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Abstract

For any partition λ let ω(λ) denote the four parameter weight

ω(λ) = a
∑

i≥1dλ2i−1/2eb
∑

i≥1bλ2i−1/2cc
∑

i≥1dλ2i /2ed
∑

i≥1bλ2i /2c,

and let `(λ) be the length of λ. We show that the generating function
∑
ω(λ)z`(λ), where the sum runs over all ordinary (resp.

strict) partitions with parts each ≤ N , can be expressed by the Al-Salam–Chihara polynomials. As a corollary we derive Andrews’
result by specializing some parameters and Boulet’s results by letting N → +∞. In the last section we prove a Pfaffian formula
for the weighted sum

∑
ω(λ)z`(λ)Pλ(x) where Pλ(x) is Schur’s P-function and the sum runs over all strict partitions.

c© 2008 Published by Elsevier B.V.
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1. Introduction

For any integer partition λ, denote by λ′ its conjugate and `(λ) the number of its parts. Let O(λ) denote the number
of odd parts of λ and |λ| the sum of its parts. Stanley [16] has shown that if t (n) denotes the number of partitions λ of
n for which O(λ) ≡ O(λ′) (mod 4), then

t (n) =
1
2
(p(n)+ f (n)) ,

where p(n) is the total number of partitions of n, and f (n) is defined by
∞∑

n=0

f (n)qn
=

∏
i≥1

(1+ q2i−1)

(1− q4i )(1+ q4i−2)
.

Motivated by Stanley’s problem, Andrews [1] assigned the weight zO(λ)yO(λ′)q |λ| to each partition λ and computed
the corresponding generating function of all partitions with parts each less than or equal to N (see Corollary 4.4).
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The following more general weight first appeared in Stanley’s problem [17]. Let a, b, c and d be commuting
indeterminates. For each partition λ, define the Andrews–Stanley partition functions ω(λ) by

ω(λ) = a
∑

i≥1dλ2i−1/2eb
∑

i≥1bλ2i−1/2cc
∑

i≥1dλ2i /2ed
∑

i≥1bλ2i /2c, (1.1)

where dxe (resp. bxc) stands for the smallest (resp. largest) integer greater (resp. less) than or equal to x for a given
real number x . Actually it is more convenient to define the above weight through the Ferrers diagram of λ: one fills
the i th row of the Ferrers diagram alternatively by a and b (resp. c and d) if i is odd (resp. even), the weight w(λ) is
then equal to the product of all the entries in the diagram. For example, if λ = (5, 4, 4, 1) then ω(λ) is the product of
the entries in the following diagram for λ.

a b a b a

c d c d

a b a b

c

In [2] Boulet has obtained results for the generating functions of all ordinary partitions and all strict partitions with
respect to the weight (1.1) (see Corollaries 3.6 and 4.5). On the other hand, Sills [15] has given a combinatorial proof
of Andrews’ result, which has been further generalized by Yee [19] by restricting the sum over partitions with parts
each ≤ N and length ≤ M .

In this paper we shall generalize Boulet’s results by summing the weight function ω(λ)z`(λ) over all the ordinary
(resp. strict) partitions with parts each ≤ N . It turns out that the corresponding generating functions are related to
the basic hypergeometric series, namely the Al-Salam–Chihara polynomials and the associated Al-Salam–Chihara
polynomials (see Corollaries 3.4 and 4.3).

This paper can be regarded as a succession of [6], in which the first author gave a Pfaffian formula for the weighted
sum

∑
ω(λ)sλ(x) of the Schur functions sλ(x), where the sum runs over all ordinary partitions λ, and settled an open

problem [17] by Stanley. Though it is not possible to specialize the Schur functions to z`(λ), we show in this paper that
this approach still works, i.e., we can evaluate the weighted sum

∑
ω(λ)z`(λ) by using Pfaffians and minor summation

formulas as tools (see [8,9]), but, as an afterthought, we also provide alternative combinatorial proofs.
In the last section we show that the weighted sum

∑
ω(µ)z`(µ)Pµ(x) of Schur’s P-functions Pµ(x) (when z = 2,

this equals the weighted sum
∑
ω(µ)Qµ(x) of Schur’s Q-functions Qµ(x)) can be expressed by a Pfaffian where µ

runs over all strict partitions (with parts each ≤ N ).

2. Preliminaries

A q-shifted factorial is defined by

(a; q)0 = 1, (a; q)n = (1− a)(1− aq) · · · (1− aqn−1), n = 1, 2, . . . .

We also define (a; q)∞ =
∏
∞

k=0(1 − aqk). Since products of q-shifted factorials occur very often, to simplify them
we shall use the compact notations

(a1, . . . , am; q)n = (a1; q)n · · · (am; q)n,

(a1, . . . , am; q)∞ = (a1; q)∞ · · · (am; q)∞.

We define a r+1 φr basic hypergeometric series by

r+1 φr

(
a1, a2, . . . , ar+1

b1, . . . , br
; q, z

)
=

∞∑
n=0

(a1, a2, . . . , ar+1; q)n
(q, b1, . . . , br ; q)n

zn .

The Al-Salam–Chihara polynomial Qn(x) = Qn(x;α, β|q) is, by definition (cf. [11, p. 80]),

Qn(x;α, β|q) =
(αβ;q)n
αn 3φ2

(
q−n ,αu,αu−1

αβ,0 ; q, q
)
,
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= (αu; q)nu−n
2φ1

(
q−n ,βu−1

α−1q−n+1u−1 ; q, α−1qu
)
,

= (βu−1
; q)nun

2φ1

(
q−n ,αu

β−1q−n+1u ; q, β−1qu−1
)
,

where x = u+u−1

2 . This is a specialization of the Askey–Wilson polynomials (see [3]), and satisfies the three-term
recurrence relation

2x Qn(x) = Qn+1(x)+ (α + β)q
n Qn(x)+ (1− qn)(1− αβqn−1)Qn−1(x), (2.1)

with Q−1(x) = 0, Q0(x) = 1.
We also consider a more general recurrence relation:

2x Q̃n(x) = Q̃n+1(x)+ (α + β)tq
n Q̃n(x)+ (1− tqn)(1− tαβqn−1)Q̃n−1(x), (2.2)

which we call the associated Al-Salam–Chihara recurrence relation. Put

Q̃(1)
n (x) = u−n (tαu; q)n 2φ1

(
t−1q−n, βu−1

t−1α−1q−n+1u−1 ; q, α−1qu

)
, (2.3)

Q̃(2)
n (x) = un (tq; q)n(tαβ; q)n

(tβuq; q)n 2φ1

(
tqn+1, α−1qu

tβqn+1u
; q, αu

)
, (2.4)

where x = u+u−1

2 . In [10], Ismail and Rahman have presented two linearly independent solutions of the associated

Askey–Wilson recurrence equation (see also [4,5]). By specializing the parameters, we conclude that Q̃(1)
n (x) and

Q̃(2)
n (x) are two linearly independent solutions of the associated Al-Salam–Chihara equation (2.2) (see [10, p. 203]).

Here, we use this fact and omit the proof. The series (2.3) and (2.4) are convergent if we assume |u| < 1 and
|q| < |α| < 1 (see [10, p. 204]).

Let

Wn = Q̃(1)
n (x)Q̃(2)

n−1(x)− Q̃(1)
n−1(x)Q̃

(2)
n (x) (2.5)

denote the Casorati determinant of the equation (2.2). Since Q̃(1)
n (x) and Q̃(2)

n (x) both satisfy recurrence
equation (2.2), it is easy to see that Wn satisfies the recurrence equation

Wn+1 = (1− tqn)(1− tαβqn−1)Wn .

Using this equation recursively, we obtain

Wn+1 = (tq, tαβ; q)nW1,

which implies

W1 =

lim
n→∞

Wn+1

(tq, tαβ; q)∞
.

Using (2.3) and (2.4), we obtain

lim
n→∞

Wn+1 =
u−1(tαu, tq, tαβ, βu; q)∞

(tβuq, αu; q)∞

(for the details, see [10]). Thus we conclude that

W1 =
u−1(tαu, βu; q)∞
(αu, tβuq; q)∞

. (2.6)

In the following sections we need to find a polynomial solution of the recurrence equation (2.2) which satisfies a given
initial condition, say Q̃0(x) = Q̃0 and Q̃1(x) = Q̃1. Since Q̃(1)

n (x) and Q̃(2)
n (x) are linearly independent solutions of

(2.2), this Q̃n(x) can be written as a linear combination of these functions, say

Q̃n(x) = C1 Q̃(1)
n (x)+ C2 Q̃(2)

n (x).
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If we substitute the initial condition Q̃0(x) = Q̃0 and Q̃1(x) = Q̃1 into this equation and solve the linear equation,
then we obtain

C1 =
1

W1

{
Q̃1 Q̃(2)

0 (x)− Q̃0 Q̃(2)
1 (x)

}
,

C2 =
1

W1

{
Q̃0 Q̃(1)

1 (x)− Q̃1 Q̃(1)
0 (x)

}
.

