
More Orthogonal Polynomials as MomentsMourad E. H. Ismail 1 and Dennis Stanton2To Gian-Carlo Rota with thanks, gratitude and admirationAbstract. Classical orthogonal polynomials as moments for other classical orthog-onal polynomials are obtained via linear functionals. The combinatorics of the Al-Salam-Chihara polynomials is given, and three classi�cation theorems for generalizedmoments as orthogonal polynomials are proven. Some combinatorial explanationsand open problems are discussed.
1. IntroductionThe symbolic method consisted of manipulating power series in x, and mappingxn to �n, where f�ng is a sequence of combinatorial numbers. This was used byKaplansky, Mendelsohn and Riordan [K, KR, M] to treat a variety of combinatorialproblems. In a beautiful series of papers [RHO, RR, JR], Rota's ideas put the um-bral and symbolic calculus on solid foundations and his techniques were applied tostudy several combinatorial and analytic problems. The purpose of this paper is touse these ideas to consider moments of orthogonal polynomials as other orthogonalpolynomials. We thank Gian-Carlo for his insight into these problems and for beingthe driving force behind the modern theory of the umbral calculus.In [K2] and [IS2] several families of orthogonal polynomials are shown to be themoment sequences for other orthogonal polynomials. The proofs in [IS2] are bybrute force, using the explicit form of the measures. In this paper we motivateand generalize some of these results (Theorems 1, 2, 3 and 4), by evaluating linearfunctionals on appropriate bases of the vector space of real polynomials. We alsocombinatorially study the Al-Salam-Chihara polynomials in x5-6. Three character-izations of generalized moment sequences as specialized Al-Salam-Chihara polyno-mials are given in x7. Some open problems are discussed throughout this work.The Rotafest, which resulted in these Proceedings, had two components, oneon enumeration and a workshop on the umbral calculus. We are pleased that thiswork overlaps with both components since on one hand our study of functionalsis umbral in nature but on the other hand our results on Hermite, Meixner andAl-Salam-Chihara polynomials are combinatorial in nature and use enumerativetechniques.1This work was supported by NSF grant DMS-9625459 and a research fellowship from theLeverhulme Foundation.2This work was supported by NSF grant DMS-9400510. Typeset by AMS-TEX



2 Mourad E. H. Ismail and Dennis StantonWe set some notation. If fpn(x)g is a sequence of monic orthogonal polynomialswith real coe�cients, it is known [Ch] that they satisfy a recursion relation(1.1) pn+1(x) = (x� bn)pn(x)� �npn�1(x); n � 0;for some real bn and �n, with p0(x) := 1 and �0p�1(x) := 0. We refer to (1.1) asthe three term recurrence relation for pn(x). We let L denote the linear functionalon the vector space of real polynomials for which orthogonality holds,(1.2) L(pnpm) = 0 if n 6=m.The moments �n are de�ned by �n = L(xn):We note that if pn(x) satis�es (1.1), and(1.3) L(pn) = 0 for n > 0;then (1.2) holds.We shall also �nd the value of L at polynomials of degree n, other than xn andpn(x). We shall consider(1.4) L((x+ a)n) = nXk=0�nk��kan�k;(1.5) L((x; q)n);where (A; q)n := n�1Yi=0(1 �Aqi);and(1.6) L(�n(x; a));where �n(x; a) = (aei�; q)n(ae�i�; q)n; x = cos�:For many of the cases considered one can �nd an explicit expansion(1.7) en(x; y) = nXk=0 ckpk(x)sn�k(y);where en(x; y) is some elementary homogeneous polynomial in x; y of degree n (forinstance (x+ y)n), the ck are explicit constants, the pk form a class of orthogonalpolynomials and the sk form another class of polynomial special functions, often



