonal. We also note that axiom (iv) of Selberg class, i.e., Ramanujan hypothesis,
plays no role in the proof of Theorem 1.

We remark that Theorem 1 is basically a result on multiplicative arithmetical functions. In
fact, calling equivalent two multiplicative arithmetical functions f(n) and g(n) if f(pm) = g(pm)
for all integers m ≥ 1 and all but finitely many primes p, we have

Theorem 2. Pairwise non-equivalent multiplicative arithmetical functions are linearly in-
dependent over F .

Proof. By contradiction, assume that there exist pairwise non-equivalent multiplicative arith-
metical functions f1(n), ..., fN(n) and non-identically vanishing p-finite arithmetical functions
c1(n), ..., cN(n) such that

N∑
j=1

(cj ∗ fj)(n) = 0 identically. (1)

Moreover, let N be the minimal value required in order (1) to be satisfied. Clearly, N > 1 since
the ring of arithmetical functions has no zero-divisors.
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Let M be such that cj(n) = 0, j = 1, ..., N , if n has a prime factor p with p - M . Moreover,
let p0 > M and k0 ≥ 1 be such that

f1(p
k0
0 ) 6= fj(p

k0
0 ) for j = 2, ..., N.

Write
N0 = {m ∈ N : (m, p0) = 1}

and consider (1) with n = pk0
0 m, m ∈ N0, thus getting

N∑
j=1

fj(p
k0
0 )

∑
d|m

cj(d)fj(
m

d
) = 0 for every m ∈ N0. (2)

Multiplying (1), with n = m, by f1(p
k0
0 ) and subtracting (2) we get

N∑
j=2

(
f1(p

k0
0 )− fj(p

k0
0 )

) ∑
d|m

cj(d)fj(
m

d
) = 0 for every m ∈ N0. (3)

For j = 2, ..., N define

c̃j(n) =
(
f1(p

k0
0 )− fj(p

k0
0 )

)
cj(n)

and

f̃j(n) =

{
fj(n) if n ∈ N0

0 otherwise.

Clearly, the f̃j(n) are pairwise non-equivalent multiplicative arithmetical functions and the
c̃j(n) are non-identically vanishing p-finite arithmetical functions. Moreover, in view of (3)
such functions satisfy

N∑
j=2

(c̃j ∗ f̃j)(n) = 0 identically,

which contradicts the minimality of N . Theorem 2 is therefore proved. �

Theorem 1 follows immediately from Theorem 2 by means of the following result of Murty-
Murty [5], see also section 2 of [4].

Proposition. (Murty-Murty [5]) Let F, G ∈ S. If Fp(s) = Gp(s) for all but finitely many
primes p, then F = G.

Here Fp(s) and Gp(s) denote the p-th Euler factors of F (s) and G(s), respectively, i.e.,

F (s) =
∏

p

Fp(s) and G(s) =
∏

p

Gp(s), σ > 1.

Therefore, the Proposition asserts that the coefficients of distinct functions in S are pairwise
non-equivalent, and hence Theorem 1 follows from Theorem 2 since such coefficients are mul-
tiplicative.

We further remark that it is not difficult to construct examples showing that the non-
equivalence is a necessary assumption in Theorem 2.

We recall that a function F ∈ S is primitive if F (s) = F1(s)F2(s) with F1, F2 ∈ S implies
that F1 = 1 or F2 = 1. Moreover, every function in S can be factored into primitive functions.
It is conjectured that such a factorization is unique, and this would follow from Selberg or-
thonormality conjecture, see section 4 of [4]. Our final remark is that the unique factorization
is equivalent to a suitable algebraic independence property in S. In fact, from Theorem 1 we
easily get
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Corollary 2. S has unique factorization if and only if distinct primitive functions are
algebraically independent over F .
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