COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES $\left\{q_{n}\right\}$

Sang Pyo Jun

Abstract

In this note, we consider a generalized Fibonacci sequence $\left\{q_{n}\right\}$. Then give a connection between the sequence $\left\{q_{n}\right\}$ and the Chebyshev polynomials of the second kind $U_{n}(x)$. With the aid of factorization of Chebyshev polynomials of the second kind $U_{n}(x)$, we derive the complex factorizations of the sequence $\left\{q_{n}\right\}$.

1. Introduction

For any integer $n \geq 0$, the well-known Fibonacci sequence $\left\{F_{n}\right\}$ is defined by the second order linear recurrence relation $F_{n+2}=F_{n+1}+F_{n}$, where $F_{0}=0$ and $F_{1}=1$. The Fibonacci sequence has been generalized in many ways, for example, by changing the recurrence relation (see [8]), by changing the initial values (see $[4,5]$), by combining of these two techniques (see [3]), and so on.

In [2], Edson and Yayenie defined a further generalized Fibonacci sequence $\left\{q_{n}\right\}$ depending on two real parameters used in a non-linear (piecewise linear) recurrence relation, namely,

$$
\begin{equation*}
q_{n}=a^{1-\xi(n)} b^{\xi(n)} q_{n-1}+q_{n-2}(n \geq 2) \tag{1}
\end{equation*}
$$

Received May 11, 2015. Revised September 3, 2015. Accepted September 4, 2015. 2010 Mathematics Subject Classification: 11B39.
Key words and phrases: generalized Fibonacci sequences, tridiagonal matrices, Chebyshev polynomials, complex factorization.

Funding for this paper was provided by Namseoul University.
(c) The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
with initial values $q_{0}=0$ and $q_{1}=1$, where a and b are positive real numbers and

$$
\xi(n)= \begin{cases}0 & \text { if } n \text { is even } \tag{2}\\ 1 & \text { if } n \text { is odd }\end{cases}
$$

is the parity function. Also, the authors showed that the terms of the sequence $\left\{q_{n}\right\}$ are given by the extended Binet's formula

$$
\begin{equation*}
q_{n}=\left(\frac{a^{1-\xi(n)}}{(a b)^{\frac{n \xi(n)}{2}}}\right) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \tag{3}
\end{equation*}
$$

where α and β are roots of the quadratic equation $x^{2}-a b x-a b=0$ and $\alpha>\beta$.

These sequences arise in a natural way in the study of continued fractions of quadratic irrationals and combinatorics on words or dynamical system theory. Some well-known sequences are special cases of this generalization. The Fibonacci sequence is a special case of $\left\{q_{n}\right\}$ with $a=b=1$. When $a=b=2$, we obtain the Pell's sequence $\left\{P_{n}\right\}$. Even further, if we set $a=b=k$ for some positive integer k, we obtain the k-Fibonacci sequence $\left\{F_{k, n}\right\}$.

Using the extended Binet's formula (3), Edson and Yayenie [2] derived a number of mathematical properties including generalizations of Cassini's, Catalan's and d'Ocagne's identities for the Fibonacci sequence, Yayenie [11] obtained numerous new identities of $\left\{q_{n}\right\}$, and Zhang and Wu [12] studied the partial infinite sums of reciprocal of $\left\{q_{n}\right\}$. Jang and Jun [7] give linearlization of the sequence $\left\{q_{n}\right\}$.

In [9], the authors obtained complex factorization formulas for the Fibonacci, Pell and k-Fibonacci numbers by using the determinants of sequences of tridiagonal matrices. They used the $n \times n$ tridiagonal matrices

$$
\left(\begin{array}{ccccc}
1 & 2 i & & & \\
-i & 1 & i & & \\
& -i & 1 & \ddots & \\
& & \ddots & \ddots & i \\
& & & -2 i & 1
\end{array}\right),\left(\begin{array}{ccccc}
2 & 2 i & & & \\
-i & 2 & i & & \\
& -i & 2 & \ddots & \\
& & \ddots & \ddots & i \\
& & & -2 i & 2
\end{array}\right),\left(\begin{array}{ccccc}
k & i & & & \\
i & k & i & & \\
& i & k & \ddots & \\
& & \ddots & \ddots & i \\
& & & i & k
\end{array}\right),
$$

respectively, to prove that

$$
\begin{gathered}
F_{n}=\prod_{k=1}^{n-1}\left(1-2 i \cos \frac{\pi k}{n}\right), \quad P_{n}=\prod_{k=1}^{n-1}\left(2-2 i \cos \frac{\pi k}{n}\right) \\
F_{k, n}=\prod_{j=1}^{n-1}\left(k-2 i \cos \frac{\pi j}{n}\right)
\end{gathered}
$$

for any integer $n \geq 2$, where $i=\sqrt{-1}$.
In this paper, we give a connection between the sequence $\left\{q_{n}\right\}$ and the Chebyshev polynomials of the second kind. With the aid of factorization of Chebyshev polynomials of the second kind, we derive the complex factorizations of the sequence $\left\{q_{n}\right\}$.