More Orthogonal Polynomials as Moments 3expressible in terms of some class of orthogonal polynomials. The assumptionL(p0) = 1 and the expansion (1.7) imply(1.8) cnsn(y) = L(en(:; y)):This also shows that occurrence of orthogonal polynomials as moments is onlya special case of occurrence of orthogonal polynomials as expansion coe�cients.Indeed the set up in (1.4), which is used in this paper is just one instance of themore general set up in (1.7) and (1.8).In some cases, formula (1.7) can be obtained by multiplication of a generatingfunction for pk(x) with a generating function for sl(y). It may be possible toobtain (1.7) from (1.8) by substitution of a Rodrigues type formula combined withintegration or summation or q-summation by parts. Sometimes one can recognize(1.7) as a degenerate addition formula.For instance, the Hermite case considered in Section 5 can be obtained by mul-tiplication of the two generating functionse2xz�z2 = 1Xk=0 Hk(x) zkk! ; e2iyz+z2 = 1Xl=0 ilHl(y) zll! :The result is(1.9) (x+ iy)n = Xk+l=n�nl� ilHk(x)Hl(y):Motivated by identities such as (1.9), W. Al-Salam and T. Chihara [AC] char-acterized all triples fpk(x)g, fsn(y)g, fen(x; y)g satisfying (1.7) such that fpk(x)gand fsn(y)g are orthogonal polynomials and fen(x; y)g are orthogonal polynomialsin x for in�nitely many values of y. In addition to some classical polynomials,Al-Salam and Chihara [AC] identi�ed what has become known as the Al-Salam-Chihara polynomials and their weight function was found recently, see [AI].Polynomials depending on parameters are orthogonal when the parameters liein a certain domain. If these polynomials are represented as moments, the integralrepresentation of the functional with respect to a positive measure restricts theparameters to outside this domain. The reason is that an orthogonal polynomialof degree n has n real and simple zeros. One must use other techniques to extendthe validity of the results to the domain of orthogonality.We use the standard notation for hypergeometric and basic hypergeometric seriesin [GR]. We also use the notion of basic numbers[n]q = 1� qn1� qand the q-binomial coe�cients�nk �q = (q; q)n(q; q)k(q; q)n�k :



4 Mourad E. H. Ismail and Dennis Stanton2. Meixner polynomials as momentsHere we obtain the Meixner polynomials as moments of the translated betameasure. We will see that the moments can be found directly from the orthogonalpolynomials via (1.3), without knowledge of a representing measure.First consider the normalized beta integral on [0; 1], and de�ne the associatedlinear functional L by(2.1) L(p(x)) = �(�+ � + 2)�(�+ 1)�(� + 1) Z 10 p(x)x�(1 � x)�dx:The monic orthogonal polynomials for L are constant multiples of the Jacobi poly-nomials, P (�;�)n (1� 2x) = (�+ 1)nn! 2F1(�n; n+ �+ � + 1;�+ 1;x):Clearly from (2.1) and the beta function evaluation we have(2.2) �k = (�+ 1)k(�+ � + 2)k :Thus (1.4) implies(2.3) L((x+ a)n) = nXk=0�nk� (�+ 1)k(�+ � + 2)k an�k;which is a Meixner polynomial under an appropriate choice of � and �. This saysthat the measure for which the Meixner polynomials are moments is a translate ofthe orthogonality measure, for Jacobi polynomials, which is stated in [IS2].Note that (2.2) implies thatL(P (�;�)n (1� 2x)) = (�+ 1)nn! 2F1(�n; n+ �+ � + 1;�+ � + 2; 1) = 0 if n > 0;from the Chu-Vandermonde evaluation of a terminating 2F1 at x = 1. So we couldobtain (2.2) from the explicit formula for P (�;�)n (1 � 2x) without knowledge of anexplicit measure. We shall use this method again in the next section.3. Three q-versionsIn this section we consider three di�erent q-versions of the functional L of x2.These three functionals will be denoted by L1, L2 and L3. They act nicely on xn,(x; q)n, and �n(x; a), respectively (see Theorems 1, 2, and 3). The correspondingthree sets of orthogonal polynomials are the little q-Jacobi, big q-Jacobi, and theAskey-Wilson polynomials. We use the explicit formula for these polynomials to



