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Abstract

For any partition X let w(A) denote the four parameter weight

o) = a2izt i1 /2 p Yz haio1/2) (Xizi Thai /2] g2 i A2i /2]

and let £(A) be the length of A. We show that the generating function ) w(M)zt™ | where the sum runs over all ordinary (resp.
strict) partitions with parts each < N, can be expressed by the Al-Salam—Chihara polynomials. As a corollary we derive Andrews’
result by specializing some parameters and Boulet’s results by letting N — +o0. In the last section we prove a Pfaffian formula
for the weighted sum ) w(k)ze()‘) Py (x) where Py (x) is Schur’s P-function and the sum runs over all strict partitions.
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1. Introduction

For any integer partition A, denote by A’ its conjugate and £(A) the number of its parts. Let O()) denote the number
of odd parts of A and |A| the sum of its parts. Stanley [16] has shown that if # (n) denotes the number of partitions A of
n for which O(A) = O()') (mod 4), then

1
t(n) = 3 (p(n) + f(n),

where p(n) is the total number of partitions of n, and f(n) is defined by

S " _ (d+4*h
2t =l = m i

i>1

Motivated by Stanley’s problem, Andrews [1] assigned the weight 20® yo(k,)q““ to each partition A and computed

the corresponding generating function of all partitions with parts each less than or equal to N (see Corollary 4.4).
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The following more general weight first appeared in Stanley’s problem [17]. Let a, b, ¢ and d be commuting
indeterminates. For each partition A, define the Andrews—Stanley partition functions w(A) by

o) = aXoiz1 221/ 21 p Y im h2im1/2] 21 [32i /2] g2 iz i /2] (1.1

where [x] (resp. |x]) stands for the smallest (resp. largest) integer greater (resp. less) than or equal to x for a given
real number x. Actually it is more convenient to define the above weight through the Ferrers diagram of A: one fills
the ith row of the Ferrers diagram alternatively by a and b (resp. ¢ and d) if i is odd (resp. even), the weight w(}) is
then equal to the product of all the entries in the diagram. For example, if A = (5, 4, 4, 1) then w(}) is the product of
the entries in the following diagram for A.

al|lblal]|lb]|a

c d c d

alblalb

Cc

In [2] Boulet has obtained results for the generating functions of all ordinary partitions and all strict partitions with
respect to the weight (1.1) (see Corollaries 3.6 and 4.5). On the other hand, Sills [15] has given a combinatorial proof
of Andrews’ result, which has been further generalized by Yee [19] by restricting the sum over partitions with parts
each < N and length < M.

In this paper we shall generalize Boulet’s results by summing the weight function @ (1)z¢® over all the ordinary
(resp. strict) partitions with parts each < N. It turns out that the corresponding generating functions are related to
the basic hypergeometric series, namely the Al-Salam—Chihara polynomials and the associated Al-Salam—Chihara
polynomials (see Corollaries 3.4 and 4.3).

This paper can be regarded as a succession of [6], in which the first author gave a Pfaffian formula for the weighted
sum Y w(A)sy (x) of the Schur functions s, (x), where the sum runs over all ordinary partitions A, and settled an open
problem [17] by Stanley. Though it is not possible to specialize the Schur functions to z/®), we show in this paper that
this approach still works, i.e., we can evaluate the weighted sum ) (M) z!™ by using Pfaffians and minor summation
formulas as tools (see [8,9]), but, as an afterthought, we also provide alternative combinatorial proofs.

In the last section we show that the weighted sum ) w(p)ztw Py, (x) of Schur’s P-functions P, (x) (when z = 2,
this equals the weighted sum ) w(u) Q, (x) of Schur’s Q-functions Q,,(x)) can be expressed by a Pfaffian where u
runs over all strict partitions (with parts each < N).

2. Preliminaries

A g-shifted factorial is defined by
(a; q)o =1, (a;g)n=0—-a) —aq)---(1 —aq"_l), n=12,....

We also define (a; ¢)oo = [[1oo(1 — ag®). Since products of g-shifted factorials occur very often, to simplify them
we shall use the compact notations

@i, ..oy am; @n = @15 Qn - - @m; n,
(@i, ... am; Qoo = (a1; oo - -+ (Am’ §)oo-
We define a | ¢, basic hypergeometric series by
" (al,az,-n,arﬂ_ g z) . i (al,a2,~-~,ar+1;q)nz,,
r+] ' blv"'vbr ’ ' n=0 (Q’bls"'sbr;q)l’l ’

The Al-Salam—Chihara polynomial Q,(x) = Q,(x; «, Blg) is, by definition (cf. [11, p. 80]),

. —n -1
Qi (x: o, Blg) = B 1, (9565 g.q)
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_ . - g " put -1
= (au; q)pu™" 29 (a—lq—nﬂu—l’ q,a qu),

= (Bu s " 2y (00 0 B qu ),

where x = % This is a specialization of the Askey—Wilson polynomials (see [3]), and satisfies the three-term
recurrence relation
2x Q0 (x¥) = Qup1(x) + (@ + B)g" Qn(x) + (1 — g")(1 — aBg" ™) Qu1 (), (2.1)

with Q_1(x) =0, Qo(x) = 1.
We also consider a more general recurrence relation:

2x0,(x) = Opi1(x) + (@ + B)tg" 0n(x) + (1 — tg™) (1 — taBq" ") On_1(x), (2.2)

which we call the associated Al-Salam—Chihara recurrence relation. Put

—-1,—n —1
-~ — t q ,ﬁl/t —
OV (x) = u™" (tau; @) »0, (t—la—lq—'“rlu—l; q, lqu> . (2.3)

0P (x)=u

1q: tap: ¢ n+l’ -1
n (g On(taB; On 2¢1< q"" " qu, q,au>7 (2.4)

(tBugq: q)n 1Bq"u

where x = % In [10], Ismail and Rahman have presented two linearly independent solutions of the associated
Askey—Wilson recurrence equation (see also [4,5]). By specializing the parameters, we conclude that é,(i])(x) and

~f,2) (x) are two linearly independent solutions of the associated Al-Salam—Chihara equation (2.2) (see [10, p. 203]).

Here, we use this fact and omit the proof. The series (2.3) and (2.4) are convergent if we assume |u| < 1 and
lg] < || < 1 (see[10, p. 204]).
Let

W, = 0P @02 ) - 0, (0)0P (x) (2.5)

denote the Casorati determinant of the equation (2.2). Since é,(,l)(x) and é,(lz)(x) both satisfy recurrence
equation (2.2), it is easy to see that W), satisfies the recurrence equation

Wit = (1 —tg" (1 — tafqg" " HYW,.
Using this equation recursively, we obtain

Wit = (tq, taB; ¢)n Wi,
which implies
lim W4
O
(tq, tef; q)o
Using (2.3) and (2.4), we obtain

uYtau, tq,taB, Bu; q)oo
(tBuq, au; q)so
(for the details, see [10]). Thus we conclude that

lim Wi =
n—>0oo

u” ! (tau, Bu; ¢)oo

(au, tugq; oo
In the following sections we need to find a polynomial solution of the recurrence equation (2.2) which satisfies a given
initial condition, say éo(x) = éo and é 1x) = Ql. Since Qf,l)(x) and éf,z) (x) are linearly independent solutions of
(2.2), this O, (x) can be written as a linear combination of these functions, say

0n(x) = C1 OV (x) + C2 0P ().