By (2.6), we obtain

Q̃n(x) =
u(αu, tβuq; q)∞
(tαu, βu; q)∞

[{
Q̃1 Q̃(2)

0 (x)− Q̃0 Q̃(2)
1 (x)

}
Q̃(1)

n (x)

+

{
Q̃0 Q̃(1)

1 (x)− Q̃1 Q̃(1)
0 (x)

}
Q̃(2)

n (x)
]

(2.7)

with

Q̃(1)
0 (x) = 2φ1

(
t−1, βu−1

t−1α−1u−1q
; q, α−1uq

)
,

Q̃(1)
1 (x) = u−1(1− αtu) 2φ1

(
t−1q−1, βu−1

t−1α−1u−1 ; q, α−1uq

)
,

Q̃(2)
0 (x) = 2φ1

(
tq, α−1uq

tβuq
; q, αu

)
,

Q̃(2)
1 (x) =

u(1− tq)(1− tαβ)

(1− tβuq) 2φ1

(
tq2, α−1uq

tβuq2 ; q, αu

)
.

Since

lim
n→∞

un Q̃(1)
n (x) =

(tαu, βu; q)∞
(u2; q)∞

,

lim
n→∞

un Q̃(2)
n (x) = 0,

if we take the limit limn→∞ un Q̃n(x), then we have

lim
n→∞

un Q̃n(x) =
u(tβuq, αu; q)∞

(u2; q)∞

{
Q̃1 Q̃(2)

0 (x)− Q̃0 Q̃(2)
1 (x)

}
. (2.8)

In the latter half of this section, we briefly recall our tools, i.e. partitions and Pfaffians. We follow the notation in [14]
concerning partitions and the symmetric functions. For more information about the general theory of determinants
and Pfaffians, the reader can refer to [12,13,9] since, in this paper, we sometimes omit the details and give sketches of
proofs.

Let n be a non-negative integer and assume that we are given a 2n by 2n skew-symmetric matrix A = (ai j )1≤i, j≤2n ,
(i.e. a j i = −ai j ), whose entries ai j are in a commutative ring. The Pfaffian of A is, by definition,

Pf(A) =
∑

ε(σ1, σ2, . . . , σ2n−1, σ2n) aσ1σ2 . . . aσ2n−1σ2n ,

where the summation is over all partitions {{σ1, σ2}<, . . . , {σ2n−1, σ2n}<} of [2n] into 2-element blocks, and where
ε(σ1, σ2, . . . , σ2n−1, σ2n) denotes the sign of the permutation(

1 2 · · · 2n
σ1 σ2 · · · σ2n

)
.

We call a partition σ = {{σ1, σ2}<, . . . , {σ2n−1, σ2n}<} of [2n] into 2-element blocks a perfect matching or 1-factor
of [2n], and let Fn denote the set of all perfect matchings of [2n]. We represent a perfect matching σ graphically by
embedding the points i ∈ [2n] along the x-axis in the coordinate plane and representing each block {σ2i−1, σ2i }< by
the curve connecting σ2i−1 to σ2i in the upper half plane. The graphical representation of σ = {{1, 4}, {2, 5}, {3, 6}}
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Fig. 1. A perfect matching.

is given in Fig. 1. If we write wt(σ ) = ε(σ )
∏n

i=1 aσ2i−1σ2i for each perfect matching σ , then we can restate our
definition as

Pf(A) =
∑
σ∈Fn

wt(σ ). (2.9)

A skew-symmetric matrix A = (ai j )1≤i, j≤n is uniquely determined by its upper triangular entries (ai j )1≤i< j≤n . So
we sometimes define a skew-symmetric matrix by describing its upper triangular entries. One of the most important
formulas for Pfaffians is the expansion formula by minors. While the Laplacian determinant expansion formula by
minors should be well known to everybody, the reader might not be so familiar with the Pfaffian expansion formula
by minors so that we cite the formula here. For 1 ≤ i < j ≤ 2n, let (A; {i, j}, {i, j}) denote the (2n − 2)× (2n − 2)
skew-symmetric matrix obtained by removing both the i th and j th rows and both the i th and j th columns of A. Let
us define γ (i, j) by

γ (i, j) = (−1) j−i−1 Pf(A; {i, j}, {i, j}). (2.10)

Then the following identities are called the Laplacian Pfaffian expansions by minors:

δi, j Pf (A) =
2n∑

k=1

ak jγ (k, i), (2.11)

δi, j Pf (A) =
2n∑

k=1

aikγ ( j, k). (2.12)

(See [8,9].) We call the formula (2.11) the Pfaffian expansion along the j th column, and the formula (2.12) the Pfaffian
expansion along the i th row. Especially, if we put i = 1 in (2.12), then we obtain the expansion formula along the first
row:

Pf (A) =
2n∑

k=2

(−1)ka1,k Pf(A; {1, k}, {1, k}). (2.13)

Let Om,n denote the m × n zero matrix and let En denote the identity matrix (δi, j )1≤i, j≤n of size n. Here δi, j denotes
the Kronecker delta. We use the abbreviation On for On,n .

For any finite set S and any non-negative integer r , let
(

S
r

)
denote the set of all r -element subsets of S. For

example,
(
[n]
r

)
stands for the set of all multi-indices {i1, . . . , ir } such that 1 ≤ i1 < . . . < ir ≤ n. Let m, n and

r be integers such that r ≤ m, n and let T be an m by n matrix. For any index sets I = {i1, . . . , ir } ∈
(
[m]
r

)
and

J = { j1, . . . , jr } ∈
(
[n]
r

)
, let ∆I

J (A) denote the submatrix obtained by selecting the rows indexed by I and the

columns indexed by J . If r = m and I = [m], we simply write ∆J (A) for ∆[m]J (A). Similarly, if r = n and J = [n],
we write ∆I (A) for ∆I

[n](A). It is essential that the weight ω(λ) can be expressed by a Pfaffian, which is a fact proved
in [6]:

Theorem 2.1. Let n be a non-negative integer. Let λ = (λ1, . . . , λ2n) be a partition such that `(λ) ≤ 2n, and put
l = (l1, . . . , l2n) = λ + δ2n , where δm = (m − 1,m − 2, . . . , 1, 0) for a non-negative integer m. Define a skew-
symmetric matrix A = (αi j )i, j≥0 by

αi j = ad( j−1)/2ebb( j−1)/2ccdi/2edbi/2c
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for i < j . Then we have

Pf
[
∆I (λ)

I (λ) (A)
]

1≤i, j≤2n
= (abcd)(

n
2 )ω(λ),

where I (λ) = {l2n, . . . , l1}.

A variation of this theorem for strict partitions is as follows.

Theorem 2.2. Let n be a non-negative integer. Let µ = (µ1, . . . , µn) be a strict partition such that µ1 > · · · > µn ≥

0. Let K (µ) = {µn, . . . , µ1}. Define a skew-symmetric matrix B = (βi j )i, j≥−1 by

βi j =


1, if i = −1 and j = 0,
ad j/2ebb j/2cz, if i = −1 and j ≥ 1,
ad j/2ebb j/2cz, if i = 0,
ad j/2ebb j/2ccdi/2edbi/2cz2, if i > 0,

(2.14)

for −1 ≤ i < j .

(i) If n is even, then we have

Pf
[
∆K (µ)

K (µ) (B)
]
= ω(µ)z`(µ). (2.15)

(ii) If n is odd, then we have

Pf
[
∆{−1}]K (µ)
{−1}]K (µ) (B)

]
= ω(µ)z`(µ). � (2.16)

These theorems are easy consequences of the following lemma which has been proved in [8, Section 4, Lemma 7].