More Orthogonal Polynomials as Moments 5�nd the value of the linear functional L, in order for (1.3) to hold. Then we changethe bases to �nd orthogonal polynomials as generalized moments.The little q-Jacobi polynomials are de�ned by [GR, (7.3.1)]pn(x; a; b; q) = 2�1(q�n; abqn+1; aq; q; xq):For (1.3) to hold, we should try(3.1) L1(xk) = (aq; q)k(abq2; q)k ;analogous to x2. In this case the q-analogue of the Chu-Vandermonde evaluation[GR, (II.6)] does imply (1.3). Thus we have found the moments without explicitlyknowing any representing measure.We next obtain the analog of translating the measure by a constant.Theorem 1. For the little q-Jacobi functional L1 we haveL1((cx; q)n) = 2�1(q�n; aq; abq2; q; cqn):Proof. Apply the q-binomial theorem in the form(cx; q)n = nXk=0 (q�n; q)k(q; q)k (cqnx)kto (3.1). �The big q-Jacobi polynomials of Andrews and Askey are de�ned by [GR, (7.3.10)]Pn(x; a; b; c; q) = 3�2(q�n; abqn+1; x; aq; cq; q; q):As for the little q-Jacobi polynomials again if we putL2((x; q)k) = (aq; q)k(cq; q)k(abq2; q)k ;then the q-analogue of the Chu-Vandermonde sum [GR, (II.6)] implies (1.3). To�nd the moments we expand xn in terms of (x; q)k, by a limiting case of the abovementioned 2�1 evaluation xn = nXk=0 (q�n; q)k(q; q)k (x; q)kqk:Theorem 2. For the big q-Jacobi functional L2 we haveL2(xn) = 3�2(q�n; aq; cq; abq2; 0; q; q):



6 Mourad E. H. Ismail and Dennis StantonBy appropriately choosing the parameters, the moments in Theorem 2 are Al-Salam-Chihara polynomials. Theorem 2 is proven from the explicit big q-Jacobimeasure in [IS2, Theorem 3.1].Finally we consider the Askey-Wilson polynomials, [GR, (7.5.2)]pn(x; a; b; c; djq) = 4�3(q�n; abcdqn�1; aei�; ae�i�; ab; ac; ad; q; q):This time L3(�k(x; a)) = (ab; q)k(ac; q)k(ad; q)k(abcd; q)kworks. By expanding �n(x; f) in terms of �n(x; a) [I, (2.2)]�n(x; f) = (af; f=a; q)n nXk=0 (q�n; q)kqk(q; af; aq1�n=f ; q)k �k(x; a)we obtain the following theorem.Theorem 3. For the Askey-Wilson functional L3 we haveL3(�n(x; f)) = (af; f=a; q)n 4�3(q�n; ab; ac; ad; abcd; af; aq1�n=f ; q; q):Note that the explicit form of pn(x) was crucial to determine the appropriatepolynomial of degree n, Rn(x), and the value of L(Rn(x)) which factored. In x4we show that this idea can applied even if the explicit form of pn(x) is not known,but the measure is known.4. Al-Salam-Chihara polynomials revisitedTheorem 2 gives the Al-Salam-Chihara polynomials as the moments of the mea-sure with respect to which the big q-Jacobi polynomials are orthogonal. In thissection we give another measure whose moments are multiples of the Al-Salam-Chihara polynomials. As before we �nd a polynomial Rn(x) of degree n such thatL(Rn(x)) factors. However, we do not know an explicit formula for the orthogonalpolynomials fpn(x)g with respect to L, nor do we explicitly know the recurrencecoe�cients given by (1.1).We consider a measure which is purely discrete with two in�nite sequences ofjumps,L(p(x)) =(q=A; q=B)1(q; q=D)1 1Xn=0 (A;B; q)n(q;D; q)n (Dq=AB)np(uqn)+(D=B;D=A)1(q;D=q)1 1Xn=0 (Aq=D;Bq=D; q)n(q; q2=D; q)n (Dq=AB)np(uqn+1=D):(4.1)If we let c = ut, e = cq, in [GR, (III.33)], and consider L(1=(1 � xt)), we have asum of two 3�2's which is a single in�nite product. The result is(4.2) (qut=D)1(qut=A)1 L(1=(1 � xt)) = (qut=B)1(ut)1 :



