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Abstract

A lower bound for the minimal length of the polynomial recurrence of a binomial sum is obtained.

2000 Mathematics subject classification: primary 11B37.

A sequence an satisfies a polynomial recurrence of length r and degree m if there exist
r polynomials Po, Pu ... , Pr_u with degree at most m such that

(1) Po(n)an + P x { n ) a n ^ + ••• + P r ^ ( n ) a n - r = 0

for n > r. For a sequence an the recurrence (1) is called minimal if it has minimal
length and minimal degree.

It is well known (see [1, 8]) that the Apery sequence

satisfies the three term polynomial recurrence

n3an - (34n3 - 5In2 + 27n - 5) an^ + (n - l)3an_2 = 0

for n > 2, where as usual (p) denotes a binomial coefficient. Since the characteristic

polynomial x2 — 34x + 1 has roots (1 ± \/2)4, it follows that

lim ±±L = (i + V2)4
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is irrational and that an cannot satisfy a two term recurrence. Apery used these facts in
his celebrated proof of the irrationality of £(3) (see [8]) and stimulated much interest
in recursive sequences.

Wilf and Zeilberger [9] and others have shown that certain hypergeometric sums,
including the binomial sum

where r0, rt, r2,..., r, are nonnegative integers, satisfy polynomial recurrences, with-
out however any bounds on their lengths and degrees. It is not easy to find recurrences
even for ar(n) = £t=o © ' and

and at present no nontrivial lower bounds for the minimal lengths of the recurrences
for ara(n) exist.

The sums ar(n) (see above) for n > 0 have been studied by many people. Apart
from the trivial recurrences

a, (n + 1) - 2ai (n) = 0, and (n + Y)a2{n + 1) - (4n + 2)a2(n) = 0

with n > 0, Franel [2,3] was the first to obtain recurrences for a3(n) and 04(11), namely

P0(n)ar(n + 1) + Pi(n)ar(n) + P2(n)ar(n - 1) = 0

for n > 1, where, for r = 3

Po(«) = (« + I)2, P,(W) = -(In2 + ln + 2), P2(n) = -8n2

and for r = 4

P0(n) = (n+ I)3, P,(«) = ~2(2n + l)(3n2 + 3n + 1),

and

P2(n) = -4n(4n + l)(4n - 1).

For r = 5 and 6, Perlstadt [4] found recurrences of length 4 while Schmidt and Yuan
[6] showed that the recurrences stated for r — 3,4,5 and 6 are minimal and that the
minimal lengths for r > 6 are at least 3. In this paper a nontrivial lower bound for the
minimal length of the sequence (2) is obtained. We prove the following result.

THEOREM 1. Let r0, r, > 1 and m, r2,..., r, be nonnegative integers. Then there
exist no nontrivial integer polynomials

Po(n) = c0 + c{n + • • • + cmnm, P{(n) = do +d^ + • • • + dmnm
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such that

(4) Po(n)a(n + l) + Pl(n)a(n)=O

for n > 0.

Every sequence (ck) has an associated Legendre transform L{n) defined by

For r € Z, r > 2 numerical evidence indicates that each of the sequences arr(n)
defined as in (3) is the Legendre transform of an integer sequence (ck

r)). Schmidt [5]
and Strehl [7] proved independently that

that is, cf = £;*=oC)3-
The next theorem, proved later, shows that this is the only case of this form.

THEOREM 2. Let r, s > 1 be integers. There exists an integer / > 1 such that the
sequence ars(n) {defined as in {3)) for n > 0 is the Legendre transform of the integer
sequence

if and only ifs = 2, r = 2 and 1 = 3.

Before the theorems are proved the congruence properties of a(n), defined as in (2)
are determined.

LEMMA 1. For any prime p > t, rb, r\ G N, and rj,..., r, nonnegative integers,
the following hold:

(i) a(p - 1 ) = 1 (mod p);
(ii) a(jp) = a(J) (mod p);

(iii) a(p + 1) = a(l)2 (mod p);
(iv) a(2p - 1) = a(O (mod p).

PROOF. Firstly case (i) is considered. If 1 < / < p — 1, then p \ (p — 1 + /)! but
p \ i\(p - 1)! implying that
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Using this we have that

To prove (ii), write

{ k
*=0 i=0 \ *

(5)

For 0 < Jfc < 7 , 1 < / < p we have

(6) I JP \=0 (modp).
\kp + IJ

It is readily verified, using the fact that Ytf=\ * = — 1 (mod p), that

— = 1 (mod p).