Lemma 2.3. Let xi and y j be indeterminates, and let n be a non-negative integer. Then

Pf[xi y j ]1≤i< j≤2n =

n∏
i=1

x2i−1

n∏
i=1

y2i . �

3. Strict partitions

A partition µ is strict if all its parts are distinct. One represents the associated shifted diagram of µ as a diagram in
which the i th row from the top has been shifted to the right by i places so that the first column becomes a diagonal.
A strict partition can be written uniquely in the form µ = (µ1, . . . , µ2n) where n is an non-negative integer and
µ1 > µ2 > · · · > µ2n ≥ 0. The length `(µ) is, by definition, the number of non-zero parts of µ. We define the weight
function ω(µ) similarly as in (1.1). For example, if µ = (8, 5, 3), then `(µ) = 3, ω(µ) = a6b5c3d2 and its shifted
diagram is as follows.

Let

ΨN = ΨN (a, b, c, d; z) =
∑

ω(µ)z`(µ), (3.1)

where the sum is over all strict partitions µ such that each part of µ is less than or equal to N . For example, we have

Ψ0 = 1,

Ψ1 = 1+ az,

Ψ2 = 1+ a(1+ b)z + abcz2,

Ψ3 = 1+ a(1+ b + ab)z + abc(1+ a + ad)z2
+ a3bcdz3.
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In fact, the only strict partition such that `(µ) = 0 is ∅, the strict partitions µ such that `(µ) = 1 and µ1 ≤ 3 are the
following three:

a a b a b a ,

the strict partitions µ such that `(µ) = 2 and µ1 ≤ 3 are the following three:

a b
c

a b a
c

a b a
c d ,

and the strict partition µ such that `(µ) = 3 and µ1 ≤ 3 is the following one:

a b a
c d

a .

The sum of the weights of these strict partitions is equal to Ψ3. In this section we always assume |a|, |b|, |c|, |d| < 1.
One of the main results of this section is that the even terms and the odd terms of ΨN respectively satisfy the associated
Al-Salam–Chihara recurrence relation:

Theorem 3.1. Set q = abcd. Let ΨN = ΨN (a, b, c, d; z) be as in (3.1) and put X N = Ψ2N and YN = Ψ2N+1. Then
X N and YN satisfy

X N+1 =

{
1+ ab + a(1+ bc)z2q N

}
X N − ab(1− z2q N )(1− acz2q N−1)X N−1, (3.2)

YN+1 =

{
1+ ab + abc(1+ ad)z2q N

}
YN − ab(1− z2q N )(1− acz2q N )YN−1, (3.3)

where X0 = 1, Y0 = 1+ az, X1 = 1+ a(1+ b)z + abcz2 and

Y1 = 1+ a(1+ b + ab)z + abc(1+ a + ad)z2
+ a3bcdz3.

Especially, if we put X ′N = (ab)−
N
2 X N and Y ′N = (ab)−

N
2 YN , then X ′N and Y ′N satisfy{

(ab)
1
2 + (ab)−

1
2

}
X ′N = X ′N+1 − a

1
2 b−

1
2 (1+ bc)z2q N X ′N + (1− z2q N )(1− acz2q N−1)X ′N−1, (3.4){

(ab)
1
2 + (ab)−

1
2

}
Y ′N = Y ′N+1 − a

1
2 b

1
2 c(1+ ad)z2q N Y ′N + (1− z2q N )(1− a2bc2dz2q N−1)Y ′N−1, (3.5)

where X ′0 = 1, Y ′0 = 1+ az, X ′1 = (ab)−
1
2 + a

1
2 b−

1
2 (1+ b)z + (ab)

1
2 cz2 and

Y ′1 = (ab)−
1
2 + a

1
2 b−

1
2 (1+ b + ab)z + a

1
2 b

1
2 c(1+ a + ad)z2

+ a
5
2 b

1
2 cdz3.

Thus (3.4) agrees with the associated Al-Salam–Chihara recurrence relation (2.2) where u = a
1
2 b

1
2 , α = −a

1
2 b

1
2 c,

β = −a
1
2 b−

1
2 and t = z2, and (3.5) also agrees with (2.2) where u = a

1
2 b

1
2 , α = −a

1
2 b

1
2 c, β = −a

3
2 b

1
2 cd and

t = z2. One concludes that, when |a|, |b|, |c|, |d| < 1, the solutions of (3.2) and (3.3) are expressed by the linear
combinations of (2.3) and (2.4) as follows.

Theorem 3.2. Assume |a|, |b|, |c|, |d| < 1 and set q = abcd. Let ΨN = ΨN (a, b, c, d; z) be as in (3.1).

(i) Put X N = Ψ2N . Then we have

X N =
(−az2q,−abc; q)∞
(−a,−abcz2; q)∞

{
(s X

0 X1 − s X
1 X0)(−abcz2

; q)N 2φ1

(
q−N z−2,−b−1

−(abc)−1q−N+1z−2 ; q,−c−1q

)
+ (r X

1 X0 − r X
0 X1)(ab)N (qz2, acz2

; q)N

(−aqz2; q)N
2φ1

(
q N+1z2,−c−1q

−aq N+1z2 ; q,−abc

)}
, (3.6)
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where

r X
0 = 2φ1

(
z−2,−b−1

−(abc)−1z−2q
; q,−c−1q

)
,

s X
0 = 2φ1

(
z2q,−c−1q

−az2q
; q,−abc

)
,

r X
1 = (1+ abcz2) 2φ1

(
z−2q−1,−b−1

−(abc)−1z−2 ; q,−c−1q

)
,

s X
1 =

ab(1− z2q)(1− acz2)

1+ az2q 2φ1

(
z2q2,−c−1q

−az2q2 ; q,−abc

)
.

(ii) Put YN = Ψ2N+1. Then we have

YN =
(−aq2z2,−abc; q)∞
(−aq,−abcz2; q)∞

{
(sY

0 Y1 − sY
1 Y0)(−abcz2

; q)N 2φ1

(
q−N z−2,−acd

−(abc)−1q−N+1z−2 ; q,−c−1q

)
+ (rY

1 Y0 − rY
0 Y1)(ab)N (qz2, acqz2

; q)N

(−aq2z2; q)N
2φ1

(
q N+1z2,−c−1q

−aq N+2z2 ; q,−abc

)}
, (3.7)

where

rY
0 = 2φ1

(
z−2,−acd

(−abc)−1qz−2 ; q,−c−1q

)
,

rY
1 = (1+ abcz2) 2φ1

(
q−1z−2,−acd

−(abc)−1z−2 ; q,−c−1q

)
,

sY
0 = 2φ1

(
z2q,−c−1q

−aq2z2 ; q,−abc

)
,

sY
1 =

ab(1− z2q)(1− acqz2)

1+ aq2z2 2φ1

(
z2q2,−c−1q

−aq3z2 ; q,−abc

)
.

If we take the limit N → ∞ in (3.6) and (3.7), then by using (2.8), we obtain the following generalization of
Boulet’s result (see Corollary 3.6).

Corollary 3.3. Assume |a|, |b|, |c|, |d| < 1 and set q = abcd. Let s X
i , sY

i , X i , Yi (i = 0, 1) be as in the above
theorem. Then we have∑

µ

ω(µ)z`(µ) =
(−abc,−az2q; q)∞

(ab; q)∞
(s X

0 X1 − s X
1 X0)

=
(−abc,−az2q2

; q)∞
(ab; q)∞

(sY
0 Y1 − sY

1 Y0), (3.8)

where the sum runs over all strict partitions and the first terms are as follows:

1+
a(1+ b)

1− ab
z +

abc(1+ a + ad + abd)

(1− ab)(1− q)
z2
+

a2q(1+ b)(1+ bc + abc + bq)

(1− ab)(1− q)(1− abq)
z3
+ O(z4).

On the other hand, by plugging z = 1 into (3.6) and (3.7), we conclude that the solutions of the recurrence relations
(3.4) and (3.5) with the above initial condition are exactly the Al-Salam–Chihara polynomials, which gives two finite
versions of Boulet’s result.

Corollary 3.4. Put u =
√

ab, x = u+u−1

2 and q = abcd. Let ΨN (a, b, c, d; z) be as in (3.1).
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(i) The polynomial Ψ2N (a, b, c, d; 1) is given by

Ψ2N (a, b, c, d; 1) = (ab)
N
2 QN (x;−a

1
2 b

1
2 c,−a

1
2 b−

1
2 |q),

= (−a; q)N 2φ1

(
q−N ,−c

−a−1q−N+1 ; q,−bq

)
. (3.9)

(ii) The polynomial Ψ2N+1(a, b, c, d; 1) is given by

Ψ2N+1(a, b, c, d; 1) = (1+ a)(ab)
N
2 QN (x;−a

1
2 b

1
2 c,−a

3
2 b

1
2 cd|q)

= (−a; q)N+1 2φ1

(
q−N ,−c

−a−1q−N ; q,−b

)
. (3.10)

Substituting a = zyq , b = z−1 yq, c = zy−1q and d = z−1 y−1q into Corollary 3.4 (see [2]), then we immediately
obtain the strict version of Andrews’ result (see Corollary 4.4).