More Orthogonal Polynomials as Moments 7Clearly (4.2) is equivalent to a generating function which impliesL(Rn(x)) = un (q=B; q)n(q; q)nif(4.3) Rn(x) = nXl=0 (A=D; q)l(q; q)l (qu=A)lxn�l:We also easily obtain from (4.2) the following theorem, �rst obtained by Suslov [S].Theorem 4. The moments for the linear functional given by (4.1) areL(xn) = (qu=D)n (D=A)n(q; q)n 2�1(q�n; q=B;Aq1�n=D; q;A):Clearly we could rescale and put u = 1.Note that [GR, (III.6)] impliesL(xn) = (Bu=D)n (Dq=AB; q)n(q; q)n 3�2(q�n; q=B;D=B;Dq=AB; 0; q; q);which is multiple of the result in Theorem 2. Thus Theorems 2 and 4 give twopossible interpretations for the Al-Salam-Chihara polynomials as moments. Thereshould also be a companion theorem for Theorem 3, but we do not know such aresult. 5. Combinatorial applicationsIn x2-x4 we found that moments of classical orthogonal polynomials may beother classical orthogonal polynomials. There has been much work on combinato-rial models for both orthogonal polynomials [FO,FS] and their moments [V]. So if agiven orthogonal polynomial is also a moment, these two possibly di�erent combi-natorial points of views should be reconciled. In this section we make some remarksin this direction.The Hermite polynomials, Hn(x), are the simplest limiting case of any classicalpolynomial. In [IS2], (or from a limiting case of (3.2)) it is shown that a rescaledversion, ~Hn(a) are the moments for a translate of the Hermite measure by a. Thusthe Hermite polynomials are the moments for any translate of their own measure.We give the combinatorial reason for this phenomenon. Consider the set S =f1; 2; � � � ; ng. A matching m of S is an involution on S. We refer to the 2-cycles ofm as edges, and the 1-cycles (�xed points) of m as unmatched vertices.It is well known [Fo] that, with the proper rescaling, the Hermite polynomials(5.1) ~Hn(x) := 2�n=2Hn(x=p2)



8 Mourad E. H. Ismail and Dennis Stantonhave the representation(5.2) ~Hn(x) =Xm (�1)#edges in mx#�xed points of m:They are the generating function for all matchings m on a set f1; 2; � � � ; ng, withedges weighted by �1, and unmatched vertices by x. It is also known that themoments �n are the number of complete matchings on f1; 2; � � � ; ng. Thus(5.3) L((x+ a)n) = n=2Xk=0� n2k��2kan�2kis the generating function for all matchings of f1; 2; � � � ; ng, with edges weighted by1, and unmatched vertices by a. The right-hand side of (5.3) is i�n ~Hn(ia), henceis just the rescaled Hermite polynomials rescaled again.Although there is an a priori combinatorial interpretation for Meixner polynomi-als [V], and another interpretation for moments of general orthogonal polynomials[V], for the Meixner polynomials we do not have a combinatorial reconciliation, aswe gave for the Hermite polynomials.Another example is the Laguerre polynomials, a limiting case of the Meixner,for which there is well-studied combinatorial model [FS]. There are two possibleinterpretations as moments, corresponding to the limiting cases of Theorems 2 and4. This would lead to two new models.6. Combinatorics of Al-Salam-Chihara polynomialsThe Al-Salam-Chihara polynomials are a special case of the Askey-Wilson poly-nomials. Theorems 2 and 4 give linear functionals whose moments are these poly-nomials. In this section we give the combinatorial interpretations for these polyno-mials and their moments.The monic form of the Al-Salam-Chihara polynomials [AI, (3.2)] have the threeterm recurrence relation(6.1) pn+1(x) = (x� aqn)pn(x)� (c+ bqn�1)[n]qpn�1(x):An explicit representation for the pn's as multiples of a 3�2 function is in Chapter3 of [AI].To combinatorially understand these polynomials and their moments, we con-sider matchingsm of f1; 2; � � � ; ng. A 2-bicoloring C of a matchingm is a 2-coloringof the edges of the matching (say with colors b and c), and an independent 2-coloringof the unmatched vertices (say with colors x and a). We let b(C), c(C), x(C), anda(C) denote the number of these colored edges and unmatched vertices.If only the edges are 2-colored, and not the unmatched vertices, we call such acoloring D an edge 2-coloring of m. We denote by a(D) the number of unmatchedvertices, and by b(D) and c(D) the number of edges colored b and c respectively.



