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Abstract

We give one parameter generalizations of the Fibonacci and Lucas
numbers denoted by {Fn(θ)} and {Ln(θ)}, respectively. We evaluate
the Hankel determinants with entries {1/Fj+k+1(θ) : 0 ≤ i, j ≤ n} and
{1/Lj+k+1(θ) : 0 ≤ i, j ≤ n}. We also find the entries in the inverse of
{1/Fj+k+1(θ) : 0 ≤ i, j ≤ n} and show that all its entries are integers.
Some of the identities satisfied by the Fibonacci and Lucas numbers are
extended to more general numbers. All integer solutions to three diophan-
tine equtions related to the Pell equation are also found.
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1 Introduction

The Hilbert matrix Hn has entries 1/(i + j + 1) : 0 ≤ i, j ≤ n. It is well-
known that, for all n, Hn is non singular and the elements of its inverse matrix
are all integers, see for example [6]. The determinant of Hn has a closed form
expression which shows that the determinant is very small for large n. This is
important in numerical analysis because the smaller the determinant, the larger
the condition number becomes and computing the inverse numerically becomes
unstable. Many other applications of the Hilbert matrix are in [6].
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The Fibonacci numbers have many interesting properties and appear in
many areas of mathematics. [12], [17]. One unexpected result is due to Richard-
son who showed in [15] that the “Filbert matrix” is also non singular and its
inverse has only integer entries. The i, j entry of the Filbert matrix is 1/Fi+j+1

where 0 ≤ i, j ≤ n and {Fn : n ≥ 1} are the Fibonacci numbers.
One way to compute the determinant of Hn is to note that it is the Hankel

determinant associated with a constant weight function supported on [0, 1].
Berg [5] observed that the reciprocals of the Fibonacci numbers form a moment
sequence of a special little q-Jacobi weight, [9, §18.4]. He used Lemma 1.1, to
be stated below, to prove Richardson’s result.

Recall that the Chebyshev polynomials of the first and second kinds are

Tn(cos θ) = cos(nθ), Un(cos θ) =
sin((n+ 1)θ)

sin θ
,(1.1)

respectively. Askey [3], [4] observed that the Fibinacci numbers {Fn} and the
Lucas numbers {Ln} are related to the Chebyshev polynomials via

Fn+1 = (−i)nUn(i sinh(θ0)), Ln+1 = 2(−i)nTn(i sinh θ0))(1.2)

where θ0 > 0 and sinh θ0 = 1/2.
The purpose of this paper is to give one parameter generalizations of the

Fibonacci and Lucas numbers. Our generalization comes from the Chebyshev
polynomials of the first and second kinds. Our generalizations of the Fibonacci
and Lucas numbers satisfy the recurrence relation

yn+1(θ) = 2 sinh θyn(θ) + yn−1(θ)(1.3)

and the initial conditions (2.12) and (3.2). We generalize Richardson’s result by
replacing the Fibonacci numbers by our generalized Fibonacci numbers. This
will be done in §2. In §3 we introduce the generalized Lucas numbers and study
some of their properties. We also give a closed form evaluation of a Hankel
determinant whose elements are reciprocals of Lucas numbers.

The book [12] contains many results on Fibonacci and Lucas numbers with
detailed proofs. On the other hand we found Vajda’s book [17] to be very com-
prehensive but concise. In §4 we extend some of the properties of the Fibonacci
and Lucas numbers to our numbers. We have only included a sample of the
identities involving {Fn(θ)} and {Ln(θ)}. There are many other relationships
involving the Fibonacci and Lucas numbers which extend to our more general
sequences {Fn(θ)} and {Ln(θ)} but we made no attempt to include them. In
§5 we describe all integer solutions to

y2 − kxy − x2 = ±1,

for a given integer k > 1. We also characterize all integers n for which n2(1 +
k2) ± 4 is a perfect square when k is odd. When k = 1 these results reduce to
known facts involving the Fibonacci numbers.
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The connection between Fibonacci numbers, hyperbolic functions, and Cheby-
shev polynomials was observed but some how never fully exploited, see for exam-
ple [17, Chapter 11], and [13]. Another recently development is due to Kalman
and Mena [10] who treated sequences which satisfy the three term recurrence
relation

yn+1 = ayn + byn−1,

under general initial conditions. They derived many of the properties that their
generalized sequence share with the Fibonacci or Lucas numbers. Our numbers
being less general than the Kalman-Mena numbers have additional properties.
For example the inverse matrix to 1/L1+i+j does not have integer coefficients,
while the inverse matrix to 1/Fi+j+1 as well as 1/Fi+j+1(θ) have integer entries,
{Fn(θ) being our generalization of the Fibonacci number. Some of the other
refined properties involving congruences and integer points on algebraic curves
or surfaces do not extend to the very general setting of Kalman and Mena.