Corollary 3.5.∑
µ strict partitions

µ1≤2N

zO(µ)yO(µ′)q |µ| =
N∑

j=0

[
N

j

]
q4
(−zyq; q4) j (−zy−1q; q4)N− j (yq)2N−2 j , (3.11)

and ∑
µ strict partitions
µ1≤2N+1

zO(µ)yO(µ′)q |µ| =
N∑

j=0

[
N

j

]
q4
(−zyq; q4) j+1(−zy−1q; q4)N− j (yq)2N−2 j , (3.12)

where[
N

j

]
q
=


(1− q N )(1− q N−1) · · · (1− q N− j+1)

(1− q j )(1− q j−1) · · · (1− q)
, for 0 ≤ j ≤ N ,

0, if j < 0 and j > N .

Letting N → ∞ in Corollary 3.4 or setting z = 1 in (3.8), we obtain the following result of Boulet (cf. [2,
Corollary 2]).

Corollary 3.6 (Boulet). Let q = abcd, then∑
µ

ω(µ) =
(−a; q)∞(−abc; q)∞

(ab; q)∞
, (3.13)

where the sum runs over all strict partitions.

To prove Theorem 3.1, we need several steps. Our strategy is as follows: write the weight ω(µ)z`(µ) as a Pfaffian
(Theorem 2.2) and apply the minor summation formula (Lemma 3.7) to make the sum of the weights into a single
Pfaffian (Theorem 3.8). Then we make use of the Pfaffian to derive a recurrence relation (Proposition 3.9). We also
give another proof of the recurrence relation by a combinatorial argument (Remark 3.10).

Let Jn denote the square matrix of size n whose (i, j)th entry is δi,n+1− j . We simply write J for Jn when there is
no fear of confusion on the size n. We need the following result on a sum of Pfaffians [18, Theorem of Section 4].

Lemma 3.7. Let n be a positive integer. Let A = (ai j )1≤i, j≤n and B = (bi j )1≤i, j≤n be skew-symmetric matrices of
size n. Then

bn/2c∑
t=0

zt
∑

I∈
(
[n]
2t

) γ |I | Pf
(
∆I

I (A)
)

Pf
(
∆I

I (B)
)
= Pf

[
Jn

t A Jn Jn
−Jn C

]
, (3.14)

where |I | =
∑

i∈I i and C = (Ci j )1≤i, j≤n is given by Ci j = γ
i+ j bi j z.

This lemma is a special case of Lemma 5.4, so a proof will be given later.
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Let Sn denote the n × n skew-symmetric matrix whose (i, j)th entry is 1 for 0 ≤ i < j ≤ n. As a corollary of
Lemma 3.7, we obtain the following expression of the sum of the weight ω(µ) by a single Pfaffian.

Theorem 3.8. Let N be a non-negative integer.

ΨN (a, b, c, d; z) = Pf
[

SN+1 JN+1
−JN+1 B

]
, (3.15)

where B = (βi j )0≤i< j≤N is the (N + 1) × (N + 1) skew-symmetric matrix whose (i, j)th entry βi j is defined as in
(2.14).

Proof. Here we assume that the row/column indices start at 0. Note that any strict partition µ is written uniquely as
µ = (µ1, . . . , µ2t ) with µ1 > · · · > µ2t ≥ 0. Here 2t = `(µ) if `(µ) is even, and 2t = `(µ)+ 1 and µ2t = 0 if `(µ)
is odd. Thus, using Theorem 2.2 (2.15), we obtain

ΨN (a, b, c, d; z) =
∑
µ strict
µ1≤N

ω(µ)z`(µ) =
b(N+1)/2c∑

t=0

∑
µ=(µ1,...,µ2t )

N≥µ1>···>µ2t≥0

ω(µ)z`(µ)

=

b(N+1)/2c∑
t=0

∑
µ=(µ1,...,µ2t )

N≥µ1>···>µ2t≥0

Pf
(
∆K (µ)

K (µ) (B)
)
=

b(N+1)/2c∑
t=0

∑
I∈
(
[0,N ]

2t

)Pf
(
∆I

I (B)
)
.

If we put n = N + 1, z = γ = 1 and A = SN+1 into (3.14), then we obtain

b(N+1)/2c∑
t=0

∑
I∈
(
[0,N ]

2t

)Pf
(
∆I

I (B)
)
= Pf

[
JN+1

t SN+1 JN+1 JN+1
−JN+1 C

]
,

since Pf
(
∆I

I (SN+1)
)
= 1 holds for any subset I ⊆ [0, N ] of even cardinality. (For detailed arguments on sub-

Pfaffians, see [9]). In this case, C = (Ci j ) in Lemma 3.7 is equal to B = (bi j ) in (2.14) because of z = γ = 1. It
is also easy to check that JN+1

t SN+1 JN+1 = SN+1. Thus we easily obtain the desired formula (3.15) from these
identities. This completes the proof. �

For example, if N = 3, then the skew-symmetric matrix in the right-hand side of (3.15) is

0 1 1 1 0 0 0 1
−1 0 1 1 0 0 1 0
−1 −1 0 1 0 1 0 0
−1 −1 −1 0 1 0 0 0

0 0 0 −1 0 az abz a2bz
0 0 −1 0 −az 0 abcz2 a2bcz2

0 −1 0 0 −abz −abcz2 0 a2bcdz2

−1 0 0 0 −a2bz −a2bcz2
−a2bcdz2 0


, (3.16)

whose Pfaffian equals Ψ3 = 1+ a(1+ b + ab)z + abc(1+ a + ad)z2
+ a3bcdz3.

By performing elementary transformations on rows and columns of the matrix, we obtain the following recurrence
relation:

Proposition 3.9. Let ΨN = ΨN (a, b, c, d; z) be as above. Then we have

Ψ2N = (1+ b)Ψ2N−1 + (aN bN cN d N−1z2
− b)Ψ2N−2, (3.17)

Ψ2N+1 = (1+ a)Ψ2N + (aN+1bN cN d N z2
− a)Ψ2N−1, (3.18)

for any positive integer N.
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Proof. Let A denote the 2(N + 1)× 2(N + 1) skew-symmetric matrix
[

SN+1 JN+1
−JN+1 B

]
in the right-hand side of (3.15).

Here we assume that row/column indices start at 0. So, for example, the row indices for the upper (N + 1) rows are i ,
i = 0, . . . , N , and the row indices for the lower (N + 1) rows are i + N + 1, i = 0, . . . , N . If N = 3, then A is as in
Eq. (3.16), and the row/column indices are 0, . . . , 7 in which 0, . . . , 3 are called upper and 4,. . ., 7 are called lower.
Now, subtract a times ( j + N )th column from ( j + N +1)th column if j is odd, or subtract b times ( j + N )th column
from ( j + N + 1)th column if j is even, for j = N , N − 1, . . . , 1. To make our matrix skew-symmetric, subtract a
times (i + N )th row from (i + N + 1)th row if i is odd, or subtract b times (i + N )th row from (i + N + 1)th row
if i is even, for i = N , N − 1, . . . , 1. To make things clear, we take N = 3 case as an example. If N = 3, then we
first subtract a times 6th column from 7th column of the matrix (3.16), then we subtract b times 5th column from 6th
column of the resulting matrix, and lastly we subtract a times 4th column from 5th column of the resulting matrix.
Thus we obtain the skew-matrix

0 1 1 1 0 0 0 1
−1 0 1 1 0 0 1 −a
−1 −1 0 1 0 1 −b 0
−1 −1 −1 0 1 −a 0 0
0 0 0 −1 0 az 0 0
0 0 −1 0 −az a2z abcz2 0
0 −1 0 0 −abz a2bz − abcz2 ab2cz2 a2bcdz2

−1 0 0 0 −a2bz a3bz − a2bcz2 a2b2cz2
− a2bcdz2 a3bcdz2


. (3.19)

Next we perform the same operations on rows to make the matrix skew-symmetric, i.e., subtracting a times 6th row
from 7th row of the matrix (3.19), then subtracting b times 5th row from 6th row of the resulting matrix, and so on.
Then we obtain