More Orthogonal Polynomials as Moments 9Theorem 5. The Al-Salam-Chihara polynomial pn(x) is the generating functionof all 2-bicolorings C of all matchings m of f1; 2; � � � ; ng with weight w(C)pn(x) =XC w(C);where w(C) = xx(C)(�a)a(C)(�b)b(C)(�c)c(C)qs(C);s(C) = s1(C) + s2(C) + 2s3(C);s1(C) = Xa�vertices i jfz : z < i;m(z) < igj;s2(C) = Xall edges i<j jfz : i < z < j;m(z) < jgj;s3(C) = Xb�edges i<j jfz : z < i;m(z) < jgj:Proof. We verify (6.1) by considering n+1 in a 2-bicoloring C on f1; 2; � � � ; n+1g.First ignore the power of q. If n + 1 is unmatched, then we have an arbitrary 2-bicoloring on f1; 2; � � � ; ng, with n+1 colored either x or a. These are the two termsmultiplying pn(x) in (6.1). If n + 1 is matched, there are n choices for m(n + 1),what remains is an arbitrary 2-bicoloring of f1; 2; � � � ; ng�fm(n+1)g. The colorsfor the f(n + 1);m(n + 1)g edge are b or c, agreeing with (6.1). So it remains tocheck the the power of q given by s(C) agrees with (6.1). If n+1 is unmatched andcolored x, then n+1 does not contribute to s(C). If n+1 is unmatched and coloreda, then (6.1) contributes n to s(C), and n is the number of vertices i to the left ofn + 1 such that m(i) < n+ 1. Any i < n + 1 with m(i) > n + 1 is inserted aftern+1. This gives the term s1(C). If n+1 is matched to m(n+1) < n+1, we choosea monomial qj�1, 1 � j � n, from [n]q to weight the edge. If the edge is coloredb we additionally weight the edge by qn�1. We can choose j from left-to-right orright-to-left. For a c-edge fn� j + 1; n+ 1g, choose qj�1, for the b edge fj; n+ 1gchoose qn�1+j�1. The term qj�1 contributes to s2(C) for the c-edges, and to s3(C)for the b-edges. The term qn�1 contributes to s2(C) + s3(C) for the b-edges. �It is clear from the proof that several other versions of Theorem 5 could begiven, with slight modi�cations of s(C). For example, if the b-edges are read in theopposite direction, s2(C) and 2s3(C) would be replaced by(6.2) ~s2(C) = Xall edges i<j jfz : i < z < j;m(z) < jgj;~s3(C) = Xb�edges i<j jfz : z < j;m(z) < jgj:Note that by taking a = b = 0, and c = 1, we obtain the continuous q-Hermitepolynomials ~Hn(xjq), which are de�ned by (1.1) withbn = 0; �n = [n]q:



10 Mourad E. H. Ismail and Dennis StantonIn this case we have only matchings, and Theorem 5 (with (6.2)) becomes Propo-sition 3.3 in [ISV].The moments of the continuous q-Hermite polynomials are the generating func-tions of the crossing numbers of complete matchings [ISV, (3.6)],cross(m) = jfedges i < j; k < l : i < k < j < lgj:or also the generating functions of the nesting numbers of complete matchings [ISV,(3.9)], nest(m) = jfedges i < j; k < l : i < k < l < jgj:For the Al-Salam-Chihara polynomials, we need a q-statistic on edge 2-coloringsgeneralizing either of these two statistics.Theorem 6. The nth moment for the Al-Salam-Chihara polynomials (6.1) is thegenerating function for all edge 2-colorings D of matchings m of f1; 2; � � � ; ng withweight w(D) �n =XD w(D);where w(D) = aa(D)bb(D)cc(D)qt(D);t(D) = c1(m) + c2(D) + c3(m);c1(m) = Xa�vertices jfedges i < j : i < a < jgj;c2(D) = Xb�edges i<j jfedges k < l : k < j < lgj;and c3(m) is either the crossing number cross(m) or the nesting number nest(m).Proof. We follow the proof of [ISV, (3.6)]. If a = b = q = 1 and c = 0, thebijection from Motzkin paths of length n gives matchings on f1; 2; � � � ; ng. Wemust weight the unmatched vertices by a, the edges by either b or c, and also anappropriate