W, =

(2.6)
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If we substitute the initial condition éo(x) = éo and é 1(x) = é 1 into this equation and solve the linear equation,
then we obtain

1 ~ ~ ~ o~

€1 =5 {01070 - 0007w},
1 (~ ~ -~

€2 = 510001 - 010w}

By (2.6), we obtain

On() = ”Ef‘;;fﬁ—i‘,f’;ﬁ [{3:05 0 = 200P 0)} 6 )
- {éoéﬁ”(x) - Qléé”(x)} éi,”(x)] 2.7)

with

0" (x) =9, (;;;’_’?qu; q. a_luq> ,

0V ) =u' (1~ aru) 19, (’;1_‘{;1_’15{1‘1; . a_luq> |

02 =9, <tq’”‘;‘;;”q; 7 au) ,

3 (x) = u(l (—ltz)t(ﬁlu;)tozﬂ) L, <tq2t;g(quzuq; q’au>‘
Since

A tau, pu; q)oo
s 2 - Lo

lim «" 0P (x) =0,
n—od
if we take the limit lim,,_, oo u" én (x), then we have

u(tfug, au; q)oo

W q) {0107 @ - 0007w} 28

lim u" Q,(x) =

n—oo
In the latter half of this section, we briefly recall our tools, i.e. partitions and Pfaffians. We follow the notation in [14]
concerning partitions and the symmetric functions. For more information about the general theory of determinants
and Pfaffians, the reader can refer to [12,13,9] since, in this paper, we sometimes omit the details and give sketches of

proofs.
Let n be a non-negative integer and assume that we are given a 2n by 2n skew-symmetric matrix A = (@;;)1<i, j<2n,
(i.e. aj; = —a;j), whose entries a;; are in a commutative ring. The Pfaffian of A is, by definition,

Pf(A) = Ze(ala 02, ...,02,—1, 02) Aoy « - - Aoy, _ 1095

where the summation is over all partitions {{o1, 02}, ..., {o2,—1, 02,} <} of [2n] into 2-element blocks, and where
€(o1, 02, ...,02,_1, 02,,) denotes the sign of the permutation

1 2 .- 2n
op oy -+ o)

We call a partition o = {{o1, 02}<, ..., {o2,—1, 02, } <} of [2n] into 2-element blocks a perfect matching or I-factor
of [2n], and let F,, denote the set of all perfect matchings of [2n]. We represent a perfect matching o graphically by
embedding the points i € [2n] along the x-axis in the coordinate plane and representing each block {o2;_1, 02;} < by
the curve connecting o7;_1 to o; in the upper half plane. The graphical representation of o = {{1, 4}, {2, 5}, {3, 6}}
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1 2 3 4

[S1]
[=2]

Fig. 1. A perfect matching.

is given in Fig. 1. If we write wt(o) = €(0) [[/_; Goy;_ 0, for each perfect matching o, then we can restate our
definition as

Pf(A) = Z wt(o). (2.9)
oeF,

A skew-symmetric matrix A = (a;j)1<i, j<n 15 uniquely determined by its upper triangular entries (a;;)1<i<j<n. SO
we sometimes define a skew-symmetric matrix by describing its upper triangular entries. One of the most important
formulas for Pfaffians is the expansion formula by minors. While the Laplacian determinant expansion formula by
minors should be well known to everybody, the reader might not be so familiar with the Pfaffian expansion formula
by minors so that we cite the formula here. For 1 <i < j < 2n, let (A; {i, j}, {i, j}) denote the 2n — 2) x 2n —2)
skew-symmetric matrix obtained by removing both the ith and jth rows and both the ith and jth columns of A. Let
us define y (i, j) by

yG, j) = (=D VPRAS i, ), 4L D). (2.10)

Then the following identities are called the Laplacian Pfaffian expansions by minors:

2n

8 PE(A) = > agjy (k. i), 2.11)
k=1
2n

8 PE(A) = > auy (. b). (2.12)
k=1

(See [8,9].) We call the formula (2.11) the Pfaffian expansion along the jth column, and the formula (2.12) the Pfaffian
expansion along the ith row. Especially, if we puti = 1 in (2.12), then we obtain the expansion formula along the first
row:

2n
Pf(A) = Z(—l)"al,k Pf(A; {1, k}, {1, k}). (2.13)
k=2

Let O, , denote the m x n zero matrix and let £, denote the identity matrix (5;, j)1<;, j<n Of size n. Here §; ; denotes
the Kronecker delta. We use the abbreviation O, for O, ;.

For any finite set S and any non-negative integer r, let (f ) denote the set of all r-element subsets of S. For

example, ([f]) stands for the set of all multi-indices {iy, ..., i} suchthat 1 < i; < ... < i, < n.Letm, n and
r be integers such that r < m,n and let T be an m by n matrix. For any index sets I = {i1,...,i,} € <[’f]> and
J ={j1,...,Jjr} € ([:l]>, let Ag(A) denote the submatrix obtained by selecting the rows indexed by I and the

columns indexed by J. If r = m and I = [m], we simply write A;(A) for A[Jm](A). Similarly, if » = n and J = [n],
we write A?(A) for A[In] (A). It is essential that the weight w()) can be expressed by a Pfaffian, which is a fact proved
in [6]:

Theorem 2.1. Let n be a non-negative integer. Let A = (A1, ..., Ay) be a partition such that £()) < 2n, and put
I = 1,..., 1) = X+ 6o, where 6, = (m — 1,m — 2,...,1,0) for a non-negative integer m. Define a skew-
symmetric matrix A = (o;j)i, j>0 by

aij = alU=D721plG=D/2] i/21 4li/2]
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fori < j. Then we have

Pr[ A ()] = (abed) Do (),

1<i,j<2n
where I (A) = {l,, ..., 11}.

A variation of this theorem for strict partitions is as follows.

Theorem 2.2. Let n be a non-negative integer. Let i = (i1, . . ., Wn) be a strict partition such that p1 > + -+ > [, >
0. Let K(u) = {un, ..., u1}. Define a skew-symmetric matrix B = (B;)i j>—1 by

1, ifi=—land j =0,
i/21pLif2) i ,
a b z, ifi=—land j > 1,
Bii = grimplirl, ifi=0. (2.14)

ali/ 2 pLir21 Ti/2 glif2) ;2. if i >0,
for —1 <i < j.

(1) If n is even, then we have

Pr[AKE) (B)] = w2 . (2.15)
@i1) If n is odd, then we have
PrlAC R (B)] = 0™, D (2.16)

These theorems are easy consequences of the following lemma which has been proved in [8, Section 4, Lemma 7].

Lemma 2.3. Let x; and y; be indeterminates, and let n be a non-negative integer. Then

n n
Pilxiyili<icj<on = | [x2i1 [ [ yai-

i=1 i=1

3. Strict partitions

A partition u is strict if all its parts are distinct. One represents the associated shifted diagram of w as a diagram in
which the ith row from the top has been shifted to the right by i places so that the first column becomes a diagonal.
A strict partition can be written uniquely in the form u = (u1, ..., u2,) where n is an non-negative integer and
U1 > g > --- > U, > 0. The length £(1) is, by definition, the number of non-zero parts of . We define the weight
function w () similarly as in (1.1). For example, if © = (8, 5, 3), then £(n) = 3, w(u) = a®b’c3d? and its shifted
diagram is as follows.

Let
Uy = Un(a.b,c.d;2) =Y oz, (3.1)
where the sum is over all strict partitions « such that each part of w is less than or equal to N. For example, we have
Up =1,
U =1+az,

¥y =1+ a(l + b)z + abcz?,
U3 =1+a(l+b+ab)z +abc(l + a + ad)z® + a’bed’.
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In fact, the only strict partition such that £(i) = 0 is @4, the strict partitions p such that £(x) = 1 and p < 3 are the
following three:

[a] [alp] [a]b]a]

the strict partitions w such that £(x) = 2 and 1 < 3 are the following three:

la]b la|b]al a|b]a
c c cld

— — )

and the strict partition p such that £(n) = 3 and 1 < 3 is the following one:

[a]b
C

|m&a

The sum of the weights of these strict partitions is equal to ¥3. In this section we always assume |a/, |b|, |c]|, |d| < 1.
One of the main results of this section is that the even terms and the odd terms of Wy respectively satisfy the associated
Al-Salam—Chihara recurrence relation:

Theorem 3.1. Set ¢ = abcd. Let ¥y = ¥y (a, b, c,d; z) beasin (3.1) and put Xy = Yoy and Yy = Won+1. Then
Xy and Yy satisfy

Xng1 = {1 +ab+a(l+ bc)z2qN} Xy —ab(l —22¢™)(1 —acz>¢" " HXn_1, (3.2)
Y1 = {1 +ab + abe(1 + ad)z2qN} Yy — ab(l — 22¢™)(1 — acz2g™)Yy_1, 3.3)

where Xo =1, Yo =14az, Xi=14+a(l +b)z + abez? and
Yy =1 +a(l +b+ab)z +abc(l +a + ad)z? + a’bedz’.