Hence, as

jp ~(mp+Z) = f"7'̂  n J'p ~ ̂ mp+f)

W i l
= n ^ ~ m)p n jp ~(mp+Z) = f"7^ n

i l (* - W)P i l *P - (^ + 0 W i
n f̂  n

o i l (* - W)P o i l *P - (^ + 0 W o i l *P - (^ + 0
0</<p 0<l<p

we have

(7) U s J (modP)-
\kpj \k;

Using (5), (6) and (7) we obtain

*=o i=o
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To prove case (iii), the formulae

c:K:.K)
and

are used. The latter equation follows from the identity (1 + zyp+l = (1 + z)'(l + zY".
By (6), (7), (8), (9) and the fact that (J) = 0 (mod p), for 1 < ; < p - 1 it is readily
verified that

)r' + 2 2 r i 3 2 r 2 • • • ( / + l ) 2 r '

Finally, case (iv) is considered. For 1 < k < p — 1,

(10) p l C + * ; 1 ) + t ) and P

since p2 | [2p + (it - 1)]! and p3 | [3p + (it - 1)]! but p2 \ k\(2p - 1)! and
p3f (p + k)l(2p - 1)!.

By definition

and by (10) the terms k = 1 , . . . , p — 1 and & = p + 1 , . . . , 2p — 1 are congruent to
zero, leaving the terms k = 0 and k = p. From (6), (7) and (9) it follows that

/1\V2Y' // + 1Y'- l ) = l + M M •••( i J =fl(l) (modp)

proving the lemma. •
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PROOF (of Theorem 1). We prove the theorem using induction on m. Assume first
that there is a recurrence relation with m = 1, then for any prime p

- 1))a(p) + (do + dt(p - 1))a(p-l) = 0
(c0 + c,p) a{p + 1) + (do + dxp) a(p) = 0

+ cx(2p - 1)) a(2p) + (do + dx(2p - 1)) a(2p - 1) - 0.

Therefore, using Lemma 1, for any prime p > t we have

(mod

It is readily verified that

(11)

MD + (do-dl)=O

coa(l)2 + doa(l) = 0

(do-dl)a(l)=O

and with some manipulation it follows from (11) that c0 = Ci = do = d\ = 0, which
proves the claim for m = 1.

Now suppose that the claim is true for deg(P0) < m — 1 and d e g ^ ) < m — 1 and
assume that there exists a recurrence with deg(P0) = m and deg(Pi) = m. Therefore,
(4) holds for all n > 0, and in particular, for n = p — 1 and n = 2p — 1, where /? > t
is any prime. Then by Lemma 1

- cx
(-l)mc (-\)mdm = 0 (mod p)

and

(Co - c, + • • • + (-l)mcm) a(2) + (do - di + • • • + (-\)mdm)a(\) = 0 (mod p).

Hence, as this holds for all p > t

(co - cx + • • • + (-l)mcm)

and

+ (-\)mdm = 0

(-\)mdm) a(\) = 0.(co - c, + • • • + (-l)mcm) a(2) + (do-di + --

Using (11) it is not difficult to show that

co - c, + • • • + (-l)mcm = do - d, + • • • + (-\)mdm = 0,
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that is, — 1 is a root of Po and Pi. Whence there exist integer polynomials Po and Pi
with degree m — 1 such that

P0 = (n + l)Po(n) and P^n) = (n + l)Pi(n),

and

Po(n) a(n + 1) + Pi(n) a{n) = 0

for n > 0. By the induction hypothesis Po = Pt = 0, which implies that Po = Pi = 0
and completes the proof of the theorem. •

PROOF (of Theorem 2). Assume that the sequence

is the Legendre transform of the integral sequence

Cj =

Then

Therefore, for any prime p > 2

and hence by (7) and since p | (p) for 1 < j < p — 1,

ar,s(p) = 1 + 2s = c0 + 2cp (mod p).

As

c0 = 1 and cp = > , = 2 (mod p),

it follows that 1 + 2s = 1 + 4 (mod p) and therefore, as /? is an arbitrary prime, that
1 + 2s - 5 implying that s = 2.

Since c0 = 1, cx = 2, c2 = 2 + 2', 5 = 2,
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and

ar.,(2) = J2 ckM ( ^ J = co + 6c, + 6c2

we get 2'+1 = 4 + 3.2r and it is easy to show that this equation has only one solution,
namely r = 2 and 1 = 3 which completes the proof. •
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