We now come to Lemma 1.1.
Let µ be a measure whose moments, s0 6= 0, sn :=

∫

R
xndµ(x) exist for all

n = 0, 1, . . . , and let {pn(x)} be the sequence of polynomials orthogonal with
respect to µ, that is

∫

R

pm(x)pn(x)dµ(x) = ζnδm,n, ζn 6= 0(1.4)

for n = 0, 1, 2, . . . . We shall always normalize µ by ζ0 = 1, so that µ has a unit
total mass. The corresponding Hankel matrix and Hankel determinant are

Hn =











s0 s1 . . . sn

s1 s2 . . . sn+1

...
... . . .

...
sn sn+1 . . . s2n











, Dn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 s1 . . . sn

s1 s2 . . . sn+1

...
... . . .

...
sn sn+1 . . . s2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(1.5)

respectively, and n = 0, 1, . . . . The kernel polynomials are

Kn(x, y) =

n
∑

k=0

pk(x)pk(y)/ζn.(1.6)

Lemma 1.1. Let

Kn(x, y) =

n
∑

j,k=0

aj,k(n)xj yk.(1.7)

Then aj,k(n) = ak,j(n) and the matrix An whose entries are {aj,k(n)} is the

inverse of Hn.

Lemma 1.1 is in the paper [16] by Tracy and Widom and in Berg’s paper
[5].
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2 Generalized Fibonacci Numbers

Consider the Chebyshev polynomials of the second kind

Un(i sinh θ) = Un(cos(π/2 − iθ) =
ei(π/2−iθ)(n+1) − e−i(π/2−iθ)(n+1)

ei(π/2−iθ) − e−i(π/2−iθ)

= in
e(n+1)θ + (−1)ne−(n+1)θ

eθ + e−θ
.

(2.1)

Set

Fn+1(θ) = (−i)n Un(sinh(iθ)) =
e(n+1)θ + (−1)ne−(n+1)θ

eθ + e−θ
.(2.2)

The explicit representation of the Chebyshev polynomials of the second kind,
see for example [9, §4.5] leads to

Fn(θ) =

⌊n/2⌋
∑

k=0

(

n+ 1

2k + 1

)

sinhn−2k(θ) cosh2k(θ).(2.3)

Choose θ0 > 0 so that cosh θ0 =
√

5/2. Thus sinh θ0 = 1/2 and eθ0 = φ in

Berg’s notation in [5]. Clearly e−θ0 = (
√

5 − 1)/2 − φ̂ in Berg’s notation. Thus
Fn(θ0) = Fn, n = 1, 2, . . . , the Fibonacci sequence. Moreover

Fn(θ) = enθ 1 − (−1)ne−2nθ

eθ + e−θ
.(2.4)

For positive integer α we have

Fα(θ)

Fn+α(θ)
= e−nθ 1 − (−e−2θ)α

1 − (−e−2θ)n+α
.(2.5)

With

q = −e−2θ(2.6)

we arrive at

Fn(θ) = e(n−1)θ 1 − qn

1 − q
.(2.7)

Formula (2.7) enables us to extend the definition of Fn(θ) to nonpositive values
of n. This agrees with defining Fn(θ) for n ≤ 0 from (1.3) and the initial
conditions (2.12) below. Indeed it is easy to see that

F−n(θ) = (−1)n−1Fn(θ).(2.8)

From (2.7) it follows that

Fα(θ)

Fn+α(θ)
= (1 − qα)

∞
∑

k=0

(qk/eθ)n qαk.(2.9)
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Now use
(

n
k

)