Especially, if we put X', = (ab)_%XN and Y}, = (ab)_%YN, then X'\, and Y satisfy
1 1 1 1
{(ab)f + (ab)*é} Xy = Xy, —a?b 2 (1 +bo)2gV X}y + (1 — 2¢™)(1 — acz2g" " HX), . (3.4)
[@n)t + @)™t vy = ¥ip —adbbe(t +ad)2g" vy + (1 = 2™ (1 - a®b2d2qV Y, ()

where X(; =1, Y =1+az, X| = (ab)*% —i—a%b*%(l +b)z + (ab)%cz2 and
Y| = (ab)"? +a2b 2(1 + b +ab)z +azbic(l +a + ad)z* + a3 b2cdz’.
Thus (3.4) agrees with the associated Al-Salam—Chihara recurrence relation (2.2) where u = a%b%, o0 =—a 3 b%c,
B = —a%b_% and 1 = z2, and (3.5) also agrees with (2.2) where u = a%b%, o = —a%b%c, B = —a%b%cd and
t = z2. One concludes that, when |a|, |b|, |c|, |d| < 1, the solutions of (3.2) and (3.3) are expressed by the linear
combinations of (2.3) and (2.4) as follows.

Theorem 3.2. Assume |a|, |b|, |c|, |d| < 1 and set ¢ = abcd. Let ¥y = ¥y (a, b, c,d; 7) be as in (3.1).
(i) Put Xy = Won. Then we have
(—az’q, —abc; q)oo
Xy =
(—a, —abcz?; q)oo

(qz%, acz®; @) gVt12, —c g
+ Xy — rX X)) (ap)V L —— TR ;. g, —abe , 3.6
( 1 40 0 1)(ab) (_aqzz; Dy 2¢1 —an'HZz q (3.6)

CI_NZ_Z, _b_l 1
q

{(S§X1 — s¥Xo)(—abez?; @) 16, (—(abc)—lq—NHz—Z; q.—c
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where

-2 -1
X 5 —b -1
rg = 4, —¢C s
0 2¢1 (—(abc)_lz_zq q 61)

2 -1
X q,—¢ 'q
sy = ; g, —abc ),
0=t ( —az2q 1 )
2,1 -1
X 2 g, b -1
ri = +abcz”) 1, ( (abe)-1z-2" q,—c q) ,

Jo -2l —ac?) (P —clq
1 1+ az3q 27l —az?q* 7 '

(i) Put YNy = Wyn41. Then we have

(_QQZZZ’ —abc; @)oo Y Y 2 q_NZ_Z, —acd -1
Yy = Y1 — 57 Yo)(—abcz”; D q, —
N (Caq. —abed® q)m (59 Y1 — 51 Yo)(—abcz”; g)N »9, (abe)-1g-N+1z-2 g, —c g

2 2. N+1.2 _ -1
y Y ~ (gz7 acqz”; @ q "zt —cT g
+(r{ Yo —ry Y1)(ab) TCali N 291 ( —agh+22 q, —ab6>}, 3.7
where
-2

% z7%, —acd 1
rg = y g, —cC ,
0 = 2% ((—abc)—lqz—2 q 61)

-1,-2
7 = ’_aCd;q,—c_lq ,
—(abc)~1z72

1

2 _
z2°q,—¢c 'q
sg =2¢1( s i q,—abc),

ri = (1 +abcz?) L9, <

—aq-<z
v _ ab( —22q)(1 —acqz?) SN e
! 1+ aq?z? U\ —agi2 0" '

If we take the limit N — oo in (3.6) and (3.7), then by using (2.8), we obtain the following generalization of
Boulet’s result (see Corollary 3.6).

Corollary 3.3. Assume |al, |b], |c|, |d| < 1 and set ¢ = abcd. Let sl.X, sl.Y, X, Y; (i = 0,1) be as in the above
theorem. Then we have

(—abc, —az’q; q)
Yo = _ = (s X1 — 51 Xo)
m (ab; 9)o
_ (=abc, —az’¢% @)

Y Y
Y1 — 57 Yp), 3.8
(@b @)oo (S() 1 =95 0) (3.8)

where the sum runs over all strict partitions and the first terms are as follows:

1+b be(l +a + ad + abd 2q(1 + b)(1 + bc +abc + b
a( )Z abce( a+a a )Z2+aq( )( ¢ + abc Q)z3+0(z4).
1—ab (1 —ab)(1—gq) (1 —ab)(1 —q)(1 —abg)

On the other hand, by plugging z = 1 into (3.6) and (3.7), we conclude that the solutions of the recurrence relations
(3.4) and (3.5) with the above initial condition are exactly the Al-Salam—Chihara polynomials, which gives two finite
versions of Boulet’s result.

Corollary 3.4. Put u = </ab, x = ”+’2‘71 and q = abcd. Let ¥y (a, b, c,d; z) be as in (3.1).
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(1) The polynomial Won(a, b, c,d; 1) is given by
Do (a, b, ¢, d; 1) = (ab)? Qy (x; —aZblic, —a?b™7|g),

qu’ —C
= (—a; q)N ¢, (—a‘lq—N‘H; q, —bq>- (3.9)
(i1) The polynomial Yan1(a, b, c,d; 1) is given by
Uoni1(a, b, e,d; 1) = (1 +a)(ab)* Qn(x; —atbie, —a2bied|q)

g N, —c
— (~a: PIn+1 20, (_aqu; q, —b>. (3.10)

Substituting a = zyg, b = z7'yg, ¢ = zy~'q and d = z~'y~'q into Corollary 3.4 (see [2]), then we immediately

obtain the strict version of Andrews’ result (see Corollary 4.4).

Corollary 3.5.
N
, N _ iy
Y PWyOuDgl :Z[ } (—2vg; 4N =2y '@ g 6N 7, @11
/4 strict partitions j=0 J q 4
1 =2N
and
N
, N _ Y
D yOug :Z[ } (=2yq: 401 (=27 g v )N 7, (3.12)
4 strict partitions j=0 J ‘74
w1 <2N+1
where
1 — N 1 — N—1y ... 1 — N—j+1
Nl d-g7)d—q .)_1( q )7 for0<j <N,
il = (1=¢gHA=g/7)---(1=¢q)
q 0, if j<0Oand j > N.

Letting N — oo in Corollary 3.4 or setting z = 1 in (3.8), we obtain the following result of Boulet (cf. [2,
Corollary 2]).

Corollary 3.6 (Boulet). Let ¢ = abcd, then

(—a; @)oo (—abc; q) oo
2 = , 3.13
() (@b: o G139

where the sum runs over all strict partitions.

To prove Theorem 3.1, we need several steps. Our strategy is as follows: write the weight w (1)z*™ as a Pfaffian
(Theorem 2.2) and apply the minor summation formula (Lemma 3.7) to make the sum of the weights into a single
Pfaffian (Theorem 3.8). Then we make use of the Pfaffian to derive a recurrence relation (Proposition 3.9). We also
give another proof of the recurrence relation by a combinatorial argument (Remark 3.10).

Let J,, denote the square matrix of size n whose (7, j)th entry is §; ;41— j. We simply write J for J, when there is
no fear of confusion on the size n. We need the following result on a sum of Pfaffians [18, Theorem of Section 4].

Lemma 3.7. Let n be a positive integer. Let A = (ajj)1<i,j<n and B = (b;j)1<i, j<n be skew-symmetric matrices of
size n. Then

>y y‘”Pf(Aﬁ(A)) Pf(Aﬁ(B)) —pf| P A e (3.14)
—Jn C
= @)
where |I| =3 ;. i and C = (Cij)1<i, j<n is given by C;j = yi+jbijz.

This lemma is a special case of Lemma 5.4, so a proof will be given later.
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Let S, denote the n x n skew-symmetric matrix whose (i, j)thentryis 1 for 0 < i < j < n. As a corollary of
Lemma 3.7, we obtain the following expression of the sum of the weight w (1) by a single Pfaffian.

Theorem 3.8. Let N be a non-negative integer:

Un(a,b,c.d;z) = PE| SN+ INerl (3.15)
-JNvy1 B

where B = (Bij)o<i<j<n is the (N + 1) x (N + 1) skew-symmetric matrix whose (i, j)th entry B;; is defined as in

(2.14).