2. Chebyshev polynomials of the second kind

Chebyshev polynomials are of great importance in many areas of mathematics, particularly approximation theory. Chebyshev polynomials of the second kind $U_{n}(x)$ defined by setting $U_{0}(x)=1, U_{1}(x)=2 x$ and the recurrence relation

$$
\begin{equation*}
U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x), n=2,3, \cdots \tag{4}
\end{equation*}
$$

Hsiao [6] gave a complete factorization of Chebyshev polynomials of the first kind. Rivlin [10] adapts Hsiao's proof for the Chebyshev polynomials of the second kind $U_{n}(x)$ as follows

$$
\begin{equation*}
U_{n}(x)=\frac{\sin \left((n+1) \cos ^{-1} x\right)}{\sin \left(\cos ^{-1} x\right)} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{n}(x)=2^{n} \prod_{k=1}^{n}\left(x-\cos \left(\frac{k \pi}{n+1}\right)\right) . \tag{6}
\end{equation*}
$$

Now, the first few numbers q_{n} and Chebyshev polynomials of the second kind $U_{n}(x)$ are

$$
\begin{array}{rll}
q_{0}=0 & : & U_{0}(x)=1 \\
q_{1}=1 & : & U_{1}(x)=2 x \\
q_{2}=a & : & U_{2}(x)=4 x^{2}-1 \\
q_{3}=a b+1 & : & U_{3}(x)=8 x^{3}-4 x \\
q_{4}=a^{2} b+2 a & : & U_{4}(x)=16 x^{4}-12 x^{2}+1 \\
q_{5}=a^{2} b^{2}+3 a b+1 & : & U_{5}(x)=32 x^{5}-32 x^{3}+6 x \\
q_{6}=a^{3} b^{2}+4 a^{2} b+3 a & : & U_{6}(x)=64 x^{6}-80 x^{4}+24 x^{2}-1 .
\end{array}
$$

3. Complex factorizations of the sequence $\left\{q_{n}\right\}$

In this section, we give a connection between the sequence $\left\{q_{n}\right\}$ and the Chebyshev polynomials of the second kind $U_{n}(x)$. With the aid of factorization (5) and (6) of Chebyshev polynomials of the second kind, we derive the complex factorizations of the sequence $\left\{q_{n}\right\}$.

Lemma 3.1. The sequence $\left\{q_{n}\right\}$ satisfies

$$
\begin{equation*}
q_{n+1}=a^{\frac{\xi(n)}{2}} b^{-\frac{\xi(n)}{2}} i^{n} U_{n}\left(-\frac{\sqrt{a b}}{2} i\right), n \geq 1, \tag{7}
\end{equation*}
$$

where $i=\sqrt{-1}$ and a, b are positive real numbers.
Proof. First, note that

$$
\begin{align*}
\xi(m+n) & =\xi(m)+\xi(n)-2 \xi(m) \xi(n), \tag{8}\\
\xi(n+1) & =\xi(n-1) . \tag{9}
\end{align*}
$$

We prove the identity (7) by induction on n. When $n=1$, we have

$$
a^{\frac{\xi(1)}{2}} b^{-\frac{\xi(1)}{2}} i U_{1}\left(-\frac{\sqrt{a b}}{2} i\right)=a^{\frac{1}{2}} b^{-\frac{1}{2}} i 2\left(-\frac{\sqrt{a b}}{2} i\right)=a=q_{2} .
$$

Next we assume the identity (7) holds for all positive integers less than or equal to n, that is,