F
to denote the binomial coefficient relative to {Fn(θ)}, that is

(

n

0

)

F

:= 1,

(

n

k

)

F

=
Fn(θ)Fn−1(θ) . . . Fn−k+1(θ)

F1(θ) F2(θ) . . . Fk(θ)
.(2.10)

Theorem 2.1. We have
(

n

k

)

F

= Fk−1(θ)

(

n− 1

k

)

F

+ Fn−k+1(θ)

(

n− 1

k − 1

)

F

.(2.11)

Proof. It is easy to write the right-hand side of (2.11) in the form

1

Fn(θ)

(

n

k

)

F

[Fk−1(θ)Fn−k(θ) + Fk(θ)Fn−k+1(θ)]

=
(1 − q)−2

Fn(θ)

(

n

k

)

F

e(n−1)θ[(1 − qk)(1 − qn−k+1) − q(1 − qk−1)(1 − qn−k)].

The quantity in the square bracket simplifies to (1 − q)(1 − qn) and the result
follows.

It is clear from (2.2) that

F1(θ) = 1, F2(θ) = 2 sinh θ.(2.12)

We now choose θ such that

sinh θ = a positive integer.(2.13)

It then follows from the three term recurrence relation for Chebyshev polynomi-
als that {Fn(θ)} solves (1.3) under the initial conditions (2.12). This and (2.13)
show that Fn(θ) is a positive integer for all n, n > 0. Theorem 1.1 implies that
(

n
k

)

F
is always a positive integer when n > 0.

We can express (2.9) as the nth moment of the measure

ν(x) = (1 − qα)

∞
∑

k=0

qαkδ(x− qke−θ),(2.14)

where δ(x−c) is a unit atomic measure located at x = c. When α is even this is
a positive measure with total mass = 1, otherwise ν is a unit signed measure. In
view of (18.4.11) and (18.4.13) in [9] we see that the corresponding orthogonal
polynomials are little q-Jacobi polynomials {pn(xeθ; qα−1, 1)}, where

pn(x; a, b) = 2φ1(q
−n, abqn+1; aq; q, qx)

=

n
∑

j=0

(q; q)n(abqn+1; q)j

(q; q)j(q; q)n−j
q(

j+1

2 ) (−x)j

(aq; q)j
,

(2.15)

and the q-shifted factorials are

(λ; q)s = (1 − λ)(1 − λq) . . . (1 − λqs−1).
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The above q is a base for the q-shifted factorials and is not the same as in (2.6)
In terms of the generalized Fibonacci coefficients the polynomials are ex-

pressed as

p(α)
n (x) :=

(

n+ α− 1

n

)

F

pn(xeθ; qα−1, 1)

=

n
∑

k=0

(

n

k

)

F

(

α+ n+ k − 1

n

)

F

(−1)nk+(k

2) xk.

(2.16)

The orthogonality relation is [8]

∫

R

p(α)
m (x)p(α)

n (x) dν(x) = (−1)αn Fα(θ)

Fα+n(θ)
δm,n.(2.17)

Recall that if the orthonormal polynomial of degree n is

γnx
n + lower order terms

then the Hankel determinant Dn is given by

Dn =

n
∏

j=1

γ−2
j .(2.18)

Consequently

det {1/Fα+i+j(θ) : 0 ≤ i, j ≤ n}

= (−1)α(n+1

2 )F−n
α (θ)

[

n
∏

k=1

Fα+2k

(

α+ 2k − 1

k

)

F

]−1

.
(2.19)

Theorem 2.2. Let A be the the matrix {1/Fα+j+k : 0 ≤ j, k ≤ n}. Then A−1

has the matrix elements

(−1)(α+j+k)n−(j

2)−(k

2) Fα+j+k(θ)

(

α+ n+ j

n− k

)

F

×
(

α+ n+ k

n− j

)

F

(

α+ j + k − 1

j

)

F

(

α+ j + k − 1

k

)

F

.

Proof. Use Lemma 1.1, (2.16), and (2.17).

