Korean J. Math. **23** (2015), No. 3, pp. 371–377 http://dx.doi.org/10.11568/kjm.2015.23.3.371

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES $\{q_n\}$

Sang Pyo Jun

ABSTRACT. In this note, we consider a generalized Fibonacci sequence $\{q_n\}$. Then give a connection between the sequence $\{q_n\}$ and the Chebyshev polynomials of the second kind $U_n(x)$. With the aid of factorization of Chebyshev polynomials of the second kind $U_n(x)$, we derive the complex factorizations of the sequence $\{q_n\}$.

1. Introduction

For any integer $n \ge 0$, the well-known Fibonacci sequence $\{F_n\}$ is defined by the second order linear recurrence relation $F_{n+2} = F_{n+1} + F_n$, where $F_0 = 0$ and $F_1 = 1$. The Fibonacci sequence has been generalized in many ways, for example, by changing the recurrence relation (see [8]), by changing the initial values (see [4, 5]), by combining of these two techniques (see [3]), and so on.

In [2], Edson and Yayenie defined a further generalized Fibonacci sequence $\{q_n\}$ depending on two real parameters used in a non-linear (piecewise linear) recurrence relation, namely,

(1)
$$q_n = a^{1-\xi(n)} b^{\xi(n)} q_{n-1} + q_{n-2} \ (n \ge 2)$$

Received May 11, 2015. Revised September 3, 2015. Accepted September 4, 2015. 2010 Mathematics Subject Classification: 11B39.

Key words and phrases: generalized Fibonacci sequences, tridiagonal matrices, Chebyshev polynomials, complex factorization.

Funding for this paper was provided by Namseoul University.

[©] The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Sang Pyo Jun

with initial values $q_0 = 0$ and $q_1 = 1$, where a and b are positive real numbers and

(2)
$$\xi(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}$$

is the parity function. Also, the authors showed that the terms of the sequence $\{q_n\}$ are given by the extended Binet's formula

(3)
$$q_n = \left(\frac{a^{1-\xi(n)}}{(ab)^{\frac{n-\xi(n)}{2}}}\right) \frac{\alpha^n - \beta^n}{\alpha - \beta},$$

where α and β are roots of the quadratic equation $x^2 - abx - ab = 0$ and $\alpha > \beta$.

These sequences arise in a natural way in the study of continued fractions of quadratic irrationals and combinatorics on words or dynamical system theory. Some well-known sequences are special cases of this generalization. The Fibonacci sequence is a special case of $\{q_n\}$ with a = b = 1. When a = b = 2, we obtain the Pell's sequence $\{P_n\}$. Even further, if we set a = b = k for some positive integer k, we obtain the k-Fibonacci sequence $\{F_{k,n}\}$.

Using the extended Binet's formula (3), Edson and Yayenie [2] derived a number of mathematical properties including generalizations of Cassini's, Catalan's and d'Ocagne's identities for the Fibonacci sequence, Yayenie [11] obtained numerous new identities of $\{q_n\}$, and Zhang and Wu [12] studied the partial infinite sums of reciprocal of $\{q_n\}$. Jang and Jun [7] give linearlization of the sequence $\{q_n\}$.

In [9], the authors obtained complex factorization formulas for the Fibonacci, Pell and k-Fibonacci numbers by using the determinants of sequences of tridiagonal matrices. They used the $n \times n$ tridiagonal matrices

$$\begin{pmatrix} 1 & 2i & & \\ -i & 1 & i & & \\ & -i & 1 & \ddots & \\ & & \ddots & \ddots & i \\ & & & -2i & 1 \end{pmatrix}, \begin{pmatrix} 2 & 2i & & & \\ -i & 2 & i & & \\ & -i & 2 & \ddots & & \\ & & \ddots & \ddots & i \\ & & & -2i & 2 \end{pmatrix}, \begin{pmatrix} k & i & & & \\ i & k & i & & \\ & i & k & \ddots & \\ & & & \ddots & \ddots & i \\ & & & & i & k \end{pmatrix}$$

Complex factorizations of the generalized Fibonacci sequences $\{q_n\}$ 373

respectively, to prove that

$$F_{n} = \prod_{k=1}^{n-1} \left(1 - 2i \cos \frac{\pi k}{n} \right), \ P_{n} = \prod_{k=1}^{n-1} \left(2 - 2i \cos \frac{\pi k}{n} \right),$$
$$F_{k,n} = \prod_{j=1}^{n-1} \left(k - 2i \cos \frac{\pi j}{n} \right)$$

for any integer $n \ge 2$, where $i = \sqrt{-1}$.

