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REPRESENTATION OF FUNCTIONS BY MATRICES. 
APPLICATION TO FABER POLYNOMIALS 

ERI JABOTINSKY 

Introduction. Let i1 be the family of functions f(z) such that for 
|z| <p with p>O 

nl==+ao 

(1) f(z) = fj n (with fi $ 0). 
n=l1 

Raising (1) to the mth power (m integer, - 00 <m < + oo) we can 
always find coefficients fmn, such that for J zj <p', P' >0, 

n1+Oc 

(2) [f(z)] = E fm, nZn. 

We note that because f(z) EQ , we have fm , 0 for n <im. 
The matrix f=I Ifm,n is a transform of the function f(z) and can 

be used to represent this function. One row of the matrix is sufficient 
to define the function so that the whole matrix furnishes a super- 
abundance of information about the function. This results, however, 
in the existence of relations among the elements fm.,n which are inde- 
pendent of the particular function f(z). These relations are funda- 
mental properties of all matrices f which represent functions e Q and 
they are powerful analytical tools that can be applied to many prob- 
lems of analysis. 

We shall prove two such fundamental theorems about the matrices 
f= jjf.,n|j and then, as an application, use these theorems to derive 
properties of Faber polynomials which play an important role in the 
theory of univalent functions. 

Historical. Integral transforms in two variables, generalizing the 
matrix transforms which are considered here, were defined, and 
some of their properties were given by the author in the summary of 
a paper submitted by the author to the 1950 Congress of Mathe- 
maticians at Harvard. 

I. Schur [5]1 considered in connection with functions f(z) the 
matrices f+ = JJfm,4nJ defined for m, n > 1. His failure to consider the 
full matrix f = jjfm,njj defined for -X0 <im, n < + Xo prevented his dis- 
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covery of our Theorem II. The matrices f+ were also used by M. 
Schiffer [4 ] and by the author [2 1. 

Theorem II was first proved by the author [3 ] by contour integra- 
tion. An algebraic proof based on the fact that fm., is a polynomial 
in m of degree (n-m) was indicated. The possibility of the present 
proof was suggested by M. Schiffer who also found a proof based on 
the study of the expression log [(f(z) -f(w))/(z - w)] (see our proof 
of Theorem VIII). Thus, in all, four proofs of Theorem II are avail- 
able. The first proof by contour integration has the advantage of 
being adaptable to functions not in Q and to general integral trans- 
forms of the type (1). 

Grunsky's theorem (our Theorem VII) was first proven by Grun- 
sky by contour integration [1]. Grunsky's theorem results from our 
Theorem II but is weaker than this theorem. 

The polynomials F.*(t) = (1/nm) F'(t) were used by M. Schiffer in 
preference to the Faber polynomials Fm(t) in connection with the 
coefficient problem of uniform functions [4]. Equation (13) of our 
Theorem V shows that these polynomials are in a sense covariant 
with the fm.n when f(z) is replaced by f{g(z) }. This explains the 
preference. 

Two fundamental theorems. Using the notation introduced in (2), 
we have the following general properties of the matrices f= IIfmnlI: 

THEOREM I. Consider two functions f(z) E Q and g(z) E 9 and the 
function k(z) =f{ g(z) } which is also E U. Let f, g and k be matrices rep- 
resenting these functions. Then k =f Xg. That is, 

P=+o 

(3) km,n= E fm,pgvPn. 

THEOREM II. If f(z) 
- 
Q and 4)(z) is the inverse function of f(z), then 

k(z) EC . Let f and q5 be the matrices representing f(z) and +(z). Then 
the elements km,n of 45 are given by 

m 
(4) 9!m,n = f-n,-m (for n $ 0) 

n 

and,for n=O, by 
m=+oo 

(5) XE -m,,ZZ - M f (z)/f(z). 
m=-oo 

PROOF OF THEOREM I. We identify the coefficients of zn in the 
second and last terms of the following equation: 
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n+oo ~~~~~~p=+oo 
[k(z) ] m = km,n Zn = [f { g(z) } ]m = : fm,p[g(Z)]P 

n=-0 L = 

E: f"n,p _ : g _, 

p=-oo n=;-oo 

= S a fm,pgp.n SZ' 
LnJmvv J Z 

The change in the order of summation is in our case always legitimate 
because the sum E.- +" fm.pgp.n contains only a finite number of 
significant terms (those for which m < p < n). 