3 Generalized Lucas Numbers

We now consider the Chebyshev polynomials of the first kind

Tn(i sinh θ) = Tn(cos(π/2 − iθ) = [ei(π/2−iθ)n + e−i(π/2−iθ)n]

=
in

2

[

enθ + (−1)ne−nθ
]
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Define the generalized Lucas numbers by

Ln(θ) = 2(−i)n Tn(cos(iθ − π/2) =
[

enθ + (−1)ne−nθ
]

,(3.1)

for n = 0, 1, . . . . Thus

L0(θ) = 2, L1(θ) = 2 sinh θ.(3.2)

Hence L2(θ) = cosh(2θ). It readily follows that {Ln(θ)} solves (1.3) under the
initial conditions (3.2). Assume

2 sinh θ = a positive integer.(3.3)

Consequently Ln(θ) is a positive integer for all n, n = 1, 2, . . . . Clearly there
are infinitely many such θs. Moreover Ln(θ0) = Ln.

In view of (2.6) we see that

Ln(θ) = enθ [1 + qn].(3.4)

We extend the definition of Ln(θ) to n ≤ 0 by (3.4). The explicit representation
of Tn(x), [9, §4.5] establishes the representation

Ln(θ) =

⌊n/2⌋
∑

k=0

(

n

2k

)

sinhn−2k(θ) cosh2k(θ).(3.5)

It readily follows from (3.4) that

Lα(θ)

Ln+α(θ)
= (1 + qα)

∞
∑

k=0

(−qα)k(qke−θ)n.

Define a measure ψ by

ψ = (1 + qα)

∞
∑

k=0

(−qα)kδ(x − qke−θ),(3.6)

where, as before, δ(x− c) is a unit atomic measure located at x = c. Analogous
to the definition (2.10) the binomial coefficient relative to the generalized Lucas
numbers {Ln(θ)} is

(

n

0

)

L

:= 1,

(

n

k

)

L

=
Ln(θ)Ln−1(θ) . . . Ln−k+1(θ)

L1(θ) L2(θ) . . . Lk(θ)
.(3.7)

It is unlikely that the binomial coefficients relative to the generalized Lucas
numbers are integers, but they may be integers if we only use the generalized
Lucas numbers of odd indices.

The polynomials

q(α)
n (x) :=

(

n+ α− 1

n

)

L

pn(xeθ;−qα−1, 1)

=

n
∑

k=0

(

n

k

)

L

(

α+ n+ k − 1

n

)

L

(−1)nk+(k

2) xk

(3.8)
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are special little q-Jacobi polynomials and satisfy the orthogonality relation
∫

R

p(α)
m (x)p(α)

n (x) dν(x) = (−1)αn Lα(θ)

Lα+n(θ)
δm,n.(3.9)

The proof of (2.19) can be modified to establish

det {1/Lα+i+j(θ) : 0 ≤ i, j ≤ n}

= (−1)α(n+1

2 )L−n
α (θ)

[

n
∏

k=1

Lα+2k

(

α+ 2k − 1

k

)

L

]−1

.
(3.10)

4 Relations

Let yn be a solution to (1.3) with integer initial conditions and y1 and y2. If y0
and y1 are relatively prime then yn and yn+1 are relatively prime. This follows
by induction form (1.3). Consequently Fn(θ) and Fn+1(θ) are relatively prime,
and so are Ln(θ) and Ln+1(θ).

The following result follows from (2.6)–(2.7) and (3.4).

Theorem 4.1. For all integers α, n, i, j, the following identities hold

Fα+n+i(θ)Fα+n+j(θ) − (−1)α+i+jFn−i(θ)Fn−j(θ)

= Fα+2n(θ)Fα+i+j(θ),
(4.1)

Fn+i(θ)Fn+j(θ) − Fn(θ)Fn+i+j(θ) = (−1)nFi(θ)Fj(θ),(4.2)

together with their companion formulas

Lα+n+i(θ)Lα+n+j(θ) − (−1)α+i+j(4 + k2)Ln−i(θ)Ln−j(θ)

= Lα+2n(θ)Lα+i+j(θ),
(4.3)

Ln+i(θ)Ln+j(θ) − Ln(θ)Ln+i+j(θ) = (−1)n+1(k2 + 4)Fi(θ)Fj(θ),(4.4)

where k = 2 sinh θ.