0 1 1 1 0 0 0 1
−1 0 1 1 0 0 1 −a
−1 −1 0 1 0 1 −b 0
−1 −1 −1 0 1 −a 0 0
0 0 0 −1 0 az 0 0
0 0 −1 a −az 0 abcz2 0
0 −1 b 0 0 −abcz2 0 a2bcdz2

−1 a 0 0 0 0 −a2bcdz2 0


. (3.20)

In the next step, we subtract ( j + 1)th column from j th column for j = 0, 1, . . . , N − 1, then we also subtract
(i + 1)th row from i th row for i = 0, 1, . . . , N − 1. If N = 3, then this step is as follows. First, we subtract 1st
column from 0th column of the matrix (3.20), then we subtract 2nd column from 1st column of the resulting matrix,
and finally we subtract 3rd column from 2nd column of the resulting matrix. We perform the same operations on rows.
Then the resulting matrix looks as follows:

0 1 0 0 0 0 −1 1+ a
−1 0 1 0 0 −1 1+ b −a
0 −1 0 1 −1 1+ a −b 0
0 0 −1 0 1 −a 0 0
0 0 1 −1 0 az 0 0
0 1 −1− a a −az 0 abcz2 0
1 −1− b b 0 0 −abcz2 0 a2bcdz2

−1− a a 0 0 0 0 −a2bcdz2 0


. (3.21)

Let A′ denote the resulting matrix after these transformations. Then, in general, the resulting skew-symmetric matrix
A′ is written as

A′ =

[
P Q
−

t Q R

]
(3.22)
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with the (N + 1)× (N + 1) matrices P = (δi+1, j )0≤i< j≤N , Q = (qi j )0≤i< j≤N and R = (ri j )0≤i< j≤N whose entries
are given by

qi j =


−1 if i + j = N − 1,
1 if i = N and j = 0,
1+ aχ( j is odd)bχ( j is even) if i + j = N and j ≥ 1,
−aχ( j is odd)bχ( j is even) if i + j = N + 1,
0 otherwise,

ri j =

{
azδ1, j if i = 0,
ad(i+1)/2ebb(i+1)/2ccdi/2edbi/2cz2δi+1, j if i > 0.

Here χ(A) stands for 1 if the statement A is true and 0 otherwise. If we apply the expansion formula (2.13) to Pf(A′),
then we easily obtain the desired formula, i.e. (3.17) if N is even, and (3.18) if N is odd. We illustrate this expansion
by the above example. If we expand the Pfaffian of the skew-symmetric matrix (3.21) along the first row, then we
obtain

Ψ3 = Pf



0 1 −1 1+ a −b 0
−1 0 1 −a 0 0
1 −1 0 az 0 0

−1− a a −az 0 abcz2 0
b 0 0 −abcz2 0 a2bcdz2

0 0 0 0 −a2bcdz2 0



+Pf


0 1 0 0 −1 −a
−1 0 1 −1 1+ a 0
0 −1 0 1 −a 0
0 1 −1 0 az 0
1 −1− a a −az 0 0
a 0 0 0 0 0



+(1+ a)Pf


0 1 0 0 −1 1+ b
−1 0 1 −1 1+ a −b
0 −1 0 1 −a 0
0 1 −1 0 az 0
1 −1− a a −az 0 abcz2

−1− b b 0 0 −abcz2 0

 .

By expanding the first Pfaffian along the last column, we obtain that this Pfaffian equals a2bcdz2Ψ1. Similarly, by
expanding the second Pfaffian along the last column, we also obtain that this Pfaffian equals−aΨ1. The third Pfaffian
is evidently equal to Ψ2. Thus we obtain Ψ3 = (a2bcdz2

− a)Ψ1+ (1+ a)Ψ2. The general argument is similar based
on the above expression of (3.22). The details are left to the reader. This completes the proof. �

Remark 3.10. Proposition 3.9 can be also proved by a combinatorial argument as follows.

Combinatorial proof of Proposition 3.9. By definition, the generating function for strict partitions µ =

(µ1, µ2, . . .) such that µ1 = 2N and µ2 ≤ 2N − 2 is equal to

b(Ψ2N−1 −Ψ2N−2).

This, for strict partitions such that µ1 = 2N and µ2 = 2N − 1, is equal to

aN bN cN d N−1z2Ψ2N−2.

Finally the generating function of strict partitions such that µ1 ≤ 2N − 1 is equal to Ψ2N−1. Summing up we get
(3.17). The same argument can be used to prove (3.18). �

Note that one can immediately derive Theorem 3.1 from Proposition 3.9 by substitution. Thus, if one uses (2.7),
then he immediately derives Theorem 3.2 by a simple computation.



M. Ishikawa, J. Zeng / Discrete Mathematics 309 (2009) 151–175 163

Proof of Theorem 3.2. Let u =
√

ab, t = z2 and q = abcd. By (3.4), X ′N satisfies the associated Al-Salam–Chihara

recurrence relation (2.2) with α = −a
1
2 b

1
2 c and β = −a

1
2 b−

1
2 . Note that |u| < 1 and |q| < |α| < 1 hold. Thus, by

(2.7), we conclude that X N is given by (3.6). A similar argument shows that Y ′N satisfies (2.2) with α = −a
3
2 b

1
2 c and

β = −a
1
2 b

1
2 cd, which implies YN is given by (3.7). �

Proof of Corollary 3.4. First, substituting z by 1 in (3.6), we have

r X
0 = 1,

s X
0 =

∞∑
n=0

(1+ aqn+1)(−c−1q; q)n
(−aq; q)n+1

(−abc)n,

r X
1 = 1+ abc + a(1+ b),

s X
1 = ab(1− ac)

∞∑
n=0

(1− qn+1)(−c−1q; q)n
(−aq; q)n+1

(−abc)n .

Since X0 = 1 and X1 = 1+ a(1+ b)+ abc for z = 1, we derive r X
1 X0 − r X

0 X1 = 0 and

s X
0 X1 − s X

1 X0 = (1+ a)
∞∑

n=0

(−c−1q; q)n
(−aq; q)n+1

(−abc)n{a + abc + a(1+ b)qn+1
}

= (1+ a)

{
∞∑

n=0

(−c−1q; q)n
(−aq; q)n

(−abc)n −
∞∑

n=0

(−c−1q; q)n+1

(−aq; q)n+1
(−abc)n+1

}
= 1+ a.

Therefore, when z = 1, Eq. (3.6) reduces to

X N = (−abc; q)N 2φ1

(
q−N ,−b−1

−(abc)−1q−N+1 ; q,−c−1q

)
.

This establishes Eq. (3.9). A similar computation shows that we can derive (3.10) from (3.7) by specializing z to 1.
The details are left to the reader. �

Proof of Corollary 3.5. We first claim that

Ψ2N (a, b, c, d; 1) =
N∑

k=0

[
N

k

]
q
(−a; q)k(−c; q)N−k(ab)N−k . (3.23)

Then (3.11) is an easy consequence of (3.23) by substituting a ← zyq , b← z−1 yq, c← zy−1q and d ← z−1 y−1q .

In fact, using (q−N
; q)k =

(q;q)N
(q;q)N−k

(−1)kq

(
k
2

)
−Nk

, we have

2φ1

(
q−N ,−c

−a−1q−N+1 ; q,−bq

)
=

N∑
k=0

[
N

k

]
q

(−c; q)N−k

(−a−1q−N+1; q)N−k
q

(
N−k

2

)
−N (N−k)

(bq)N−k .

Substitute (−a−1q−N+1
; q)N−k =

(−a;q)N
(−a;q)k

a−N+kq
−

(
N
2

)
+

(
k
2

)
into this identity to show that the right-hand side equals

N∑
k=0

[
N

k

]
q

(−a; q)k(−c; q)N−k

(−a; q)N
(ab)N−k .