PROOF OF THEOREM II. We use the fact that fI4(z) } =z and 
Theorem I. Noting that the matrix I representing the function z is 
the unit matrix I=115m,njj, we have 

(6) Ed frnp 'p,n = am,n 

The matrix f is not singular and has only one inverse 4. All we 
have to do is to show that the values of c/m,n drawn from (4) and (5) 
satisfy identically (6). We show first that (4) and (5) are together 
equivalent to 

m-+cO 
(7) F,'mn-- = fZ]n1-fZ) 

Indeed, for n = 0 this is clear. For n 5 O we have 

[f(z) ]-n-l'f'(z) [f(z) ]n = pf-n,pzP-1I 
n dz p=_O 

which for p= -m shows that, for n#O, (7) and (4) are equivalent. 
Consider now the product 

_p=+O0 _pc+OO 

[f(z) ]m. [f(Z)x'1 f'(Z) - E f.,pzP E Op,nZ . 

The coefficient of z-' on the right is EP3j frni4p.n; on the left we 
have: 

[f(z) ]m [f(z) ]-n- .f(z) = [f(z)] m-n-l.f(z) 

If m =n, the coefficient of z-1 is 1. If m$n, then the last expression is 
equal to (I/(m -n))d [f(z) ]mn/dz and the coefficient of z-1 is 0. Thus 
(6) is always satisfied. 
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Faber polynomials. Let f(z) C O. We define for m > 1 the mth Faber 
polynomial of f(z) as the polynomial Fm(t) = Po Fm,ptP of degree 
m for which 

n-f=+0 

(8) Fm[{f(Z)[-1] Z_' m+ ? Cm,nZn. 

That this defines the Faber polynomials uniquely can be shown by 
recurrence over m. We prove the following theorems: 

THEOREM III. The mth Faber polynomial of the function f(z) is 

p=m m 
(9) Fm(t) = 0-Pn,O + -fp,mtP. 

p=l p 

THEOREM IV. Let Fm(t) be the mth Faber polynomial of f(z) and let 
F*(t) be the polynomial defined by 

(10) Fmn(t) =-Fin(t). 
m 

Then 
p= m 

(11) F*(t) = f p,fmt1. 
p=1 

THEOREM V (Change of base). Let f(z) C Q and g(z) C U. Then 
k(z) =f{g(z)} is also CO. Let Fm(t) = Zp-O Fm,ptp, Gm(t) 
= p-o Gm,ptP, and Km(t) = IpO km,ptP be the mth Faber polynomials 
of f(z), g(z), and k(z). And let F,*(t) = (1/m)F'(t), G*(t) = (1/m)G'(t), 
and K*(t) = (1/m)k' (t). Then the following relations hold: 

p==m 

(12) Km,n = GmnpFp,n, 
p-n 
q= m 

(13) Kn(t) = ? gq.mFq(t). 
q=1 

THEOREM VI (Generating functions). We have, respectively, 

xf'(x) 1M=?oo 

(14) f(x) I _ tf(X) 1+ E Fm(t)xm (14) 
~~f(x) I - tf(x) m=1 

and 

f(x) = ?Fw 
(15) = ~~~~~~~~~1 F* (t) xmI. 

1-If(x) m=1 
i 
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THEOREM VII (Grunsky's theorem). We have in (8): 

(16) nCm,n = mcn,m. 

THEOREM VI II (Schiffer's theorem). We have, for f(z) eG: 

log 
f(w) - f(z) 

llog f,l + log 
f() 

w- z w 

(17) f(z) m,n,n+o 1 
+ log - - _ -Cmc,nWmZn. 

z m,n=1 m 

PROOF OF THEOREM III. We have, for m>1, 

p= m p~~~= m~ r n=+oo 

E 0-m_-p U;(Z) I- Fd =-, E f mp E f_p,nZn pO p=0 n _oo 

n-oo p=-m 
3 E E 0-m ,_pf_ p,n zn. 
n--_oo pO0 

But 

E 'k-m,-pf-p,n = FI ck-m,-pf-p,n =-m,n. 
P.=-00 p--n 

Whence, for n <0, 
p=m 

F2 k-m.-pf-.p,n = -m,n- 
p=O 

Therefore 

(18) E 0-m,pU[f(Z)IP = Z-m + E I 0-mo-pf-p,n zn 
pO0 n-I p=O 

which proves that the polynomial Fm(t) = 2:P=m 0_,_ptP is the mth 
Faber polynomial of f(z), whence, using (4), we get (9). Incidentally, 
comparing equation (18) to equation (8) and noting that, for n _ 1, 
fo,n-0, we also find that, for m, n>1: 

p=m 
(19) Cm,n = : ''-m.-pf-p,n. 

p=1 

PROOF OF THEOREM IV. We have (11) from (10) by differentiating 
(9) and dividing by m. 