One interesting application of (4.2) is to take i = −j = 2, replace n by 2n±1
and conclude that

F 2
2n+1(θ) ≡ −k2(modF2n−1(θ)) and F 2

2n−1(θ) ≡ −k2(modF2n+1(θ)).(4.5)

Thus given an integer k a solution to the system of congruences

a2 ≡ −k2(mod b), and a2 ≡ −k2(mod b),

is (a, b) = (F2n−1(θ), F2n+1(θ)). The converse to this may be true, at least for
certain values of k and it is interesting to characterize such values. In the case
k = 1 the converse is due to Owings [14].
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One of the topics in §32.3–32.4 in [12] is the question of evaluating the sums

∑

i,j,k>0,i+j+k=n

FiFjFk.

We consider the more general question of evaluating Sn,

Sm(n) :=
∑

j1,j2,...,jm:j1+j2+···+jm=n

Fj1Fj2 . . . Fjm
.(4.6)

Since Sm(n) is an m-fold Cauchy convolution we find

∞
∑

n=0

Sm(n)tn = tm(1 − t− t2)−m.

The ultraspherical polynomials polynomials {Cν
n(x)} have the generating func-

tion
∞
∑

n=0

Cν
n(x)tn = (1 − 2xt+ t2)−ν ,

[9, §4.5]. They have the explicit formula

Cν
n(x) =

⌊n/2⌋
∑

k=0

(2ν)n x
n−2k (x2 − 1)k

4k k! (ν + 1/2)k (n− 2k)!
.

It is clear that Sm(n) = 0 if n < m. Therefore

Sm(n+m) = (−i)nCm
n (i/2)

=
(2m)n

2n

⌊n/2⌋
∑

k=0

(5/4)k

k! (m+ 1/2)k (n− 2k)!
.

(4.7)

Formula (4.7) generalizes many of the formulas in [12]. The only drawback of
(4.7) is that it does not show that Sm(n) is an integer. Indeed the individual
terms in the sum (after multiplication by 2−n(2m)n are not integers but their
sum is an integer.

Theorem 5.9 in [12] asserts that

Fn+kFn−k − F 2
n = (−1)n+k+1F 2

k ,

and is attributed to Catalan. Equations (2.6) and (2.7) yield the identical result

Fn+k(θ)Fn−k(θ) − F 2
n(θ) = (−1)n+k+1F 2

k (θ).(4.8)

A consequence of (4.8) is that if p | Fn(θ) and p | Fn±k(θ) then p | Fk(θ). The
case k = 1 of (4.8) is

Fn+1(θ)Fn−1(θ) − F 2
n(θ) = (−1)n.(4.9)

9



and generalizes the Cassini formula, [12, Theorem 5.3]. Moreover

(

F2(θ) F1(θ)
F1(θ) F0θ)

)n

=

(

Fn+1(θ) Fn(θ)
Fn(θ) Fn−1(θ)

)

,(4.10)

follows from equations (2.6) and (2.7), and the fact that

(

F2(θ) F1(θ)
F1(θ) F0θ)

)

=
1

1 + e−2θ

(

1 e−θ

e−θ − 1

) (

eθ 0
0 − e−θ

) (

1 e−θ

e−θ − 1

)

One can prove a formula similar to (4.10) and involving the generalized Lucas
numbers. The relationship (4.9) follows from (4.10) by evaluating the determi-
nants of both sides.

Theorem 4.2. The generalized Fibonacci numbers have the property

arctan(k/F2m+1(θ)) + arctan(1/F2m+2(θ)) = arctan(1/F2m(θ)),(4.11)

where k = 2 sinh θ. Moreover

∞
∑

n=0

arctan(k/F2n+3(θ)) = arctan(1/k).(4.12)

Proof. Clearly (4.11) is equivalent to

[

k

F2m+1(θ)
+

1

F2m+2(θ)

]

/

[

1 − k

F2m+1(θ)F2m+2(θ)

]

=
1

F2m(θ)
.

In other words we need to show that

[kF2m+2(θ) + F2m+1(θ)]F2m(θ) = F2m+1(θ)F2m+2(θ) − k.

The above can be rewritten as

k[1 + F2m+2(θ)F2m(θ)] = F2m+1(θ)[F2m+2(θ) − F2m(θ)] = kF 2
2m+1(θ),

which follows from (4.9). Finally (4.12) follows by telescopy from (4.11).