Proof. Here we assume that the row/column indices start at 0. Note that any strict partition p is written uniquely as
=1, ..., o) with g > -+ > o > 0. Here 2t = £(u) if £(u) is even, and 2t = £(u) + 1 and o, = 0if £(w)
is odd. Thus, using Theorem 2.2 (2.15), we obtain

L(N+1)/2]
Uy(a,b,c.diz) = Y o@W= > w(p)z" ™
Ju strict =0 W= 5ees 4g)
n1=N Nzpy>->pp =0
L(N+1)/2] kG L(N+1)/2] ,
— M —
- > ow(afme)= Y Y w(ale)
=0 N;;(];L>1>522t,)20 t=0 Ie(méf”)

Ifweputn =N+ 1,z=y =1and A = Sy4 into (3.14), then we obtain

LIN+1)/2]

t
P (A7(B)) = Pf [JN+1_SJN+1 In+1 JNCH] ’
1=0 16([%71) N+1

since Pf (Af(SNH)) = 1 holds for any subset I < [0, N] of even cardinality. (For detailed arguments on sub-
Pfaffians, see [9]). In this case, C = (C;;) in Lemma 3.7 is equal to B = (b;;) in (2.14) because of z = y = L. It
is also easy to check that Jyy1'S ~N+1IN+1 = Sn+1. Thus we easily obtain the desired formula (3.15) from these
identities. This completes the proof.  [J

For example, if N = 3, then the skew-symmetric matrix in the right-hand side of (3.15) is

-0 1 1 1 0 0 0 17
-1 0 1 1 0 0 1 0
-1 -1 0 1 0 1 0 0
-1 -1 -1 0 1 0 0 0
5 , (3.16)
0O 0 0 -1 0 az abz a’bz
0 0 -1 0| —az 0 abcez? a’bcz?
0 -1 0 0 | —abz —abcz? 0 a’bcdz?
L -1 0 0 0 |—d?z —da%bcz® —a?bcdz? 0o

whose Pfaffian equals ¥3 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z* + a*bedz>.
By performing elementary transformations on rows and columns of the matrix, we obtain the following recurrence
relation:

Proposition 3.9. Let Uy = Un(a, b, c, d; z) be as above. Then we have

Woy = (14 b) Uon_1 + @bV eNdV 122 — by Uy s, (3.17)
Uoni1 = (1 +a) Yoy + (@ TN eNdN 22 — a) Woy g, (3.18)

for any positive integer N.
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Proof. Let A denote the 2(N + 1) x 2(N + 1) skew-symmetric matrix [ Sva1 JNB“] in the right-hand side of (3.15).

—IN+1
Here we assume that row/column indices start at 0. So, for example, the row indices for the upper (N + 1) rows are i,

i =0,..., N, and the row indices for the lower (N + 1) rowsarei + N +1,i =0,..., N.If N = 3, then A is as in
Eq. (3.16), and the row/column indices are O, ..., 7 in which 0, ..., 3 are called upper and 4,. . ., 7 are called lower.
Now, subtract a times (j + N)th column from (j + N + 1)th column if j is odd, or subtract b times (j + N)th column
from (j + N + 1)th column if j is even, for j = N, N — 1, ..., 1. To make our matrix skew-symmetric, subtract a
times (i + N)th row from (i + N + 1)th row if i is odd, or subtract b times (i + N)th row from (i + N + 1)th row
if i is even, fori = N, N — 1, ..., 1. To make things clear, we take N = 3 case as an example. If N = 3, then we
first subtract a times 6th column from 7th column of the matrix (3.16), then we subtract b times 5th column from 6th
column of the resulting matrix, and lastly we subtract a times 4th column from 5th column of the resulting matrix.
Thus we obtain the skew-matrix

- 0 1 1 1 0 0 1 .
-1 0 1 1 0 0 1 —a
-1 -1 0 1 0 1 —b 0
-1 -1 -1 0 1 —a 0 0
0 0 0 -1 0 az 0 0 (3.19)
0 0o -1 0 —az a’z abez? 0
0o -1 0 0 —abz  a*bz — abez? ab?cz? a’bedz>
L—-1 0 0 0 | —a?bz a’bz —aPbez?  a?b2cz? — a’bedz?  aPbedz?

Next we perform the same operations on rows to make the matrix skew-symmetric, i.e., subtracting a times 6th row
from 7th row of the matrix (3.19), then subtracting b times 5th row from 6th row of the resulting matrix, and so on.
Then we obtain

r O 1 1 1 0 0 0 1 .
-1 0 1 1 0 0 1 —a
-1 -1 0 1 0 1 —b 0
-1 -1 -1 O 1 —a 0 0
0 0 0 —1] 0  az 0 0 (3.20)
0 0 -1 a | —az 0 abcz? 0
0 -1 b 0| 0 —abez? 0 a’bedz?
L—-1 a 0 0] 0 0 —a’bedz? 0o
In the next step, we subtract (j + 1)th column from jth column for j = 0, 1,..., N — 1, then we also subtract
(i + Dth row from ith row fori = 0,1,..., N — 1. If N = 3, then this step is as follows. First, we subtract 1st

column from Oth column of the matrix (3.20), then we subtract 2nd column from Ist column of the resulting matrix,
and finally we subtract 3rd column from 2nd column of the resulting matrix. We perform the same operations on rows.
Then the resulting matrix looks as follows:

- 0 1 0 0] 0 0 —1 l4a 7
—1 0 1 0] 0 -1 1+b —a
0 -1 0 1| -1 1+a —b 0
0 0 —1 0| 1 —a 0 0
0 0 T —1] 0 az 0 0 @.21)
0 1 —1—a a —az 0 abcz? 0
1 —1—b b 0| 0 —abcz? 0 a’bedz?
L—1—a a 0 0] 0 0 —a’bedz? 0

Let A’ denote the resulting matrix after these transformations. Then, in general, the resulting skew-symmetric matrix
A’ is written as

| P 0
e[ 5, 9] o)
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with the (N + 1) x (N + 1) matrices P = (§;+1,/)o<i<j<n, Q = (gij)o<i<j<n and R = (r;j)o<i < j<ny Whose entries
are given by

-1 ifi +j=N-1,
1 ifi=Nand j =0,
gij = {1 +axVisoddpx(iseven) g 4 j— Nand j > 1,
_ax(j isodd)bx(jiseven) if i +j =N+1,

0 otherwise,
azéy, ifi =0,
fij = aT(i+1)/2TbL(i+1)/2JcFi/ﬂdLi/zJZz(SiHJ ifi > 0.

Here x (A) stands for 1 if the statement A is true and 0 otherwise. If we apply the expansion formula (2.13) to Pf(A’),
then we easily obtain the desired formula, i.e. (3.17) if N is even, and (3.18) if N is odd. We illustrate this expansion
by the above example. If we expand the Pfaffian of the skew-symmetric matrix (3.21) along the first row, then we
obtain

0 1 -1 14+a —-b 0
—1 0 1 —a 0 0
1 —1 0 az 0 0
W3 = Pf —1—a a | —-az 0 abcz? 0
b 0| 0 —abcz? 0 a’bedz?
0 0| 0 0 —a*bedz? 0
0 1 0 0 -1 —a
-1 0 1 -1 1+4a O —l
0 —1 0 1 —a 0
+PH—5 T —1] 0 az 0
1 —-1—a a | —az 0 0
a 0 0 0 0 0
0 1 0 0 —1 1+b
|V —1 0 1 —1 1+a —-b -|
0 -1 0 1 —a 0
+(1 +a)Pf 0 I 1 0 az 0 .
1 —1—a a | —az 0 abcz?
—-1-b b 0| 0 —abczZ2 0

By expanding the first Pfaffian along the last column, we obtain that this Pfaffian equals a’bcdz? ¥. Similarly, by
expanding the second Pfaffian along the last column, we also obtain that this Pfaffian equals —a ¥;. The third Pfaffian
is evidently equal to W,. Thus we obtain ¥3 = (a*bcdz*> — a) ¥ + (1 +a) ¥,. The general argument is similar based
on the above expression of (3.22). The details are left to the reader. This completes the proof.  [J

Remark 3.10. Proposition 3.9 can be also proved by a combinatorial argument as follows.

Combinatorial proof of Proposition 3.9. By definition, the generating function for strict partitions pu =
(m1, M2, ...) such that w1 = 2N and ur < 2N — 2 is equal to

b(Van-1 — Van-2).
This, for strict partitions such that u; = 2N and up = 2N — 1, is equal to

aV NN aN 1 2wy .