power of q. This gives Theorem 6, up to the power t(D) of q. Anunmatched vertex a has weight aqn if there are n uncompleted edges preceding a,this contributes the term c1(m) in Theorem 6. A similar argument applies for theb edges of weight bqn�1, yielding c2(D). The remaining term c3(m) appears fromthe term qj , 0 � j � n� 1, chosen from [n]q for any edge, b or c. This contributeseither cross(m) or nest(m). �Again by reading the inserted the edges in the opposite order we may �nd otherversions of Theorem 6.We note that the L2-norm can be considered as the generating function for thelength in Weyl groups of type Bn.Proposition 1. Let L be the linear functional for the Al-Salam-Chihara polyno-mials. Then L(pnpm) = �n;mn!q n�1Yi=0(c+ bqi):



More Orthogonal Polynomials as Moments 11Proof. Since L(1) = 1, the L2-norm is always given by �n � � � �1, so (6.1) gives thestated constant. Another method is to use the general theory of Viennot [V], givingan involution which proves orthogonality. In this case the �xed points will be alledge 2-colorings of complete matchings of f1; 2; � � � ; ng to fn + 1; n + 2; � � � ; 2ng.There are no a-vertices in this case, and Theorem 6 also gives the stated constant.The edge (m�1(2n � i); 2n � i) contributes c or bqi, 0 � i � n � 1. The crossingnumber contributes n!q, independent of the coloring. �It is of interest to consider the q-analog of the Hermite polynomials, which weremoments of their own translated measure. If we put c = 0, b = �1 in (6.1)the Al-Salam-Chihara polynomials become Al-Salam-Carlitz (I) polynomials [KS,p. 87]. Then Theorem 6 implies that the moments are the continuous q-Hermitepolynomials [ISV, (2.10)].Corollary 1. If L is given by bn = aqn, �n = �qn�1[n]q, thenL(xn) = ~Hn(ajq):Proof. If we apply Theorem 6 with c = 0, the edges are colored only b = �1, whilethe unmatched vertices are weighted by a. Thus the moments are some q-versionof the Hermite polynomials in a. In Theorem 6, c2(D) = cross(m) + nest(m). Ifwe choose c3(m) = nest(m), then the q-statistic is t(m) = c1(m)+c2(D)+c3(m) =c1(m) + cross(m) + 2nest(m). If we apply Theorem 5 to ~Hn(ajq), (a = 0, b = 0,c = 1, x = a), again we have just matchings m, with edges weighted by �1. Thepower of q is s(m) = ~s2(m) = t(m). �Another q-analog is given by the discrete q-Hermite, [GR, p. 193] ~Hn(x; q),which have bn = 0; �n = qn�1[n]q :The next corollary says that the discrete q-Hermite are the \shifted moments" forthe discrete q�1-Hermite.Corollary 2. If L is given by bn = 0, �n = �q�n[n]1=q, thenL(dn(�x=d; q)n) = ~Hn(d; q):Proof. Clearly(6.3) L(dn(�x=d; q)n) = nXk=0�nk �q q(k2)dn�kL(xk):We appeal to Theorem 6 to �nd L(xk). The choices given for bn and �n correspondto a = c = 0, b = �q, and then q replaced by 1=q in Theorem 6. Since a = 0 thematchings must be complete and k is even. As in the proof of Corollary 1, the q-statistic can be taken to be t(m) = 2cross(m) +nest(m). Moreover the generatingfunction for complete matchings is [SS, (5.4)]Xm q2cross(m)+nest(m) = [1]q [3]q � � � [k � 1]q ;