It is easy to prove the following result

n
∑

j=1

F 2
j (θ) = 2 sinh θFn(θ)Fn+1(θ).(4.13)

which reduces to a theorem of Lucas when θ = θ0, see Theorem 5.5 in [12]. One
can also prove

F 2
n+1(θ) + F 2

n(θ) = F2n+1(θ),

F 2
n+1(θ) − F 2

n(θ) = 2 sinh θ F2n+1(θ).
(4.14)
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When θ = θ0 the above identities reduce to results of Lucas, [12, Corollary 5.4].
The Lucas numbers are related to the Fibonacci numbers via

Lm(θ) = Fm+1(θ) + Fm−1(θ)(4.15)

which follows from a calculation using (3.4) and (2.7).
The identities (5) and (7a) in [17] extend to

Ln+1(θ) + Ln−1(θ) = 4 cosh2 θFn(θ)(4.16)

and

Fn+2(θ) − Ln−2(θ) = 2 sinh θLn(θ),(4.17)

respectively.
Another identity which follows from (3.4) and (2.7) is

Lm(θ)Fn(θ) − Fm+n(θ) = (−1)mLn−m(θ)(4.18)

With n = tm we iterate (4.18) and derive the finite continued fraction expansion

Fm(t+1)(θ)

Fmt(θ)
= Lm(θ) − (−1)m

Lm(θ)−
(−1)m

Lm(θ)− · · · (−1)m

Lm(θ)
(4.19)

In the above equation Lm(θ) appears m times.

Theorem 4.3. The following identities hold

F2n(θ) = Fn(θ)Ln(θ),(4.20)

Fn+m(θ) + (−1)mFn−m(θ) = Fn(θ)Lm(θ)(4.21)
n

∑

j=0

1

Fj(θ)
=

1 + sinh θ

sinh θ
− F2n−1(θ)

F2n(θ)
.(4.22)

Proof. Formula (4.20) is the special case m = n of (4.21). The proof of (4.22)
is by induction. It clearly holds when n = 1. The induction step uses

−F2n−1(θ)

F2n(θ)
+

1

F2n+1(θ)
= − F2n(θ)

F2n+1(θ)

which follows from (4.20) and (4.21).

By letting n→ ∞ in Theorem 4.3 we find

∞
∑

n=0

1

Fn(θ)
= 1 + e−θ coth θ.

In the case of the Fibonacci numbers θ = θ0 and the above sum reduces to (77)
page 60 in [17]
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5 Integer Points on Algebraic Curves and Sur-

faces

In this section we prove two theorems describing all the integral points on the
curves y2 − kxy − x2 = ±1 for a positive integer k.

Theorem 5.1. Let θ > 0 be given and assume that k := 2sinhθ > 1 is an odd

integer. A positive integer n is a generalized Fibonacci number if and only if

4n2 cosh2 θ + 4 or 4n2 cosh2 θ − 4 is a perfect square.

Proof. We will only consider positive solutions to

x2(k2 + 4) − y2 = ±4.(5.1)

It is clear that

(k2 + 4)F 2
m(θ) − L2

m(θ) = 4 cosh2 θF 2
m(θ) − L2

m(θ)

= (eθ + e−θ)2e2(m−1)θ

(

1 − qm

1 − q

)2

− (1 + qm)2e2mθ

which simplifies to 4(−1)m+1, so it is equal to ±1. Hence n = Fm(cosh θ)
makes 4n2 cosh2 θ ± 4 a perfect square. To prove the converse assume that
4x2

1 cosh2 θ ± 4 is a perfect square = y2
1 say. We assume x1 > 1 and the case

x1 = 1 we considered at the end. Thus

y2
1 = x2

1(k
2 + 4) ± 4 with x1 > 1.

It can be easily seen that x1 > 1 implies y1 > kx1. Let

x2 = (y1 − kx1)/2, y2 = |(ky1 − (k2 + 4)x1)/2|.