PROOF OF THEOREM V. Let q(z), 'y(z), and K(z) be the inverse 
functions of f(z), g(z), and k(z). Then, by Theorem III, equation 
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(12) is equivalent to 
p= m 

K_m,-n = E 7Y-m,-p1-p,-n. 

p-n 

But this results from K(Z) ='y I{.k(z) } and Theorem I. To prove (13) we 
have to show that Dp 1 kp,mtP1= -l gq,m [ fp,qtp-] or that 
kp,m Q=p fp,qgq,m, which results from Theorem I. 

PROOF OF THEOREM VI. We first prove (14). We have: 

f( x) P=+0o p=+o m=+oo 

1 f( x) E- [f(x) = Z[ fp mxJtP 

m=+oo prnz 

- E E pfp,mtP 1 Xm 
m-1 pl1 

which, by (11), proves (15). 
To prove (14) we write (15) as 

m=+oo 1 

f(x)/j[l - tf(X)] = E _F (t)xm 
m-1 m 

and integrate it with respect to t. We find 

m=+oo 1 
- log [1 - tf(x)] = E F,m(t)xm + g(x) 

rn1 m 
where g(x) is introduced by the integration. XVe now derive with 
respect to x and find: 

tf'(x) m=+0o 
(20) = E Fm(t)x"n1 + g'(x). 

1 - tf(x) m=-1 

Putting t = 0 and noting that Fm(0) 4-m,o we find 

M=+00 

0 = EI qb o,OXm1 + g'(X). 

m=- 

But, by (5), %m- + I-m,oXm1-f=f(x)/f(x). Hence 

g'(x) =-f'(x)/f(x) + 1/X. 

Putting this into (20) and multiplying by x we prove (14). We note 
that the expression for (14) may make it desirable to put, by defini- 
tion, Fo(t) = 1, a definition in conformity with (8) and (9). One would 
then put Fo(t) = 0, a definition not in contradiction with (10) and 
(1 1). 
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PROOF OF THEOREM VII. We have, remembering that, in (8), 
m, n_Z1, 

P=+o P-1 

E 'k-m,-pf-p,n = E 'k-m,-pf-p,n + 40-m,ofO,n 
pe-oo0 p-+=o00 

P-4 -0 

+ Z 0k-m,-pf-p,n = 5-im,n. 
p=1 

But fo,n = O for n > O and 5-.,n = 0 because -m < O and n > O. There- 
fore, changing p into -q in the first sum, we have 

q+oo ~~p=+oo 

Sd 0_inqfq,n + Z 4k-m,-pf-p,n = 0. 
q=1 p=l 

Using (4), put m,q= - (m/q)f_q,m and fq,n= (q/n)cI-n, -q in the first 
sum. The above equation becomes: 

q=+00 m p==+0 

E - c-n,-qf-q,m + 42 k-m,-pf-p,n = 0 
q=l n p= 

or, according to (19), 

- (m/n)cn,m + Cm,n = 0, 

which proves the theorem. 
PROOF OF THEOREM VIII. Multiplying both sides of (8) by wm 

and summing over m, we find, using (14), 

wf'(W) 1 m=+oo m, n=+oo 
- 1 Wm?Z-m? - Cm, nWm?Z nI 

f(w) 1 -f(W)/f(z) m=1 mZn-1 

or 

f( w) f(z) 1 1 m, n-+oo 
= Cm, nW"?nZ nI 

f(w) f(z) -f(w) w Z W m,n1 

which can be written 

f'(w) f'(w) 1 1 m,n=+oo 
- + ++ - Z = - E Cm,nWZ n. 

f(w) f(z) -f(w) w x w m,n6- 

Integrating over w we find: 

f(W) -f(z) f(W) m, n=+oo 

log - log g(z) E Cm,nWm-lZn 
W Z W m,n=1 

where g(z) is introduced by integration. Putting w = 0 we find: 
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log f(- log fi,1-g(z) = 0 
z 

which proves the theorem. 
Noting that we have log ((f(w) -f(z)/(w - z))- dm n,WmZn 

with dm,n = dn,m in the vicinity of w = z = 0, and expanding the left- 
'hand side explicitly in a double power series in w and z, it can 
be shown that if km,n be defined by (4) and (5), then JP=+' q5mjp,n 
=3m,nw which furnishes an alternative proof of Theorem II, due to 
M. Schiffer. 
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