In this paper, we give a connection between the sequence $\{q_n\}$ and the Chebyshev polynomials of the second kind. With the aid of factorization of Chebyshev polynomials of the second kind, we derive the complex factorizations of the sequence $\{q_n\}$.

2. Chebyshev polynomials of the second kind

Chebyshev polynomials are of great importance in many areas of mathematics, particularly approximation theory. Chebyshev polynomials of the second kind $U_n(x)$ defined by setting $U_0(x) = 1$, $U_1(x) = 2x$ and the recurrence relation

(4)
$$U_n(x) = 2xU_{n-1}(x) - U_{n-2}(x), \ n = 2, 3, \cdots$$

Hsiao [6] gave a complete factorization of Chebyshev polynomials of the first kind. Rivlin [10] adapts Hsiao's proof for the Chebyshev polynomials of the second kind $U_n(x)$ as follows

(5)
$$U_n(x) = \frac{\sin((n+1)\cos^{-1}x)}{\sin(\cos^{-1}x)},$$

or

(6)
$$U_n(x) = 2^n \prod_{k=1}^n \left(x - \cos\left(\frac{k\pi}{n+1}\right) \right).$$

Sang Pyo Jun

Now, the first few numbers q_n and Chebyshev polynomials of the second kind $U_n(x)$ are

$$\begin{array}{rrrrr} q_0 = 0 & : & U_0(x) = 1 \\ q_1 = 1 & : & U_1(x) = 2x \\ q_2 = a & : & U_2(x) = 4x^2 - 1 \\ q_3 = ab + 1 & : & U_3(x) = 8x^3 - 4x \\ q_4 = a^2b + 2a & : & U_4(x) = 16x^4 - 12x^2 + 1 \\ q_5 = a^2b^2 + 3ab + 1 & : & U_5(x) = 32x^5 - 32x^3 + 6x \\ q_6 = a^3b^2 + 4a^2b + 3a & : & U_6(x) = 64x^6 - 80x^4 + 24x^2 - 1. \end{array}$$

3. Complex factorizations of the sequence $\{q_n\}$

In this section, we give a connection between the sequence $\{q_n\}$ and the Chebyshev polynomials of the second kind $U_n(x)$. With the aid of factorization (5) and (6) of Chebyshev polynomials of the second kind, we derive the complex factorizations of the sequence $\{q_n\}$.

LEMMA 3.1. The sequence $\{q_n\}$ satisfies

(7)
$$q_{n+1} = a^{\frac{\xi(n)}{2}} b^{-\frac{\xi(n)}{2}} i^n U_n\left(-\frac{\sqrt{ab}}{2}i\right), \ n \ge 1,$$

where $i = \sqrt{-1}$ and a, b are positive real numbers.

Proof. First, note that

(8)
$$\xi(m+n) = \xi(m) + \xi(n) - 2\xi(m)\xi(n),$$

(9)
$$\xi(n+1) = \xi(n-1)$$

We prove the identity (7) by induction on n. When n = 1, we have

$$a^{\frac{\xi(1)}{2}}b^{-\frac{\xi(1)}{2}}iU_1\left(-\frac{\sqrt{ab}}{2}i\right) = a^{\frac{1}{2}}b^{-\frac{1}{2}}i2\left(-\frac{\sqrt{ab}}{2}i\right) = a = q_2.$$

Next we assume the identity (7) holds for all positive integers less than or equal to n, that is,

(10)
$$q_k = a^{\frac{\xi(k-1)}{2}} b^{-\frac{\xi(k-1)}{2}} i^{k-1} U_{k-1} \left(-\frac{\sqrt{ab}}{2}i\right) \quad (1 \le k \le n).$$

Complex factorizations of the generalized Fibonacci sequences $\{q_n\} \qquad 375$ Then we have

Therefore the identity (7) holds for all integers $n \ge 1$.