Both x2 and y2 are positive integers since x1 and y1 have the same parity. A
calculation shows that x = x2, y = y2 solve (5.1). Moreover x2 < x1 if and only
if y1 < (k + 2)x1, that is if and only if x2

1(k
2 + 4) ± 4 < (k + 2)2x2

1, since the
left-hand side is y2

1 . Clearly the latter inequality holds, hence 0 < x2 < x1. We
continue in this manner until we reach xn = 1. Thus y2

n = k2 + 4 ± 4.The case
− leads to yn = k but the case + makes (yn −k)(yn +k) = 8, hence yn = k+2j

and yn = −k + 23−j , for some j = 0, 1, 2, 3. This forces yn = (2j + 23−j)/2 so
that j must equal 1 or 2, that is yn = 3 which contradicts k > 1. Thus the only
solution is yn = k = L1(θ) and x1 = F1(θ). By reversing the above steps, and
using (4.15) and (1.3) we see that x1 = Fn(θ) and y1 = Ln(θ).

Note that in the process of proving Theorem 4.3 we also proved the following.

Corollary 5.2. We have

4 cosh2 F 2
n(θ) − L2

n(θ) = 4(−1)n+1(5.2)

In particular Fn(θ)} and {Ln(θ)} can not have any common divisor larger than

2. Moreover Fn(θ) and Ln(θ) have the same parity.

12



Note that the Diophantine equation (5.1) is a special case of the Pell equa-
tion.

Let

k := 2 sinh θ(5.3)

Observe that

F 2
n+1(θ) − kFn(θ)Fn+1(θ) − F 2

n(θ) = (−1)n(5.4)

follows from replacing the F ’s in the left-hand side by the corresponding expres-
sions from (2.7). We now prove a converse to (5.4). Consider the diophantine
equations

y2 − kxy − x2 = 1,(5.5)

y2 − kxy − x2 = −1.(5.6)

The integer solutions to (5.5) or (5.6) will be denoted by (x, y). It is clear that
if (x, y) is such a pair then (−x,−y) will satisfy the same equation. Moreover
if (x, y) satisfy (5.5) (or (5.6)) then (y,−x) will solve (5.6) (respectively (5.5)).
Hence there is no loss of generality in assuming x ≥ 1 and y ≥ 1.

Theorem 5.3. Let k be an integer, k > 1, and related to θ through (5.3).
Assume that (x, y) solve (5.5). Then there exists a positive integer n such that

(x, y) = (F2n(θ), F2n+1(θ)). On the other hand if (x, y) solve (5.6) then there

exists a positive integer n such that (x, y) = (F2n−1(θ), F2n(θ)).

Proof. The proof consists of three step.
Step 1. We show that the smallest positive x satisfying (5.5) is x = k. To see
this write (5.5) in the form y(y − kx) = x2 + 1, hence y = kx + z and z > 1.
Thus (5.5) becomes x(x − kz) = z2 − 1, which shows that x ≥ k = F2(θ). The
only possible answer for y is y = F3(θ). Indeed the point (F2(θ), F3(θ)) lies on
the curve (5.5).
Step2 We use induction. Assume that all solutions to (5.5) are of the form
(F2j(θ), F2j+1(θ)), for 1 ≤ j ≤ m. Let x > F2m(θ) and assume that x is the
smallest integer such that (x, y) solves (5.5). Rewrite (5.5) as

(y − kx)2 − 1 = (k2 + 1)x2 − kxy = x[(k2 + 1)x− ky].

Thus (k2 + 1)x − ky > 0. We have already shown that y > kx. Define (x0, y0)
by

x0 = (k2 + 1)x− ky, y0 = y − kx.(5.7)

Both x0 and y0 are positive integers. Moreover x0 − x = k(x− ky) < 0, that is
x0 < x, hence x0 ≤ F2m(θ). By direct computation we see that (x0, y0) solves
(5.5), hence there is a positive integer r such that x0 = F2r(θ) and y0 = F2r+1(θ).
From (5.7) it follows that

x = x0 + ky0, and y = kx0 + (1 + k2)y0.

13



Hence x = F2r+2(θ) and y = F2r+3(θ).
Step 3 Assume that (x, y) solve (5.6) and set (x0, y0) = (y, x+ky). A calculation
shows that (x0, y0) satisfies (5.5), hence (y, x + ky) = (F2j(θ), F2j−1(θ)), for
some positive integer j, which implies (x, y) = (F2j(θ), F2j−1(θ)), and the proof
is complete.