Finally the generating function of strict partitions such that u; < 2N — 1 is equal to ¥Yx_1. Summing up we get
(3.17). The same argument can be used to prove (3.18). [

Note that one can immediately derive Theorem 3.1 from Proposition 3.9 by substitution. Thus, if one uses (2.7),
then he immediately derives Theorem 3.2 by a simple computation.
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Proof of Theorem 3.2. Letu = «/ﬁ, t =72 and q = abcd.By (3.4), X 5\] satisfies the associated Al-Salam—Chihara
recurrence relation (2.2) with o = —a%b%c and 8 = —a%b’%. Note that |u| < 1 and |¢| < || < 1 hold. Thus, by
(2.7), we conclude that X is given by (3.6). A similar argument shows that YI’v satisfies (2.2) with @ = —a%b%c and
B = —a2b?cd, which implies Yy is given by (3.7). O

Proof of Corollary 3.4. First, substituting z by 1 in (3.6), we have

rOX =1,
o = i (1 +ag" ) (=c"'q; g)n (—abey".
= (—aq; @In+1

r1X:1+abc+a(l+b),

o) 1— n+lye_ .—1,.
sf‘:ab(l—ac)z( Q) G Doy
o (—aq; @)n+1

Since Xo = 1 and X; = 1 +a(1 + b) + abc for z = 1, we derive r{ Xo — rfX; = 0 and

00 1.
sé(Xl - s1XX0 ={1+a) Z (_C'ﬂ(—abc)”{a + abc 4+ a(1 + b)g"t"}
= (—aq: @)t
o o —1,. 0 1.
—(+a) Z( ¢ q,q)n(_abc)n_z( €4 Pyl (—abe)™!
= (=aq;@n = (=aq; @Ot

=1+a.
Therefore, when z = 1, Eq. (3.6) reduces to

q_N7_b_1 1 )

Xn = (—abc; g)n 29, (—(abc)—lq—N“; qg.—¢ q

This establishes Eq. (3.9). A similar computation shows that we can derive (3.10) from (3.7) by specializing z to 1.
The details are left to the reader. [

Proof of Corollary 3.5. We first claim that

N

N
Uon(a,boe.d; 1) =y [ k } (—a; Oi(=¢; @ n—k(ab)V 7. (3.23)
k=0 q

Then (3.11) is an easy consequence of (3.23) by substituting a < zygq, b < z"'yg, c < zy“'gandd < z7 'y~ !q.

k
. . —Nk
In fact, using (¢~ V; ¢)x = (q(‘_’;)’zﬁk (—l)kq(z) N , we have

N

—-N _
qg ", —c N (—¢; @N—k NME)-Nw—k) -
21 (—a—lq—N+1; 4 —bq) = Z|: :| q( : ) bV K.

=Lk, (alg NNk

(N, (K
Substitute (—a~'lg Nt g vk = ((7“’,’1)1" a N+tkg ( 2 )+<2) into this identity to show that the right-hand side equals

zN: [N} (—a; Qk(—c; @) N—k (ab)V ¥,
=Lk, (—a; g)n

Finally, use (3.9) to obtain (3.23). The proof of (3.12) reduces to

N

N
Uonti(a,b,e,d; 1) =y [ ‘ } (—a; Qr41(—=¢; @)y -k (@h)N 7, (3.24)
k=0 q

which is derived from (3.10) similarly. [
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Proof of Corollary 3.6. By replacing k by N — k and letting N to 400 in (3.23), we get

o0

. L ] (—¢; @k k(a5 q)oo(—abc; q)oo
A33;D¢@N<a,b,c,d,1)-(—u,q>032£% oY T o

where the last equality follows from the g-binomial formula (see [3]). Similarly we can derive the limit from (3.24).
Note that we can also derive (3.13) from (3.8) by the same argument as in the proof of Corollary 3.4. [

4. Ordinary partitions

First we present a generalization of Andrews’ result in [1]. Let us consider

Oy = dy(a,b,c,d;2) = Y oW)'?, (4.1)

A
A =N

where the sum runs over all partitions A such that each part of A is less than or equal to N. For example, the first few
terms can be computed directly as follows:

P =1,
14az
P = ,
Y T a2
14 a(l 4 b)z + abcz?
P = ,
(1 —acz®)(1 — gz?)
P 1 +a(l 4+ b+ ab)z +abc(l +a + ad)z® + a’bedz?
3= ,

(1 = z2ac)(1 — 22q)(1 — z%acq)
where ¢ = abcd as before. If one compares these with the first few terms of ¥y, one can easily guess that the
following theorem holds:

Theorem 4.1. For non-negative integer N, let Py = Py(a, b, c,d; z) be as in (4.1) and g = abcd. Then we have
WN(ai b? C? d; Z)

(22q; Q)N 2y (Z2ac; Ny

where Uy = ¥y (a, b, c,d; 2) is the generating function defined in (3.1). Note that Wy is explicitly given in terms of
basic hypergeometric functions in Theorem 3.2.

dyn(a,b,c,d;z) = “4.2)

In fact, the main purpose of this section is to prove this theorem. Here we give two proofs, i.e. an algebraic
proof (see Propositions 4.6 and 4.7) and a bijective proof (see Remark 4.8). Before we proceed to the proofs of this
theorem we state the corollaries immediately obtained from this theorem and the results in Section 3. First of all, as
an immediate corollary of Theorem 4.1 and Corollary 3.3, we obtain the following generalization of Boulet’s result
(Corollary 4.5).

Corollary 4.2. Assume |a|, |b|, |c|, |d| < 1 and set ¢ = abcd. Let six, siy, X;, Yi (i =0,1) be as in Theorem 3.2.
Then we have

—abc, —az?q:
Za)(k)zlm = ( 9: 4o (& X1 — 5§ Xo)
)

(ab, acz?, 72q; q) oo

. (—abc, —azbcdzzq; q)oo
(ab,acz?, 22q; @)oo

(sg Y1 — 5] Yo), 4.3)

where the sum runs over all partitions \.

Theorem 4.1 and Corollary 3.4 also give the following corollary:

1 _1
Corollary 4.3. Put x = “P24@) 2 434 ¢ = abed. Let dy = Dy (a, b, ¢, d; z) be as in (4.1).
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(1) The generating function $n(a, b, c,d; 1) is given by
(ab)¥ Qn(x; —albic, —a2b2|q)
(q: @)n(ac; )N
—a: -N _
(—a; g)n ¢< g, —c _bq>' @)

" @ onac oy 2\ —amigv

(i1) The generating function $an(a, b, c,d; 1) is given by

(1 +a)(ab) On(x; —atblc, —abicd|q)
(g; @n(ac; @IN+1

(—a; g)n+1 g N, —c
= 5 q,—b]). 4.5
(q; Q)n(ac; QI n+1 21 <—a‘1q‘N 1 )

Pon(a,b,c,d; 1) =

Ponyi(a, b, e, d; 1) =

Let Sy (n, r, s) denote the number of partitions 7 of n where each part of 7w is < N, O(w) = r, O(n') = 5. As
before we immediately deduce the following result of Andrews (cf. [1, Theorem 1]) from Corollary 4.3.

Corollary 4.4 (Andrews).
N
2

(V] Covasahi—a g On-j0g
oL’ lq

]:
Son(n,r,8)q"z"y" = . (4.6)
n;;o (g% gHn(Z2q% qhN

)2N-2j

and

N

N B >
[,L4 (=2yq: 4 j+1(=2y~ 41 ¢ Hn—j )N
j=ot-

> Sngi(n.rs)g"Ty = 4.7)

n,r,s>0

(@* a4 N (Z2q% ¢M) N+

Similarly, as in the strict case, we obtain immediately Boulet’s corresponding result for ordinary partitions (cf. [2,
Theorem 1]).

Corollary 4.5 (Boulet). Let ¢ = abcd, then

S w0 = (=a; g)oo(—abc; ¢) oo ’ 4.8)
Y (@: @)oo(ab; q)o(ac: q)oo

where the sum runs over all partitions.

In order to prove Theorem 4.1 we first derive a recurrence formula for @y (a, b, c, d; 7).

Proposition 4.6. Let & = Py (a, b, c,d; z) be as before and q = abcd. Then the following recurrences hold for
any positive integer N.

(1 —22¢M) Oy = (1 + b) Pay—1 — bPay 2, (4.9)
(1 — Z2acq™) Poni1 = (1 +a) oy — aPon-—1. (4.10)

Proof. It suffices to prove that
oy = Poy—1 +b(Day_1 — Pan—2) +2°¢" oy, 4.11)
Doni1 = Doy + a(Poy — Pay—1) + 22acq™ Gani. (4.12)

Let Ly denote the set of partitions A such that A; < N. The generating function of £y with weight w(1)z‘® is
Oy = Pn(a, b, c,d; z). We divide Ly into three disjoint subsets:

Ly =Ly-1¥W My Ny,
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where My denote the set of partitions A such that A.; = N and A, < N, and Ny denote the set of partitions A such that
A1 = X2 = N. When N = 2r is even, it is easy to see that the generating function of My, equals b(Py—1 — P2y_2),
and the generating function of A5, equals z2g” @,,. This proves (4.11). When N = 2r + 1 is odd, the same division
proves (4.12). O

By simple computation, one can derive the following identities from (4.9) and (4.10).

