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Abstract 

 
 The aim of this paper is to obtain Binet formula for k-Jacobsthal numbers. And also 
with the help of Binet formula we obtain some properties for the k-Jacobsthal numbers. 
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1. Introduction 

 
In recent year, Fibonacci numbers and their generalization have many interesting 

properties and application to almost every field of science and art. Koshy [12] has devoted 
nearly 700 pages to the properties of Fibonacci and Lucas number, with scarcely a mention of 
general two term recurrences. For further more links can be seen in [13], [8], [11]. 
In [9] Falcon and Plaza found general k-Fibonacci numbers and obtained many properties of 
these numbers directly from elementary matrix algebra. Also, In [10] Falcon and Plaza defined 
k-hyperbolic function. In [5] Bolat and Kőse obtain identities including generating function 
and divisibility properties for k- Fibonacci number. In [6] Koken and Bozkurt deduce some 
properties and Binet like formula for the Jacobsthal number by matrix method. In this paper, 
we present the k-Jacobsthal number in an explicit way, and many properties are proved by 
easy arguments for the k-Jacobsthal number. 
 
2. The k-Jacobsthal Number and Properties 
 
For any positive real number k, the k-Jacobsthal sequence say { },k n n N

J
∈

 is defined recurrently 
by                               

                                , 1 , , 12k n k n k nJ kJ J+ −= + ; for 1n ≥                                                       (2.1) 
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With initial condition ,0 ,10, 1k kJ J= =                                                                            (2.2) 
 
2.1 Explicit formula for the general term of the k- Jacobsthal sequence 

Binet’s formulas are well known in [4,12]. In our case, Binet’s formula allows us to 
express the k-Jacobsthal numbers in function of the roots 1r  and 2r   of the following 
characteristic equation, associated to the recurrence relation (2.1). 
                                                        2 2r kr= +                                                             (2.3) 
Proposition 2.1 (Binet’s formula) 
The nth k-Jacobsthal number is given by 

                                                                 1 2
,

1 2

n n

k n
r rJ
r r
−

=
−

                                                (2.4) 

where 1r , 2r  are the roots of the characteristic equation (2.3) and 1 2r r>  
 

Proof: The roots of the characteristic equation (2.3) are
2

1
8

2
k kr + +

= ,  
2

2
8

2
k kr − +

=  

Note that, since 0k > , then  2 10r r< <  and 2r < 1r  

1 2r r k+ = , 1 2 2r r = −  and 2
1 2 8r r k− = +  

Therefore, the general term of the k-Jacobsthal sequence may be expressed in the form: 
, 1 1 2 2

n n
k nJ c r c r= +  for some coefficients 1c and 2c . Giving to n the values n = 0 and n = 1 it is 

obtained 1 2
1 2

1c c
r r

= =−
−

, and therefore 1 2
,

1 2

n n

k n
r rJ
r r
−

=
−

. 

 
Proposition 2.2 (Catalan’s identity) 
                                             ( ) 12 2

, , , ,1 2n r n r
k n r k n r k n k rJ J J J+ − −

− + − = −                                 (2.5) 
 
Proof: By using Eq. (2.4) in the left hand side (LHS) of Eq. (2.5), and taking into account that 

1 2 1r r = − it is obtained 

 
2

, , ,k n r k n r k nJ J J− + −   =   
2

1 2 1 2 1 2

1 2 1 2 1 2

n r n r n r n r n nr r r r r r
r r r r r r

− − + + ⎛ ⎞− − −
− ⎜ ⎟− − −⎝ ⎠

 

                                  = ( ) ( )
( )

1 2 2
2 1

2
1 21 2

1 2
2

( )

n n r r

r

r r
r rr r

+− ⎛ ⎞+
−⎜ ⎟

− ⎝ ⎠
 

                                  = ( ) ( )1 2
,1 2n r n r

k rJ+ − −−  
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Note that for r = 1, Eq. (2.5) gives Cassini’s identity for the k-Jacobsthal sequence 
                                          2

, 1 , 1 ,k n k n k nJ J J− + − = ( ) ( )1 2n n r−−                                                (2.6) 