THEOREM 3.2. The sequence $\{q_n\}$ satisfies

(11)
$$q_{n+1} = a^{\frac{\xi(n)}{2}} b^{\frac{-\xi(n)}{2}} i^n \frac{\sin\left((n+1)\cos^{-1}\left(-\frac{\sqrt{ab}}{2}i\right)\right)}{\sin\left(\cos^{-1}\left(-\frac{\sqrt{ab}}{2}i\right)\right)}, \ n \ge 0,$$

or

(12)
$$q_{n+1} = a^{\frac{\xi(n)}{2}} b^{-\frac{\xi(n)}{2}} \prod_{k=1}^{n} \left(\sqrt{ab} - 2i \cos\left(\frac{k\pi}{n+1}\right) \right), \ n \ge 1,$$

where $i = \sqrt{-1}$ and a, b are positive real numbers.

Proof. Using (7) in Lemma 3.1, (5) and (6), we obtain (11) and (12). \Box

Sang Pyo Jun

Acknowledgments. At first, the author obtained Theorem 3.2 similar to [9] using the determinants of sequences of tridiagonal matrices

(13)
$$M_n(a,b) = \begin{pmatrix} ab & bi & & \\ ai & ab & bi & \\ & ai & ab & \ddots & \\ & & \ddots & \ddots & bi \\ & & & ai & ab \end{pmatrix}$$

Then, the referee suggested to simplify the proof by using the connection between the sequence $\{q_n\}$ and the Chebyshev polynomials of the second kind $U_n(x)$. His advice gave a nice perspective. The author is very grateful to the referee.

References

- N. D. Cahill, J. R. D'Errico, and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, The Fibonacci Quarterly 41 (1) (2003), 13–19.
- [2] M. Edson and O. Yayenie, A new generalization of Fibonacci sequence and extended Binet's formula, Integer 9 (2009), 639–654.
- [3] Y. K. Gupta, Y. K. Panwar and O. Sikhwal, Generalized Fibonacci Sequences, Theoretical Mathematics and Applications 2 (2) (2012), 115–124.
- [4] Y. K. Gupta, M. Singh and O. Sikhwal, Generalized Fibonacci-Like Sequence Associated with Fibonacci and Lucas Sequences, Turkish Journal of Analysis and Number Theory 2 (6) (2014), 233–238.
- [5] A. F. Horadam, A generalized Fibonacci sequences, Amer. Math. Monthly 68 (1961), 455–459
- [6] H.J. Hsiao, On factorization of Chebyshev's polynomials of the first kind, Bulletin of the Institute of Mathematics Academia Sinica 12 (1) (1984), 89–94.
- [7] Y. H. Jang and S. P. Jun, Linearization of generalized Fibonacci sequences, Korean J. Math. 22 (2014) (3), 443–454.
- [8] D. Kalman and R. Mena, The Fibonacci numbers Exposed. The Mathematical Magazine 2 (2002).
- [9] A. Oteles and M. Akbulak, Positive integer power of certain complex tridiagonal matrices, Applied Mathematics and Computation, 219 (21) (2013), 10448– 10455.
- [10] T.J. Rivlin, The Chebyshev Polynomials-From Approximation Theory to Algebra and Number Theory, Wiley-Interscience, John Wiley, (1990).
- [11] O. Yayenie, A note on generalized Fibonacci sequences, Applied Mathematics and Computation 217 (2011), 5603–5611.
- [12] H. Zhang and Z. Wu, On the reciprocal sums of the generalized Fibonacci sequences, Adv. Differ. Equ. (2013), Article ID 377 (2013).

Complex factorizations of the generalized Fibonacci sequences $\{q_n\}$ 377

Sang Pyo Jun Information Communication Namseoul University Cheonan 331-707, Korea *E-mail*: spjun7129@naver.com