Proposition 4.7. If we put

F 7b7 7d;
Sy(aboe.dig) = ——N@LED 4.13)
(z*q; q)(ny2)(z7ac; @) N2
then,
Fay = (1 +b)Fay—1 — b(1 — 22acg™ " Fay s, (4.14)
Foyy1 = (1 +a)Fay —a(l — 22¢™ ) Fay—y (4.15)

hold for any positive integer N.
Proof. Substitute (4.13) into (4.9) and (4.10), and compute directly to obtain (4.14) and (4.15). O
Proof of Theorem 4.1. From (4.14) and (4.15), one easily sees that Fon (a, b, ¢, d; z) and Foy11(a, b, ¢, d; z) satisty

exactly the same recurrence in Theorem 3.1. Further, from the above example, we see
Fh=1,
F1=1+az,
F,=14+a(l+b)z+ abez?,
F3=1+a(l +b+ab)z +abc(1 4+ a + ad)z* + a’bed??,
Fy=1+4a(l 4 b)(1 4+ ab)z + abc(1 +a + ab + ad + abd + abed)z>
+a’bed(1 + b)(1 + be)z® + a’bc3dz*.

Thus the first few terms of Fy(a, b, ¢, d; z7) agree with those of Yy (a, b, ¢, d; z). We immediately conclude that
Fy(a,b,c,d;z) = Yy(a,b,c,d;z)forall N. [

Remark 4.8. Here we also give another proof of Theorem 4.1 by a bijection, which has already been used by
Boulet [2] in the infinite case.

Bijective proof of Theorem 4.1. Let Py (resp. Dy) denote the set of partitions (resp. strict partitions) whose parts
are less than or equal to N and let £y denote the set of partitions whose parts appear an even number of times and are
less than or equal to N. We shall establish a bijection g : Py —> Dy x Ey with g(A) = (u, v) defined as follows.
Suppose A has k parts equal to i. If k is even then v has k parts equal to i, and if k is odd then v has k — 1 parts equal
to i. The parts of A which were not removed to form v, at most one of each cardinality, give w. It is clear that under
this bijection, w(A) = a)(,u)a)(v). It is easy to see that the generating function of £y is equal to

L5

2
/le—zqf 1:[ l—zacql

where ¢ = abed. As | Y71 | = [§7 — 1, we obtain (4.13). O

At the end of this section we state another enumeration of ordinary partitions, which is not directly related to
Andrews’ result, but obtained as an application of the minor summation formula of Pfaffians. Let

yu=Oymabcd= Y o)
AlfN,)LZ(A)gM

where the sum runs over all partitions A such that A has at most M parts and each part of A is less than or equal to N.
Again we use Lemma 3.7 and Theorem 2.1 to obtain the following theorem.
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Theorem 4.9. Let N be a positive integer and set ¢ = abcd. Then we have

LN /2] , Sv Iy
> ¢N_z,,z,(a,b,c,d>z’q<z>=Pf[_ 7 C], (4.16)
=0

where S = (1)0<i<j<y—1 and C = (alG=D/21plG=D/21 M2 gli20 7y iy .

Proof. As in the proof of Theorem 3.8, we take n = N,y = 1 and A = Sy in (3.14), then we obtain

[N/2]
Sy er(alm) =Pf["NtSJNJN JCN}
t=0 Ie([o,z;/;n) TN

where C = (bjjz)o<i,j<n—1. If we take b;; = alU=D/2AAplG=D/21[i/2141i/2)  then Theorem 2.1 implies
1 - (2)
Pf(A;(B)) = w(r)q\?,

where I () = I. Thus, using Jy 'Sy Jy = Sy and the above formulas, we obtain
N/2]
t(4) _ Sy JIn
Z 2q( Z w(x)_Pf[_JN c]'
t=0 Ie<[0‘1;'f”>
Now (4.16) follows since, when I runs over all 2¢-subsets of [0, N — 1], A runs over all partitions with at most 2¢ parts
and each part is less than or equal to N — 2¢. I

For example, if N = 4, then the right-hand side of (4.16) becomes

r 0 1 1 1 0 0 0 1
-1 0 1 1 0 0 1 0
-1 -1 0 1 0 1 0 0

P -1 -1 -1 0 1 0 0 0
0 0 0o -1 0 z az abz
0 0O -1 0 —z 0 aczg abcz
0O -1 0 0 | —az —acz 0 abcdz
L—1 O 0 0 | —abz —abcz —abcdz 0

Let @N = @N(a, b,c,d;z) = Pf [fj é] denote the right-hand side of (4.16). For example, we have @1 =1,

5252 =14z 553 =14+ {+a+ac)zand 554 =14+ (1 +a+ab+ac+ abc + abed)z + abedz?. Note that the
partitions A such that £(1) < 2 and A1 < 2 are the following six:

alb| alb

]
@@Lcd.

The sum of their weights is equal to [z] @4 =1+a+ab+ac+ abc + abcd.
The same argument as in the proof of Proposition 3.9 can be used to prove the following proposition.

Proposition 4.10. Let @N = EPN (a, b, c,d; z) be as above. Then we have
Gon = (1 +b)Doy—1 + @BV N aN e — by oy, 4.17)
Doni1 = (1 +a) oy + @bV 1eNaV 1z — a) By, (4.18)
for any positive integer N.

Proof. Perform the same elementary transformations of rows and columns on f] é as we did in the proof of
Proposition 3.9, and expand it along the last row/column. The details are left to the reader. [
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Remark 4.11. The recurrence equations (4.17) and (4.18) also can be proved combinatorially.

Proof of Proposition 4.10. Consider the generating function of partitions:

Z w(h) = Z w(h) + Z w(l). (4.19)

A A A
L(r)=<2t L(rh)<2t L(r)<2t
Ap=2j+1-2t Ap=<2j-2t Ap=2j+1-2t

Split the partitions A in the second sum of the right side into two subsets: Ao < A1, and A = A1. Now

Z w(l) = a Z w(h) — Z wh) |, (4.20)

Ak >Ay i A
(<2t L) =2t L) =2t
Ap=2j+1-2t Ap=2j-2t A =2j—-1-2

and

Z w(h) = acq’™! Z w(). 4.21)
Ahp=Ay A
o< G)<2-2
M =2jF1-2 M =2j+1-2t

Plugging (4.20) and (4.21) into (4.19) and then multiplying by z’ q(é) and summing over t we get (4.18). Similarly we
can prove (4.17). O

Proposition 4.12. Set Uy = @QN and Vy = @ZN-H, then, for N > 1,
Unir = {1 +ab + ac(l + bd)qN_lz} Uy — alb — zg™ "Y1 = czg" YUy _1, (4.22)
Vvl = {1 +ab+(1+ ac)qu} Vy —a(b —zg™)(1 — czg" " Vn_1, (4.23)
whereUy=1, Vo=1, U =142 Vi=14+{+a+ac)z
Thus Uy and Vy are also expressed by the solutions of the associated Al-Salam—Chihara polynomials.

5. A weighted sum of Schur’s P-functions

We use the notation X = X, = (xy, ..., x,) for the finite set of variables x, ..., x,. The aim of this section is
to give some Pfaffian and determinantal formulas for the weighted sum » w(pn)zt W P, (x) where P, (x) is Schur’s
P-function.