$$
\begin{equation*}
q_{k}=a^{\frac{\xi(k-1)}{2}} b^{-\frac{\xi(k-1)}{2}} i^{k-1} U_{k-1}\left(-\frac{\sqrt{a b}}{2} i\right) \quad(1 \leq k \leq n) \tag{10}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
& a^{\frac{\xi(n)}{2}} b^{-\frac{\xi(n)}{2}} i^{n} U_{n}\left(-\frac{\sqrt{a b}}{2} i\right) \\
&= a^{\frac{\xi(n)}{2}} b^{-\frac{\xi(n)}{2}} i^{n}\left\{2\left(-\frac{\sqrt{a b}}{2} i\right) U_{n-1}\left(-\frac{\sqrt{a b}}{2} i\right)-U_{n-2}\left(-\frac{\sqrt{a b}}{2} i\right)\right\} \\
&(\because(4)) \\
&= a^{1-\xi(n-1)} b^{\xi(n-1)}\left(a^{\frac{\xi(n-1)}{2}} b^{-\frac{\xi(n-1)}{2}} i^{n-1} U_{n-1}\left(-\frac{\sqrt{a b}}{2} i\right)\right) \\
&+a^{\frac{\xi(n-2))}{2}} b^{-\frac{\xi(n-2))}{2}} i^{n-2} U_{n-2}\left(-\frac{\sqrt{a b}}{2} i\right)(\because(2),(8)) \\
&= a^{1-\xi(n-1)} b^{\xi(n-1)} q_{n}+q_{n-1}(\because(10)) \\
&= a^{1-\xi(n+1)} b^{\xi(n+1)} q_{n}+q_{n-1}(\because(9)) \\
&= q_{n+1}(\because(1)) .
\end{aligned}
$$

Therefore the identity (7) holds for all integers $n \geq 1$.
Theorem 3.2. The sequence $\left\{q_{n}\right\}$ satisfies

$$
\begin{equation*}
q_{n+1}=a^{\frac{\xi(n)}{2}} b^{\frac{-\xi(n)}{2}} i^{n} \frac{\sin \left((n+1) \cos ^{-1}\left(-\frac{\sqrt{a b}}{2} i\right)\right)}{\sin \left(\cos ^{-1}\left(-\frac{\sqrt{a b}}{2} i\right)\right)}, n \geq 0 \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{n+1}=a^{\frac{\xi(n)}{2}} b^{-\frac{\xi(n)}{2}} \prod_{k=1}^{n}\left(\sqrt{a b}-2 i \cos \left(\frac{k \pi}{n+1}\right)\right), n \geq 1 \tag{12}
\end{equation*}
$$

where $i=\sqrt{-1}$ and a, b are positive real numbers.
Proof. Using (7) in Lemma 3.1, (5) and (6), we obtain (11) and (12).

Acknowledgments. At first, the author obtained Theorem 3.2 similar to [9] using the determinants of sequences of tridiagonal matrices

$$
M_{n}(a, b)=\left(\begin{array}{ccccc}
a b & b i & & & \tag{13}\\
a i & a b & b i & & \\
& a i & a b & \ddots & \\
& & \ddots & \ddots & b i \\
& & & a i & a b
\end{array}\right) \text {. }
$$

Then, the referee suggested to simplify the proof by using the connection between the sequence $\left\{q_{n}\right\}$ and the Chebyshev polynomials of the second kind $U_{n}(x)$. His advice gave a nice perspective. The author is very grateful to the referee.

References

[1] N. D. Cahill, J. R. D'Errico, and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, The Fibonacci Quarterly 41 (1) (2003), 13-19.
[2] M. Edson and O. Yayenie, A new generalization of Fibonacci sequence and extended Binet's formula, Integer 9 (2009), 639-654.
[3] Y. K. Gupta, Y. K. Panwar and O. Sikhwal, Generalized Fibonacci Sequences, Theoretical Mathematics and Applications 2 (2) (2012), 115-124.
[4] Y. K. Gupta, M. Singh and O. Sikhwal, Generalized Fibonacci-Like Sequence Associated with Fibonacci and Lucas Sequences, Turkish Journal of Analysis and Number Theory 2 (6) (2014), 233-238.
[5] A. F. Horadam, A generalized Fibonacci sequences, Amer. Math. Monthly 68 (1961), 455-459
[6] H.J. Hsiao, On factorization of Chebyshev's polynomials of the first kind, Bulletin of the Institute of Mathematics Academia Sinica 12 (1) (1984), 89-94.
[7] Y. H. Jang and S. P. Jun, Linearization of generalized Fibonacci sequences, Korean J. Math. 22 (2014) (3), 443-454.
[8] D. Kalman and R. Mena, The Fibonacci numbers - Exposed. The Mathematical Magazine 2 (2002).
[9] A. Oteles and M. Akbulak, Positive integer power of certain complex tridiagonal matrices, Applied Mathematics and Computation, 219 (21) (2013), 1044810455.
[10] T.J. Rivlin, The Chebyshev Polynomials-From Approximation Theory to Algebra and Number Theory, Wiley-Interscience, John Wiley, (1990).
[11] O. Yayenie, A note on generalized Fibonacci sequences, Applied Mathematics and Computation 217 (2011), 5603-5611.
[12] H. Zhang and Z. Wu, On the reciprocal sums of the generalized Fibonacci sequences, Adv. Differ. Equ. (2013), Article ID 377 (2013).

Sang Pyo Jun
Information Communication
Namseoul University
Cheonan 331-707, Korea
E-mail: spjun7129@naver.com