We next extend the following identities of Carlitz [12, Ex 91-91]:

Z3
n+1 − Z3

n − Z3
n−1 = 3Zn+1ZnZn−1, Zj = Fj or Lj .

Theorem 5.4. With k = sinh θ the identity

Z3
n+1(θ) − k3Z3

n(θ) − Z3
n−1(θ)

= 3kZn+1(θ)Zn(θ)Zn−1(θ),
(5.8)

holds for Zn(θ) = Fn(θ) or Zn(θ) = Ln(θ).

Proof. After using (1.3) we see that the left-hand side of the above equation in
the Fibonacci case is

2 sinh θFn(θ)[F 2
n+1(θ) + F 2

n−1(θ) + Fn+1(θ)Fn−1(θ)] − (2 sinh θ)3F 3
n(θ)

= 2 sinh θFn(θ)Fn−1(θ)[Fn+1(θ) + 2 sinh θFn(θ) + Fn−1(θ) + Fn+1(θ)]

which simplifies to the right-hand side of (5.8). We only used the recurrence
relation (1.3) to establish (5.8). Thus (5.8) also holds for {Ln(θ)} since it also
satisfies (1.3).

It is interesting to determine all the positive integer points on the sur-
face z3 − y3 − z3 = 3xyz. We suspect that the only solutions are (x, y, z) =
(Fn−1, Fn, Fn+1) or (Ln−1, Ln, Ln+1). This would give a converse to Carlitz’s
identities (5.8). Similarly it is of interest to determine all the the positive inte-
ger points (x, y, z) which lie on the surface z3 − k3y3 − z3 = 3kxyz for a given
positive integer k.

Fairgrieve and Gould [7] studied formulas involving differences of products
of Fibonacci numbers. They claim that computer searches yielded only the list
of formulas stated below. They pointed out that some of these formulas were
already known and references are given in [7].

Fn+1Fn+2Fn+6 − F 2
n+3 = (−1)nFn,(5.9)

FnFn+4Fn+5 − F 3
n+1 = (−1)n+1Fn+6,(5.10)

Fn−2F
2
n+1 − F 3

n = (−1)n−1Fn−1,(5.11)

Fn+2F
2
n−1 − F 3

n = (−1)nFn+1,(5.12)

Fn−3F
3
n+1 − F 4

n = (−1)n
[

Fn−1Fn+3 + 2F 2
n

]

(5.13)

Fn+3F
3
n−1 − F 4

n = (−1)n
[

F 2
n + FnFn−1 + 2F 2

n−1

]

.(5.14)

It is clear that we can rewrite the last equation above as

Fn+3F
3
n−1 − F 4

n = (−1)n
[

FnFn+1 + 2F 2
n−1

]

(5.15)
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These can be extended to the numbers Fn(θ). The extensions are given below.

Fn+1(θ)Fn+2(θ)Fn+6(θ) − F 2
n+3(θ)(5.16)

= (−1)n
[

k2Fn(θ) + (k3 − 1)Fn+1(θ)
]

,

Fn(θ)Fn+4(θ)Fn+5(θ) − F 3
n+1(θ)(5.17)

= (−1)n+1 [Fn+6(θ) + k(k − 1)Fn+4(θ)] ,

Fn−2(θ)F
2
n+1(θ) − F 3

n(θ) = (−1)n−1
[

kFn−1(θ) + (k2 − 1)Fn(θ)
]

,(5.18)

Fn+2(θ)F
2
n−1(θ) − F 3

n(θ) = (−1)n[Fn(θ) + kFn−1(θ)],(5.19)

Fn−3(θ)F
3
n+1(θ) − F 4

n(θ)(5.20)

= (−1)n
[

Fn−1(θ)Fn+3(θ) + 2F 2
n(θ) + (k2 − 1)Fn(θ)Fn+2(θ)

]

Fn+3(θ)F
3
n−1(θ) − F 4

n(θ)(5.21)

= (−1)n
[

F 2
n(θ) + Fn(θ)Fn−1(θ) + 2F 2

n−1(θ)
]

.

The proofs use (4.8)–(4.9) and (1.3).
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