Finally, use (3.9) to obtain (3.23). The proof of (3.12) reduces to

Ψ2N+1(a, b, c, d; 1) =
N∑

k=0

[
N

k

]
q
(−a; q)k+1(−c; q)N−k(ab)N−k, (3.24)

which is derived from (3.10) similarly. �
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Proof of Corollary 3.6. By replacing k by N − k and letting N to +∞ in (3.23), we get

lim
N→∞

Ψ2N (a, b, c, d; 1) = (−a; q)∞
∞∑

k=0

(−c; q)k
(q; q)k

(ab)k =
(−a; q)∞(−abc; q)∞

(ab; q)∞
,

where the last equality follows from the q-binomial formula (see [3]). Similarly we can derive the limit from (3.24).
Note that we can also derive (3.13) from (3.8) by the same argument as in the proof of Corollary 3.4. �

4. Ordinary partitions

First we present a generalization of Andrews’ result in [1]. Let us consider

ΦN = ΦN (a, b, c, d; z) =
∑
λ

λ1≤N

ω(λ)z`(λ), (4.1)

where the sum runs over all partitions λ such that each part of λ is less than or equal to N . For example, the first few
terms can be computed directly as follows:

Φ0 = 1,

Φ1 =
1+ az

1− acz2 ,

Φ2 =
1+ a(1+ b)z + abcz2

(1− acz2)(1− qz2)
,

Φ3 =
1+ a(1+ b + ab)z + abc(1+ a + ad)z2

+ a3bcdz3

(1− z2ac)(1− z2q)(1− z2acq)
,

where q = abcd as before. If one compares these with the first few terms of ΨN , one can easily guess that the
following theorem holds:

Theorem 4.1. For non-negative integer N, let ΦN = ΦN (a, b, c, d; z) be as in (4.1) and q = abcd. Then we have

ΦN (a, b, c, d; z) =
ΨN (a, b, c, d; z)

(z2q; q)bN/2c(z2ac; q)dN/2e
, (4.2)

where ΨN = ΨN (a, b, c, d; z) is the generating function defined in (3.1). Note that ΨN is explicitly given in terms of
basic hypergeometric functions in Theorem 3.2.

In fact, the main purpose of this section is to prove this theorem. Here we give two proofs, i.e. an algebraic
proof (see Propositions 4.6 and 4.7) and a bijective proof (see Remark 4.8). Before we proceed to the proofs of this
theorem we state the corollaries immediately obtained from this theorem and the results in Section 3. First of all, as
an immediate corollary of Theorem 4.1 and Corollary 3.3, we obtain the following generalization of Boulet’s result
(Corollary 4.5).

Corollary 4.2. Assume |a|, |b|, |c|, |d| < 1 and set q = abcd. Let s X
i , sY

i , X i , Yi (i = 0, 1) be as in Theorem 3.2.
Then we have∑

λ

ω(λ)z|µ| =
(−abc,−az2q; q)∞
(ab, acz2, z2q; q)∞

(s X
0 X1 − s X

1 X0)

=
(−abc,−a2bcdz2q; q)∞
(ab, acz2, z2q; q)∞

(sY
0 Y1 − sY

1 Y0), (4.3)

where the sum runs over all partitions λ.

Theorem 4.1 and Corollary 3.4 also give the following corollary:

Corollary 4.3. Put x = (ab)
1
2+(ab)−

1
2

2 and q = abcd. Let ΦN = ΦN (a, b, c, d; z) be as in (4.1).
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(i) The generating function Φ2N (a, b, c, d; 1) is given by

Φ2N (a, b, c, d; 1) =
(ab)

N
2 QN (x;−a

1
2 b

1
2 c,−a

1
2 b−

1
2 |q)

(q; q)N (ac; q)N

=
(−a; q)N

(q; q)N (ac; q)N
2φ1

(
q−N ,−c

−a−1q−N+1 ; q,−bq

)
. (4.4)

(ii) The generating function Φ2N (a, b, c, d; 1) is given by

Φ2N+1(a, b, c, d; 1) =
(1+ a)(ab)

N
2 QN (x;−a

1
2 b

1
2 c,−a

3
2 b

1
2 cd|q)

(q; q)N (ac; q)N+1

=
(−a; q)N+1

(q; q)N (ac; q)N+1
2φ1

(
q−N ,−c

−a−1q−N ; q,−b

)
. (4.5)

Let SN (n, r, s) denote the number of partitions π of n where each part of π is ≤ N , O(π) = r , O(π ′) = s. As
before we immediately deduce the following result of Andrews (cf. [1, Theorem 1]) from Corollary 4.3.

Corollary 4.4 (Andrews).

∑
n,r,s≥0

S2N (n, r, s)qnzr ys
=

N∑
j=0

[
N
j

]
q4
(−zyq; q4) j (−zy−1q; q4)N− j (yq)2N−2 j

(q4; q4)N (z2q4; q4)N
, (4.6)

and

∑
n,r,s≥0

S2N+1(n, r, s)qnzr ys
=

N∑
j=0

[
N
j

]
q4
(−zyq; q4) j+1(−zy−1q; q4)N− j (yq)2N−2 j

(q4; q4)N (z2q4; q4)N+1
. (4.7)

Similarly, as in the strict case, we obtain immediately Boulet’s corresponding result for ordinary partitions (cf. [2,
Theorem 1]).

Corollary 4.5 (Boulet). Let q = abcd, then∑
λ

ω(λ) =
(−a; q)∞(−abc; q)∞

(q; q)∞(ab; q)∞(ac; q)∞
, (4.8)

where the sum runs over all partitions.

In order to prove Theorem 4.1 we first derive a recurrence formula for ΦN (a, b, c, d; z).

Proposition 4.6. Let ΦN = ΦN (a, b, c, d; z) be as before and q = abcd. Then the following recurrences hold for
any positive integer N.

(1− z2q N )Φ2N = (1+ b)Φ2N−1 − bΦ2N−2, (4.9)

(1− z2acq N )Φ2N+1 = (1+ a)Φ2N − aΦ2N−1. (4.10)

Proof. It suffices to prove that

Φ2N = Φ2N−1 + b(Φ2N−1 − Φ2N−2)+ z2q N Φ2N , (4.11)

Φ2N+1 = Φ2N + a(Φ2N − Φ2N−1)+ z2acq N Φ2N+1. (4.12)

Let L N denote the set of partitions λ such that λ1 ≤ N . The generating function of L N with weight ω(λ)z`(λ) is
ΦN = ΦN (a, b, c, d; z). We divide L N into three disjoint subsets:

L N = L N−1 ]M N ]N N ,
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where M N denote the set of partitions λ such that λ1 = N and λ2 < N , and N N denote the set of partitions λ such that
λ1 = λ2 = N . When N = 2r is even, it is easy to see that the generating function of M2r equals b(Φ2r−1 − Φ2r−2),
and the generating function of N2r equals z2qrΦ2r . This proves (4.11). When N = 2r + 1 is odd, the same division
proves (4.12). �

By simple computation, one can derive the following identities from (4.9) and (4.10).

Proposition 4.7. If we put

ΦN (a, b, c, d; z) =
FN (a, b, c, d; z)

(z2q; q)bN/2c(z2ac; q)dN/2e
, (4.13)

then,

F2N = (1+ b)F2N−1 − b(1− z2acq N−1)F2N−2, (4.14)

F2N+1 = (1+ a)F2N − a(1− z2q N )F2N−1 (4.15)

hold for any positive integer N.

Proof. Substitute (4.13) into (4.9) and (4.10), and compute directly to obtain (4.14) and (4.15). �

Proof of Theorem 4.1. From (4.14) and (4.15), one easily sees that F2N (a, b, c, d; z) and F2N+1(a, b, c, d; z) satisfy
exactly the same recurrence in Theorem 3.1. Further, from the above example, we see

F0 = 1,

F1 = 1+ az,

F2 = 1+ a(1+ b)z + abcz2,

F3 = 1+ a(1+ b + ab)z + abc(1+ a + ad)z2
+ a3bcdz3,

F4 = 1+ a(1+ b)(1+ ab)z + abc(1+ a + ab + ad + abd + abcd)z2

+ a3bcd(1+ b)(1+ bc)z3
+ a3b3c3dz4.

Thus the first few terms of FN (a, b, c, d; z) agree with those of ΨN (a, b, c, d; z). We immediately conclude that
FN (a, b, c, d; z) = ΨN (a, b, c, d; z) for all N . �

Remark 4.8. Here we also give another proof of Theorem 4.1 by a bijection, which has already been used by
Boulet [2] in the infinite case.