 
Proposition 2.3 (D’ocagne’s identity) 
          If m > n then     ( ), , 1 , 1 , ,2 n

k m k n k m k n k m nJ J J J J+ + −− = −                                              (2.7) 
 
Proof: By using Eq. (2.4) 

, , 1 , 1 ,k m k n k m k nJ J J J+ +− = 
1 1 1 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

m m n n m m n nr r r r r r r r
r r r r r r r r

+ + + +− − − −
−

− − − −
 

                                  = ( ) 1 2
1 2

1 2

m n m n
n r rr r

r r

− −⎛ ⎞−
⎜ ⎟−⎝ ⎠

 

                                  = ( ) ,2 n
k m nJ −−  

 
2.2 Another explicit expression for calculating the general term of the k-Jacobsthal sequence 
is given by the following preposition- 
 

Proposition 2.4   ( )
1

2
1 2 2

, 1
0

1 8
2 12

n

n i
k n n

i

n
J k k

i

−⎢ ⎥
⎢ ⎥⎣ ⎦

− −
−

=

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

∑                                               (2.8) 

where a⎢ ⎥⎣ ⎦  is the floor function of a, that is { }sup ;a n N n a= ∈ ≤⎢ ⎥⎣ ⎦  and says the integer part 
of a, for 0a ≥ . 
 
Proof: By using the values of 1r  and 2r  obtained in Eq. (2.4), we get 

            
1 2

,
1 2

n n

k n
r rJ
r r
−

=
−    

2 2

2

1 8 8
2 28

n n
k k k k

k

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − +⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥+ ⎝ ⎠ ⎝ ⎠⎣ ⎦  
From where, by developing the nth powers, it follows: 

               
( )3

2
2

1 32

81 8 . . .
1 228

n

n

kn nk k
k kk −

⎧ ⎫⎡ ⎤+⎪ ⎪⎛ ⎞ ⎛ ⎞⎢ ⎥+
= + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥

+ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎢ ⎥
⎣ ⎦⎩ ⎭

 

               
( )

1
2

1 2 2
1

0

1 8
2 12

n

in i
n

i

n
k k

i

−⎢ ⎥
⎢ ⎥⎣ ⎦

− −
−

=

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

∑  
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2.3 Limit of the quotient of two consecutive terms is equal to the positive root of the 
corresponding characteristic equation 
 
Proposition 2.5  

                                                               ,
1

, 1

lim k n

n
k n

J
r

Jω→
−

=                                                    (2.9) 

 
Proof. By using Eq. (2.4) 
 

                      , 1 2
1 1

, 1 1 2

lim lim
n n

k n
n nn nk n

J r r
J r rω ω

− −→ →−

−
=

−
 

( )
( )

2
1

2
1 1 2

11

1
lim

nr
r

nrn r r r
ω→

−
=

−
 

 

and taking into account that 2

1

lim 0
n

n

r
rω→

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

 
since 2 1r < , Eq. (2.9)  is obtained. 
 
 
 
3. Generating functions for the k-Jacobsthal sequences 

 
In this section, the generating functions for the k-Jacobsthal sequences are given. As a 

result, k-Jacobsthal sequences are seen as the coefficients of the power series of the 
corresponding generating function. 

 
Let us suppose that the Jacobsthal numbers of order k are the coefficients of a potential series 
centered at the origin, and let us consider the corresponding analytic function ( )kj x the 
function defined in such a way is called the generating function of the k-Jacobsthal numbers.  
 
So, 
                    2

,0 ,1 ,2 ,( ) ... n
k k k k k nj x J J x J x J x= + + + +  

 
And then, 
                 2 3 1

,0 ,1 ,2 ,( ) ... n
k k k k k nkxj x kJ x kJ x kJ x kJ x += + + + +  

              2 2 3 4 2
,0 ,1 ,2 ,2 ( ) 2 2 2 ... 2 n

k k k k k nx j x J x J x J x J x += + + + +  
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From where, since , 1 , , 12k n k n k nJ kJ J+ −= + , ,0 ,10 1k kJ and J= = , it is obtained 

                                                  ( )21 2 ( )kkx x j x x− − =  

So the generating function for k-Jacobsthal sequence { }, 0k n n
J

∞

=
 is 2( )

1 2k
xj x

kx x
=

− −
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