12 Mourad E. H. Ismail and Dennis Stantonso that [GR, p. 193]L(dn(�x=d; q)n) = nXk=0 � n2k �q qk2�k(�1)kdn�2k[1]q [3]q � � � [2k � 1]q = ~Hn(d; q):�Corollaries 1 and 2 are special cases of Corollary 3 (A = �a, B = 1, q ! 1=q,and A = 0, B = 1=q, respectively). It says that the shifted moment of an Al-Salam-Carlitz (I) polynomial is an Al-Salam-Carlitz (II) polynomial [KS, p. 87].Corollary 3. If L is given by bn = �A=qn, �n = �Bq1�n[n]1=q, thenL(dn(�x=d; q)n) is an Al-Salam-Chihara polynomial in d of degree n with a = A,c = 0, and b = Bq.Proof. The choices of bn and �n imply C = 0 in (6.1), thus force no C-colorededge in Theorem 6. We apply Theorem 6 to (6.3) (with the matching m replacingthe edge 2-coloring D) to obtain(6.4)L(dn(�x=d; q)n) = nXk=0 �nk �q q(k2)dn�k Xmon f1;��� ;kg(�A)A(m)(�B)B(m)q�t(m):The desired conclusion of Corollary 3 also forces c = 0 in Theorem 5, so we mustshow(6.5) L(dn(�x=d; q)n) = X~mon f1;��� ;ng(�A)A( ~m)(�Bq)B( ~m)dd( ~m)qs( ~m):Given a subset S = fl1 < � � � < lkg of f1; � � � ; ng, and a matching m onf1; � � � ; kg, de�ne a matching ~m on f1; � � � ; ng by letting the d unmatched ver-tices be f1; � � � ; ng � S, and ~m(li) = lj if m(i) = j. If we show that(6.6) s( ~m) + t(m) + #edges inm = (l1 � 1) + � � �+ (lk � 1);then Corollary 3 is established, becausel1 + � � � + lkis a integer partition into k distinct parts, whose largest part is� n. It is well-knownthat the generating function for these partitions is�nk �q q(k+12 ):The following observations verify (6.6).(1) If li 2 S is an A-vertex, then each point z < li appears exactly once in theli contribution to c1(m) + s1( ~m).



More Orthogonal Polynomials as Moments 13If fli < ljg is an edge, we show that all points z < li are counted twice, all pointsli � z < lj are counted once, in the fli < ljg contribution to the left side of (6.6).This gives a total of (lj � 1) + (li � 1).(1) If z < li and ~m(z) < li, then 2s3( ~m) counts z twice.(2) If z < li and ~m(z) > li, then z is counted once in c2(m) and once inc3(m) = nest(m). (We count the nesting when fli < ljg is inside the otheredge.)(3) If z = li, then the edge fli < ljg in (6.6) counts z exactly once.(4) If li < z < lj and ~m(z) < li, then z is counted once in s2( ~m).(5) If li < z < lj and li < ~m(z) < lj , then z is counted once in s2( ~m) and not innest(m). (We do not count the nesting when fli < ljg is outside the otheredge.)�An interested referee has pointed out that one can prove Corollary 3 fromthe following pair of generating functions for the Al-Salam-Carlitz polynomials,fU (a)n (x; q)g and fV (a)n (x; q)g, [Ch, KS](6.7) (z; q)1 (az; q)1(xz; q)1 = 1Xk=0 U (a)k (x; q) zk(q; q)kand(6.8) (yz; q)1(z; q)1 (az; q)1 = 1Xl=0 (�1)l ql(l�1)=2 V (a)l (y; q) zl(q; q)l :Clearly multiplying (6.7) and (6.8) and using the q-binomial theorem implies(6.9) (y=x; q)n xn = Xk+l=n�nl �q (�1)l ql(l�1)=2 U (a)k (x; q)V (a)l (y; q):Then (1.8), (6.9) and rescaling imply Corollary 3.It is perhaps worth noting that jqj < 1 is necessary for the generating functionexpansions (6.7) and (6.8). This restriction is removed when applied to Corol-lary 3. Combinatorially the two Al-Salam-Carlitz polynomials fU (a)n (x; q)g andfV (a)n (x; q)g are identical, becauseU (a)n (x; q�1) = V (a)n (x; q);The combinatorial proof of Corollary 3 requires no assumption on q.7. RemarksIn [IS2] several applications of Theorem 2 are given to generating functions.All of the techniques given there apply, in particular new generating functions for