Let A, denote the skew-symmetric matrix

(Xi _xj)
Xi T Xj ) 1<ii<n

and for each strict partition ; = (w1, ..., py) of length [ < n, let I', denote the n x [ matrix (xﬁ‘ i). Let
Ay Iy Jp
Alt(-xla'-'ﬂxn)_ (_JltFM 0[
which is a skew-symmetric matrix of (n + /) rows and columns. Define Pf, (x1, ..., x,) to be Pf A, (x1, ..., x,) if

n-+liseven,andtobe Pf A, (x1, ..., x,, 0)if n+1is odd. By [14, Ex.13, p. 267], Schur’s P-function P, (x1, ..., X;)
is defined to be
Pf (x1, ..., x,)
Pf(]j(){,'], R xn)

’
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where it is well known that Pfy(xy, ..., x,) = ]_[1<i<j<n ;C’jr—;c’ Meanwhile, by [14, (8.7), p. 253], Schur’s Q-
<i<j<n Xx;j+x;

function Q,(x1, ..., x,) is defined to be 2t P, (x1, ..., x,). In this section, we consider a weighted sum of Schur’s
P-functions and Q-functions, i.e.,

En(abe,d; X)) = ) o(WPu(x, ..., %),
/tllLSN
(@ b,e,d; X)) = ) oW Quxi, .., %),
"
=N

where the sums run over all strict partitions p such that each part of w is less than or equal to N. More generally, we
can unify these problems to find the following sum:

ina,b,e,d;z X) = ) oW WP (x, .. x), (5.1)

"
=N

where the sum runs over all strict partitions w such that each part of u is less than or equal to N. One of the main
results of this section is that ¢y (a, b, ¢, d; z; X,,) can be expressed by a Pfaffian (see Corollary 5.6). Further, let us put

¢(a.b.e.diz: Xy) = lim y(a,boc.diz: Xg) = Y o)z ™ Pu(X,), (5.2)
N—o00 m

where the sum runs over all strict partitions u. We also write

E(@,b.c.d; X,) =¢(a,b,c,d; 1 Xp) = Y 0() Pu(Xn),
22

where the sum runs over all strict partitions ©. Then we have the following theorem:

Theorem 5.1. Let n be a positive integer. Then

Pf(y;i), . . Pfy(X if nis even,
¢(a,b,c,d; z; Xp) = (yfl_)lf’<-’5"/ V) .f . (5.3)
PE(Vij)o<i<j<n / PIo(Xn)  if n is odd,
where
Xi — X s
Yij = Xi' +x; +uijz + vz 5.4
with

adet [ +bx? 1 —abx}
X+ bx? 1 —abx?
ujj = ' ’ , (5.5
(1 —abx?)(1 — absz.)

Pa——— + axl-2 1 —a+ d)xi2 — abdxl-?’
aperix; xj+ asz- 1—a(b+ d)x]2- — abdx?
Vij = e — abe2)(1] — 22y (5.6)
(I —abx7)(1 abxj)(l abcdx; xj)

if1<i,j<n, and

axj(1+ bx;)

Yoi 1— abx% -7)
fl1<j=<n
Especially, when z = 1, we have
Pf(yii), . . Pfy (X if nis even,
£a,b,c,d; X,) = (Kf’,)]f’“f”/ oX,) i (5.8)
Pf (y’/)0§i<j§n /Pfy(Xn) if nisodd,
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where
1

e iSO

Vij = xi__axjxf with (5.9)
+7v;; ifl<i<j<n,
X+ x; iy U= /=
x; + bxi2 1—b(a+ c)xi2 — abcxl-3

det 2 2 3
N j+bxj 1—b(a+c)xj—abcxj
Vij = (5.10)

(1 —abx?)(1 — abx})(l — abcdx,?x;)

We can generalize this result in the following theorem (Theorem 5.2) using the generalized Vandermonde
determinant used in [7]. Let n be a non-negative integer, and let X = (x1,...,x2,), Y = (31,...,Ym), A =
(ai,...,ax,) and B = (b1, ..., by,) be 2n-tuples of variables. Let V" (X, Y, A) denote the 2n x n matrix whose
@i, ])th entry is a;jx" "’ J ! forl <i <2n 1 < j < n, andlet U'(X,Y; A, B) denote the 2n x 2n matrix
(V"(X, Y, A) V"(X, Y, B)) . For instance if n = 2 then U%(X, Y: A, B) is

aix1 a1y1 bix1 by
arxy axyr baxa bayz
azx3 azys bizxs b3ys
asxs a4ys baxq bays

Hereafter we use the following notation for n-tuples X = (x1,...,x,) and Y = (y1, ..., y,) of variables:
X+Y=G1+y,....,xa+yn), X-Y=0x1y1,..., X0)n),

and, for integers k and [,
xk = (x{‘, .. .,x,lf), xky! = (x{‘y{, ...,x,l:yfl).

Let 1 denote the n-tuple (1, ..., 1). For any subset I = {iy,...,i,} € ( ) let X; denote the r-tuple (x;,, ..., x;.).

Theorem 5.2. Let g = abcd. If n is an even integer, then we have

2 1=("%) grg ()
. (=1 aq\? Xi +x;
fabed:X) =2 ) (1 — abx?) (i —x)(1 — gx2x2)
Suey) e TN
x detU" (X7, 14 gX7, X1 +bX3,1—b(a+c)X7 — abeX3). (5.11)

If n is an odd integer, then we have

rtl
N1 gar, 0202 )y v
fabediX) =) =5y Y T —
m=1" " 4P%m <o Ie([»l]\cnﬁ) [T —abx?) g Xm =X

2r iel

Xi + X

iger (i —x;)(1 — qx; xz)

i<j

detU" (X3, 1+ gX7, X7 +bX7,1—b(a+c)X? — abeX3). (5.12)

Theorem 5.3. Let g = abcd. If n is an even integer; then {(a, b, ¢, d; z; X,) is equal to

w ") abey ¢ T .\
2r iel 'xi 'xj
Z Z H(] _ abe) l_[

: LL (x; —x)(1 = gx2x2
IG(["]) icl i i,jel (xi ])( qx; ./)

2r i<j
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oy 4 2 4 2 3
x detU’ (X3, 14 qX% X; +aX3.1—a(b+d)X3 — abdX?)

02 (—DII=G)=lgrpr=1er=1 ( ){1+b(xk+x1)+abxkx1 FIT i
2r—1 iel’
+ Z
2 2 ) 0 —abed)
IE( )klel iel
[T (i +xj)-detU ™Y (X%, 1+ qX}, Xy +aX?,1—a(b+d)X3, — abdX;)

i,jel
i<j

, (5.13)
igﬂ(xi —x))(1 = gx}x?)
i<j

where I' = T \ {k,I}.

Note that we can obtain a similar formula when n is odd by expanding the Pfaffian in (5.3) along the first row/column.
To obtain the sum of this type we need a generalization of Lemma 3.7, in which the row/column indices always
contain say the set {1, 2, ..., n}, for some fixed n.

Lemma 5.4. Let n and N be non-negative integers. Let A = (a;;) and B = (b;j) be skew-symmetric matrices of size
(n + N). We divide the set of row/column indices into two subsets, i.e. the first n indices Iy = [n] and the last N
indices Iy =[n+ 1,n + NJ]. Then

. Joan AT, K
Z Z(n+t)/2 Z J/|10U1| Pf( 5085 (A)) Pf( 508§(B)) — Pf( nJr_NtK n+N gN) ’ (514)

)H»ttze(z'en 1 E(ltl ) N
where C = (Cjj)1<i,j,<n+nN 1s given by Cij = i+jb,~jz and K, n = J,H_NPEv,,,N with

o _ On On,N

Eny = <0N,n Ey )’
Proof. In general, if P = (jlpllz gi) is a 2m x 2m skew-symmetric matrix where Py, Pi and Py are m x m
matrices, then Pf P is the sum (2.9) over all perfect matchings on the vertices {1,2,...,m,m + 1,m +2,...,2m}.
Meanwhile, one easily sees that Pf (i”; ;,)]1 ; 2,: Jrr;) ;’212) is equal to a similar sum as in (2.9), but the sum should be taken
over all perfect matchings on the vertices {m,m — 1,..., l,m+1,m+2,...,2m}.

LetV={mn+N)*...,n+D*n*....,1%1,...,n,n+1,...,n + N} be vertices arranged in this order on
the x-axis. Put Vi = {n*, ..., I"}and V" = {(n + N)*, ..., (n + D*}, Vo ={1,....,n}and V| = {n + 1,..., N}.
A perfect matching o € F (V) on the vertices V is uniquely written as 0 = o1 W 02 W 03 where o7 (resp. 03) is the
set of arcs in o connecting two vertices in V| & V' (resp. Vo W V1) and o7 is the set of arcs in o connecting a vertex
in V" @V and a vertex in Vo & V. Thus the Pfaffian in the right-hand side of (5.14) equals

ngna l_[ aijj H kij 1_[ Cij
o (J*,i*)eoy (i*,j)eor (i, j)€o3

summed over all perfect matchings o € F(V) on V. Here k;; is the (i, j)th entry of K, v = Jn+NE,, ~. From the

definition of E, v, l—[(l _j)eo, kij vanishes unless o7 is a collection of arcs (i*,i) (i =n +1,...,n + N). Thus we
can assume that o is a perfect matching on /* W V' and o3 is a perfect matching on Vo W I where I is a subset
Vi. Here, if I = {iy,...,i;} € V), then we write I* = {if,...,i]} according to convention. Thus n + ¢ must

be even, and [[; j)co, Cij = (n+0/2,) 11V H(i_,j)ezr3 bij. Note tbat oy is comp(?sed of arcs (i, i). This implies that
sgno = sgnoj sgn o3 since the number of crossing between arcs in o and arcs in o3 equals the number of crossing

between arcs in o7 and arcs in 07. Thus the above sum is equal to

Zz<t+n)/2 Z y" Z sgn oy sgn o3 l_[ dij H bij-

Ie( ) (01.03) (i.j)eor (G, j)€os

This is equal to the left-hand side of (5.14). [
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For a non-negative integer N, let /,LN = (N,...,1,0), and let FMN denote the n x (N 4+ 1) matrix
(xN7j> . Let
! 1<i<n,0<j<N
Ap FMN JN+1
AN =\ 'm0
N+1 ul N+1
which is a skew-symmetric matrix of size n + N + 1. For example, if n = 4 and N = 3, then
X —x X —X3 X —X
0 1 2 1 3 1 4 X x12 X13
X1+x2 x1+x3 x1+x4
X2 — X1 X2 — X3 X2 — X4
= - 0 3 1 x x22 sz
X1+ x2 X2+ x3 X2+ x4
X3—X| X3—Xx2 X3 — X4
3 3 0 Do 1 x3 x32 x33
Ais = X1 +x3 x24+x3 X3+ x4
BT xa=x1 xa—x2 x4—x3 5 3
0 1 x4 x4° x4
X1 +X4 X2+XxX4 X3+X4
-1 —1 -1 -1 0O 0 O 0
—X1 —X2 —X3 —X4 0 0 0 0
—x12 —x22 —x32 —x42 0O 0 O 0
—xl3 —x23 —x33 —x43 0 0 0 0

Let B;; be as in (2.14). Let By denote the (N+4-1) x (N +1) matrix (B;;)o<i, j<n and let By, denote the (N +2) x (N +2)
matrix (8;;)—1<i,j<N-

Theorem 5.5. Let n and N be integers such thatn > N > 0. Then
¢tn(a, b, e, d; z; Xp) = PE(Con) / Plg(X,0), (5.15)
where

On+1 IF#N Jn It
Con=|=IDyn J'A,Jy Opnir | (5.16)
—JIN+1 Onyin By

if n is even, and
t /
0N+1 FMN Jn ‘,N+1

Con = —JnFMN JnlAan On.N+2
_t'];v+l On+2,n B;v

(5.17)

where J1/v+1 = (0N+1,1 JN+1) if nis odd.

Proof. Let 3, x be the skew-symmetric matrix of size (n + N + 1) defined by

B N= Sn On,N+1
" ON+1n By

if n is even, and

B N = Sn—l On,N+2
" 0N+2.n B]/V
if n is odd. Fix a strict partition & = (1, ..., u7) suchthat uy > --- > p; > 0,and let K, () = {n+pny, ..., n+pu1}.
From the definition of B, y and Theorem 2.2, we have

[n]WK, (1) _ 2(w)
Pf (A[n]wan (Bun )) =wo@
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if n 41 is even. Thus Lemma 5.4 immediately implies that Pfy(X,)¢n(a, b, ¢, d; z; X,,) is equal to

t
PE Jn+N+1t-An,NJn+N+1 Ky nt1 ' (5.18)
- Kn,N—i—l Bn,N

By simple elementary transformations on rows and columns, we obtain the desired results (5.16) and (5.17). [

Corollary 5.6. Let n and N be integers such thatn > N > 0. Then

¢tn(a, b, e, d; z; Xp) = PE(Dy v ) / Plgp(X,), o
where
Xi — Xj
. ( , , . Z ﬁk,xij?) ’ (5.20)
XitXj TN 1<i,j<n

if n is even, and

N
0 > Boaxh \
k=0

Dyn = |5 — : (5.21)
kZﬁk,lJCf x" +x{ + > ,Bklexfj
if nisodd.
For instance, if n = 4 and N = 2, then D4 3 looks as follows:
0 0 0 x3 X3 x3 x? 0 0 1
0 0 0 X4 X3 X2 X1 0 1 0
0 0 0 1 1 1 1 1 0 0
2 —xy -1 0 BT H hTMo ATHo, 0 0
wom BTM BFm niy
2 —x3 -1 222 L 0 0
;41—%3 P X2+ x3 jccli-;%
S s S ) 0 0
X4+x2 x3+x2 X1+ x2
X4 — X X3 — X X2 — X
R R s S () 0 0 0
X4+x1 x3+x1 x2+xg
0 0 —1 0 0 0 0 0 az abz
0 -1 0 0 0 0 0 —az 0 abez?
-1 0 0 0 0 0 0 —abz —abc? 0

Proof of Corollary 5.6. When 7 is even, annihilate the entries in * I’ N J,, of (5.16) by elementary transformation of
columns, and annihilate the entries in —J, I', v of (5.16) by elementary transformation of columns. Then expand the
Pfaffian Pf (Cn, N) along the first N 4 1 rows. For the case when 7 is odd, perform the same operation on (5.17). [J

Proof of Theorem 5.1. Perform the summations

Ik
xX; X
> Budet (xl xl{)

0<k<l Jo7J

and

o0

k
> Borxh,
k=0

and apply Corollary 5.6. The details are left to the reader (cf. Proof of Theorem 2.1 in [6]). [
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To prove Theorems 5.2 and 5.3, we need to cite a lemma from [6]. (See Corollary 3.3 of [6] and Theorem 3.2
of [7].)

Lemma 5.7. Let n be a non-negative integer. Let X = (x1,...,X%m), A = (ai,...,am), B = (b1,...,bxw),
C=(c1,...,cop)and D = (dy, ..., dy,) be 2n-tuples of variables. Then
Pf|:(aibj —ajb;)(cidj — dei)] _ ViX, 1+ sz; A, B)V'(X,1+ IXZ; C, D)
(xi —xj)(1 —tx;xj) I<i<j<n [T Gi—xpd—rtxix;))

1<i<j<2n

, (5.22)

where 1 +tX? = (1 —i—txlz, | —l—tx,%).

In particular, we have
b — g-b: n n n 2.
Pf|:alb'l ajb, :(_1)(2)t(2)v (X,14+tX“; A, B)

1 —txix; :|1§i<j§2n [T O —r1xix))
1<i<j<2n

O (5.23)

Proof of Theorem 5.2. First, assume that n is even. Using the formula

n/2) _
Pf(A + B) = Z Z (== Pf(A]) PE(B), (5.24)

= 1)
where T denotes the complementary set of I, we see that £(a, b, c, d; X,) is equal to
[n/2]

Y Y o T e e,

=0 re() v
Apply Lemma 5.7 to obtain (5.11). When # is odd, first expand the Pfaffian along the first row/column and repeat the
same argument. [

Proof of Theorem 5.3. Note that the rank of the matrix (u;;)1<;, j<n is at most two. Thus we have
a(xy — x2){1 + b(x1 + x2) + abxyx3}

Pf(uij)i<i,j<n = (1 —abx})(1 — abx3)
0 otherwise.

ifn=2,

Using (5.24), we obtain

Xi —Xj 2
Pf(Vij)lgi,jgn ZPf<xi s +vijz >1 .
<ijsn

i Z (—1ykH =1 az(x; — xp){1 + l;(xk + x7) ;LakaXZ} P <xz' —Y v,-jzz) .
| <k=l<n (1 —abxi)(1 — abxy) Xi +x; <i.j<n
Use (5.24) again to see that ¢ (a, b, ¢, d; z; X,,) is equal to

n/2]

2 11— Xi +Xj
2 3 DT [T = Pl jer

r=0 16([;]) ijel 1 J

r i<j

n Z (1) az(xy —x){1 + l;(xk + x7) —;—abxkxl}
(1 —abxi))(1 — abxy)

1<k<l<n
[n/2]
. " Xi +Xx;
% Z 22 Z (=l1-r+l 1—[ l.—xJ‘Pf(Uij)i,jeI“
r=1 A

Foaeq! -xl
1/6(%—{/{2,1}) i,jel
e

i<j

Put I = I' U {k, I} and apply Lemma 5.7 to obtain (5.13). O
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