14 Mourad E. H. Ismail and Dennis StantonAl-Salam-Chihara polynomials may be given via Theorem 4. A more elementaryexample is given by applying the linear functional given by Corollary 1 (the Al-Salam-Carlitz measure [Ch, p. 197]), to the generating function for the continuousq-Hermite polynomials. The result is the q-analog of Mehler's formula, [IS1, (2.2)].One may ask if it is possible to characterize which orthogonal polynomials aremoments. Since any sequence is a moment sequence [Ch, p. 74] (possibly not ofa positive de�nite measure), we must put a restriction on the types of functionalswhich are available. We give two such results, below, motivated by Corollaries 1and 3.Proposition 2. If bn = aqn, and �n is independent of a, then L(xn) is an orthog-onal polynomial in a of degree n only when �n = qn�1[n]q�1.Proof. From Corollary 1 the stated choice of �n works. It is easy to see from[V] that L(xn) is an even function of a for n even, and an odd function of a for nodd. The remainder, upon division of L(x2n)� aL(x2n�1) by L(x2n�2), is a linearpolynomial in �n, so �n is uniquely determined for n > 1. �This raises the question of characterizing orthogonal polynomials of the formL(dn(�x=d; q)n).Proposition 3. If �n and bn are independent of d and jqj 6= 0; 1, thenL(dn(�x=d; q)n) is an orthogonal polynomial in d of degree n only when�n = q2�2n[n]q�1; bn = q�nb0:Proof. The proof is similar to the proof of Proposition 2. From Corollary 3 thestated choices of bn and �n work. The two leading terms of L(dn(�x=d; q)n) are(7.1) L(dn(�x=d; q)n) = dn + �n1 �q b0dn�1 + � � � :The possible three term recurrence relation for pn(d) = L(dn(�x=d; q)n) is(7.2) pn+1(d) = (d+~bn)pn(d) + ~�npn�1(d):Clearly (7.1) implies that ~bn = b0qn. The remainder when pn�1(d) divides pn+1(d)�(d+ qnb0)pn(d) as a polynomial in d must be 0. Note that [V] implies that p2m(d)has a unique monomial containing �m,�m�m�1 � � � �1q(2m2 );while p2m�1(d) and p2m�2(d) do not contain �m. So �m will appear in the re-mainder for n = 2m � 1 if �m�1 � � � �1 6= 0, which is the case since jqj 6= 0; 1.This uniquely determines �m from f�m�1; � � � ; �1; bm�1; � � � ; b0g. An analogousargument on bm and p2m+1(d), with monomialbm�m�m�1 � � � �1q(2m+12 );



More Orthogonal Polynomials as Moments 15shows that bm is uniquely determined. For n = 0; 1 there is no remainder, so b0and �1 are arbitrary. �Theorem 7. Suppose �n and bn are independent of d, b1 6= 0, an 6= 0, a0 + � � � +an 6= 0 for all n. L(Qn�1i=0 (d + aix)) is an orthogonal polynomial in d of degree nonly when ai = a0qi; bi = b0=qi; �i = q2�2n[n]q�1;where q = b0=b1.Proof. Let pn(d) = L(Qn�1i=0 (d+ aix)), so that(7.3) pn(d) = nXi=0 ei(a0; � � � ; an�1)dn�i�i;where ei is the elementary symmetric function of degree i. By equating the coe�-cients of dn+1�i in (7.2) we have(7.4) �iei(a0; � � � ; an) =�iei(a0; � � � ; an�1) + ~bnei�1(a0; � � � ; an�1)+ ~�nei�2(a0; � � � ; an�2):If i = 1 in (7.4) we have ~bn = �1an = b0an:If i = 2 in (7.4) we have~�n =�2(e2(a0; � � � ; an)� e2(a0; � � � ; an�1)� �1~bne1(a0; � � � ; an�1)=an�1(a0 + � � �+ an�1):If i = 3 in (7.4) we have(7.5) an(�3� b0�2)e2(a0+ � � �+an�1) = b0an�1(a0+ � � �+an�1)(a0+ � � �+an�2):Since �3 = b30 + 2b0�1 + b1�1, �2 = b20 + �1, an 6= 0, �1 6= 0, (7.5) implies(7.6) (b0 + b1)e2(a0 + � � � + an�1)� b0(a0 + � � �+ an�1)(a0 + � � �+ an�2) = 0:The coe�cient of an�1 in (7.6) is b1(a0 + � � � + an�2) 6= 0, so an�1 is uniquelydetermined from b0; b1; a0; � � � ; an�2. The solution isai = (b0b1 )ia0:The values of bn and �n are determined either by applying Proposition 3, or byconsidering (7.4) for i = 4. �If the combinatorics of pn(x) and �n are known, then the combinatorics of theassociated orthogonal polynomials is often easy to �nd. For the associated Hermite
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