Bijective proof of Theorem 4.1. Let P N (resp. D N ) denote the set of partitions (resp. strict partitions) whose parts
are less than or equal to N and let E N denote the set of partitions whose parts appear an even number of times and are
less than or equal to N . We shall establish a bijection g : P N −→ D N × E N with g(λ) = (µ, ν) defined as follows.
Suppose λ has k parts equal to i . If k is even then ν has k parts equal to i , and if k is odd then ν has k − 1 parts equal
to i . The parts of λ which were not removed to form ν, at most one of each cardinality, give µ. It is clear that under
this bijection, ω(λ) = ω(µ)ω(ν). It is easy to see that the generating function of E N is equal to

b
N
2 c∏

j=1

1

1− z2q j
×

b
N−1

2 c∏
j=0

1

1− z2acq j
,

where q = abcd. As b N−1
2 c = d

N
2 e − 1, we obtain (4.13). �

At the end of this section we state another enumeration of ordinary partitions, which is not directly related to
Andrews’ result, but obtained as an application of the minor summation formula of Pfaffians. Let

ΦN ,M = ΦN ,M (a, b, c, d) =
∑
λ

λ1≤N , `(λ)≤M

ω(λ),

where the sum runs over all partitions λ such that λ has at most M parts and each part of λ is less than or equal to N .
Again we use Lemma 3.7 and Theorem 2.1 to obtain the following theorem.
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Theorem 4.9. Let N be a positive integer and set q = abcd. Then we have

bN/2c∑
t=0

ΦN−2t,2t (a, b, c, d) zt q
( t

2

)
= Pf

[
SN JN
−JN C

]
, (4.16)

where S = (1)0≤i< j≤N−1 and C = (ad( j−1)/2ebb( j−1)/2ccdi/2edbi/2cz)0≤i< j≤N−1.

Proof. As in the proof of Theorem 3.8, we take n = N , γ = 1 and A = SN in (3.14), then we obtain

bN/2c∑
t=0

zt
∑

I∈
(
[0,N−1]

2t

)Pf
(
∆I

I (B)
)
= Pf

[
JN

t SN JN JN
−JN C

]
,

where C = (bi j z)0≤i, j≤N−1. If we take bi j = ad( j−1)/2ebb( j−1)/2ccdi/2edbi/2c, then Theorem 2.1 implies

Pf
(
∆I

I (B)
)
= ω(λ)q

( t
2

)
,

where I (λ) = I . Thus, using JN
t SN JN = SN and the above formulas, we obtain

bN/2c∑
t=0

zt q
( t

2

) ∑
I∈
(
[0,N−1]

2t

)ω(λ) = Pf
[

SN JN
−JN C

]
.

Now (4.16) follows since, when I runs over all 2t-subsets of [0, N −1], λ runs over all partitions with at most 2t parts
and each part is less than or equal to N − 2t . �

For example, if N = 4, then the right-hand side of (4.16) becomes

Pf



0 1 1 1 0 0 0 1
−1 0 1 1 0 0 1 0
−1 −1 0 1 0 1 0 0
−1 −1 −1 0 1 0 0 0
0 0 0 −1 0 z az abz
0 0 −1 0 −z 0 acz abcz
0 −1 0 0 −az −acz 0 abcdz
−1 0 0 0 −abz −abcz −abcdz 0


.

Let Φ̃N = Φ̃N (a, b, c, d; z) = Pf
[

S J
−J C

]
denote the right-hand side of (4.16). For example, we have Φ̃1 = 1,

Φ̃2 = 1 + z, Φ̃3 = 1 + (1 + a + ac)z and Φ̃4 = 1 + (1 + a + ab + ac + abc + abcd)z + abcdz2. Note that the
partitions λ such that `(λ) ≤ 2 and λ1 ≤ 2 are the following six:

∅ a a b
a
c

a b
c

a b
c d .

The sum of their weights is equal to [z]Φ̃4 = 1+ a + ab + ac + abc + abcd.
The same argument as in the proof of Proposition 3.9 can be used to prove the following proposition.

Proposition 4.10. Let Φ̃N = Φ̃N (a, b, c, d; z) be as above. Then we have

Φ̃2N = (1+ b)Φ̃2N−1 + (a
N−1bN−1cN−1d N−1z − b)Φ̃2N−2, (4.17)

Φ̃2N+1 = (1+ a)Φ̃2N + (a
N bN−1cN d N−1z − a)Φ̃2N−1, (4.18)

for any positive integer N.

Proof. Perform the same elementary transformations of rows and columns on
[

S J
−J C

]
as we did in the proof of

Proposition 3.9, and expand it along the last row/column. The details are left to the reader. �
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Remark 4.11. The recurrence equations (4.17) and (4.18) also can be proved combinatorially.

Proof of Proposition 4.10. Consider the generating function of partitions:∑
λ

`(λ)≤2t
λ1≤2 j+1−2t

w(λ) =
∑
λ

`(λ)≤2t
λ1≤2 j−2t

w(λ)+
∑
λ

`(λ)≤2t
λ1=2 j+1−2t

w(λ). (4.19)

Split the partitions λ in the second sum of the right side into two subsets: λ2 < λ1, and λ2 = λ1. Now

∑
λ:λ1>λ2
`(λ)≤2t

λ1=2 j+1−2t

w(λ) = a

 ∑
λ

`(λ)≤2t
λ1≤2 j−2t

w(λ)−
∑
λ

`(λ)≤2t
λ1≤2 j−1−2t

w(λ)

 , (4.20)

and ∑
λ:λ1=λ2
`(λ)≤2t

λ1=2 j+1−2t

w(λ) = acq j−t
∑
λ

`(λ)≤2t−2
λ1≤2 j+1−2t

w(λ). (4.21)

Plugging (4.20) and (4.21) into (4.19) and then multiplying by zt q
( t

2

)
and summing over t we get (4.18). Similarly we

can prove (4.17). �

Proposition 4.12. Set UN = Φ̃2N and VN = Φ̃2N+1, then, for N ≥ 1,

UN+1 =

{
1+ ab + ac(1+ bd)q N−1z

}
UN − a(b − zq N−1)(1− czq N−1)UN−1, (4.22)

VN+1 =

{
1+ ab + (1+ ac)zq N

}
VN − a(b − zq N )(1− czq N−1)VN−1, (4.23)

where U0 = 1, V0 = 1, U1 = 1+ z, V1 = 1+ (1+ a + ac)z.

Thus UN and VN are also expressed by the solutions of the associated Al-Salam–Chihara polynomials.

5. A weighted sum of Schur’s P-functions

We use the notation X = Xn = (x1, . . . , xn) for the finite set of variables x1, . . ., xn . The aim of this section is
to give some Pfaffian and determinantal formulas for the weighted sum

∑
ω(µ)z`(µ)Pµ(x) where Pµ(x) is Schur’s

P-function.
Let An denote the skew-symmetric matrix(

xi − x j

xi + x j

)
1≤i, j≤n

and for each strict partition µ = (µ1, . . . , µl) of length l ≤ n, let Γµ denote the n × l matrix
(

xµi
j

)
. Let

Aµ(x1, . . . , xn) =

(
An Γµ Jl

−Jl
tΓµ Ol

)
which is a skew-symmetric matrix of (n + l) rows and columns. Define Pfµ(x1, . . . , xn) to be Pf Aµ(x1, . . . , xn) if
n+ l is even, and to be Pf Aµ(x1, . . . , xn, 0) if n+ l is odd. By [14, Ex.13, p. 267], Schur’s P-function Pµ(x1, . . . , xn)

is defined to be

Pfµ(x1, . . . , xn)

Pf∅(x1, . . . , xn)
,
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where it is well known that Pf∅(x1, . . . , xn) =
∏

1≤i< j≤n
xi−x j
xi+x j

. Meanwhile, by [14, (8.7), p. 253], Schur’s Q-

function Qµ(x1, . . . , xn) is defined to be 2`(λ)Pµ(x1, . . . , xn). In this section, we consider a weighted sum of Schur’s
P-functions and Q-functions, i.e.,

ξN (a, b, c, d; Xn) =
∑
µ

µ1≤N

ω(µ)Pµ(x1, . . . , xn),

ηN (a, b, c, d; Xn) =
∑
µ

µ1≤N

ω(µ)Qµ(x1, . . . , xn),

where the sums run over all strict partitions µ such that each part of µ is less than or equal to N . More generally, we
can unify these problems to find the following sum:

ζN (a, b, c, d; z; Xn) =
∑
µ

µ1≤N

ω(µ)z`(µ)Pµ(x1, . . . , xn), (5.1)

where the sum runs over all strict partitions µ such that each part of µ is less than or equal to N . One of the main
results of this section is that ζN (a, b, c, d; z; Xn) can be expressed by a Pfaffian (see Corollary 5.6). Further, let us put

ζ(a, b, c, d; z; Xn) = lim
N→∞

ζN (a, b, c, d; z; Xn) =
∑
µ

ω(µ)z`(µ)Pµ(Xn), (5.2)

where the sum runs over all strict partitions µ. We also write

ξ(a, b, c, d; Xn) = ζ(a, b, c, d; 1; Xn) =
∑
µ

ω(µ)Pµ(Xn),

where the sum runs over all strict partitions µ. Then we have the following theorem:

Theorem 5.1. Let n be a positive integer. Then

ζ(a, b, c, d; z; Xn) =

{
Pf
(
γi j
)

1≤i< j≤n /Pf∅(Xn) if n is even,
Pf
(
γi j
)

0≤i< j≤n /Pf∅(Xn) if n is odd,
(5.3)

where

γi j =
xi − x j

xi + x j
+ ui j z + vi j z

2 (5.4)

with

ui j =

a det
(

xi + bx2
i 1− abx2

i
x j + bx2

j 1− abx2
j

)
(1− abx2

i )(1− abx2
j )

, (5.5)

vi j =

abcxi x j det
(

xi + ax2
i 1− a(b + d)x2

i − abdx3
i

x j + ax2
j 1− a(b + d)x2

j − abdx3
j

)
(1− abx2

i )(1− abx2
j )(1− abcdx2

i x2
j )

, (5.6)

if 1 ≤ i, j ≤ n, and

γ0 j = 1+
ax j (1+ bx j )

1− abx2
j

z (5.7)

if 1 ≤ j ≤ n.
Especially, when z = 1, we have

ξ(a, b, c, d; Xn) =

{
Pf
(
γ̃i j
)

1≤i< j≤n /Pf∅(Xn) if n is even,
Pf
(
γ̃i j
)

0≤i< j≤n /Pf∅(Xn) if n is odd,
(5.8)
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where

γ̃i j =


1+ ax j

1− abx2
j

if i = 0,

xi − x j

xi + x j
+ ṽi j if 1 ≤ i < j ≤ n,

with (5.9)

ṽi j =

a det
(

xi + bx2
i 1− b(a + c)x2

i − abcx3
i

x j + bx2
j 1− b(a + c)x2

j − abcx3
j

)
(1− abx2

i )(1− abx2
j )(1− abcdx2

i x2
j )

. (5.10)

We can generalize this result in the following theorem (Theorem 5.2) using the generalized Vandermonde
determinant used in [7]. Let n be a non-negative integer, and let X = (x1, . . . , x2n), Y = (y1, . . . , y2n), A =
(a1, . . . , a2n) and B = (b1, . . . , b2n) be 2n-tuples of variables. Let V n(X, Y, A) denote the 2n × n matrix whose
(i, j)th entry is ai xn− j

i y j−1
i for 1 ≤ i ≤ 2n, 1 ≤ j ≤ n, and let U n(X, Y ; A, B) denote the 2n × 2n matrix(

V n(X, Y, A) V n(X, Y, B)
)
. For instance if n = 2 then U 2(X, Y ; A, B) is

a1x1 a1 y1 b1x1 b1 y1
a2x2 a2 y2 b2x2 b2 y2
a3x3 a3 y3 b3x3 b3 y3
a4x4 a4 y4 b4x4 b4 y4

 .
Hereafter we use the following notation for n-tuples X = (x1, . . . , xn) and Y = (y1, . . . , yn) of variables:

X + Y = (x1 + y1, . . . , xn + yn), X · Y = (x1 y1, . . . , xn yn),

and, for integers k and l,

X k
= (xk

1 , . . . , xk
n ), X kY l

= (xk
1 yl

1, . . . , xk
n yl

n).

Let 1 denote the n-tuple (1, . . . , 1). For any subset I = {i1, . . . , ir } ∈
(
[n]
r

)
, let X I denote the r -tuple (xi1 , . . . , xir ).

Theorem 5.2. Let q = abcd. If n is an even integer, then we have

ξ(a, b, c, d; Xn) =

n/2∑
r=0

∑
I∈
(
[n]
2r

) (−1)
|I |−

(
r+1

2

)
ar q(

r
2 )∏

i∈I
(1− abx2

i )

∏
i, j∈I
i< j

xi + x j

(xi − x j )(1− qx2
i x2

j )

× det U r (X2
I , 1+ q X4

I , X I + bX2
I , 1− b(a + c)X2

I − abcX3
I ). (5.11)

If n is an odd integer, then we have

ξ(a, b, c, d; Xn) =

n∑
m=1

1+ axm

1− abx2
m

(n−1)/2∑
r=0

∑
I∈
(
[n]\{m}

2r

) (−1)
|I |−

(
r+1

2

)
ar q(

r
2 )∏

i∈I
(1− abx2

i )

∏
i∈I

xm + xi

xm − xi

×

∏
i, j∈I
i< j

xi + x j

(xi − x j )(1− qx2
i x2

j )
· det U r (X2

I , 1+ q X4
I , X I + bX2

I , 1− b(a + c)X2
I − abcX3

I ). (5.12)

Theorem 5.3. Let q = abcd. If n is an even integer, then ζ(a, b, c, d; z; Xn) is equal to

n/2∑
r=0

z2r
∑

I∈
(
[n]
2r

)
(−1)

|I |−
(

r+1
2

)
(abc)r q(

r
2 )
∏
i∈I

xi∏
i∈I
(1− abx2

i )

∏
i, j∈I
i< j

xi + x j

(xi − x j )(1− qx2
i x2

j )



M. Ishikawa, J. Zeng / Discrete Mathematics 309 (2009) 151–175 171

× det U r (X2
I , 1+ q X4

I , X I + aX2
I , 1− a(b + d)X2

I − abd X3
I )

+

n/2∑
r=0

z2r−1
∑

I∈
(
[n]
2r

)
∑
k<l

k,l∈I

(−1)|I |−(
r
2 )−1ar br−1cr−1q

(
r−1

2

)
{1+ b(xk + xl)+ abxk xl}

∏
i∈I ′

xi∏
i∈I
(1− abx2

i )

×

∏
i, j∈I
i< j

(xi + x j ) · det U r−1(X2
I ′ , 1+ q X4

I ′ , X I ′ + aX2
I ′ , 1− a(b + d)X2

I ′ − abd X3
I ′)∏

i, j∈I ′
i< j

(xi − x j )(1− qx2
i x2

j )
, (5.13)

where I ′ = I \ {k, l}.

Note that we can obtain a similar formula when n is odd by expanding the Pfaffian in (5.3) along the first row/column.
To obtain the sum of this type we need a generalization of Lemma 3.7, in which the row/column indices always

contain say the set {1, 2, . . . , n}, for some fixed n.

Lemma 5.4. Let n and N be non-negative integers. Let A = (ai j ) and B = (bi j ) be skew-symmetric matrices of size
(n + N ). We divide the set of row/column indices into two subsets, i.e. the first n indices I0 = [n] and the last N
indices I1 = [n + 1, n + N ]. Then∑

t≥0
n+t even

z(n+t)/2
∑

I∈
(

I1
t

) γ |I0]I | Pf
(
∆I0]I

I0]I (A)
)

Pf
(
∆I0]I

I0]I (B)
)
= Pf

(
Jn+N

t AJn+N Kn,N

−
t K n,N C

)
, (5.14)

where C = (Ci j )1≤i, j,≤n+N is given by Ci j = γ
i+ j bi j z and Kn,N = Jn+N Ẽn,N with

Ẽn,N =

(
On On,N

ON ,n EN

)
.

Proof. In general, if P =
(

P11 P12
−

t P12 P22

)
is a 2m × 2m skew-symmetric matrix where P11, P12 and P22 are m × m

matrices, then Pf P is the sum (2.9) over all perfect matchings on the vertices {1, 2, . . . ,m,m + 1,m + 2, . . . , 2m}.

Meanwhile, one easily sees that Pf
(

Jm P11 Jm Jm P12
−

t P12 Jm P22

)
is equal to a similar sum as in (2.9), but the sum should be taken

over all perfect matchings on the vertices {m,m − 1, . . . , 1,m + 1,m + 2, . . . , 2m}.
Let V = {(n + N )∗, . . . , (n + 1)∗, n∗, . . . , 1∗, 1, . . . , n, n + 1, . . . , n + N } be vertices arranged in this order on

the x-axis. Put V ∗0 = {n
∗, . . . , 1∗} and V ∗1 = {(n + N )∗, . . . , (n + 1)∗}, V0 = {1, . . . , n} and V1 = {n + 1, . . . , N }.

A perfect matching σ ∈ F(V ) on the vertices V is uniquely written as σ = σ1 ] σ2 ] σ3 where σ1 (resp. σ3) is the
set of arcs in σ connecting two vertices in V ∗1 ] V ∗0 (resp. V0 ] V1) and σ2 is the set of arcs in σ connecting a vertex
in V ∗1 ] V ∗0 and a vertex in V0 ] V1. Thus the Pfaffian in the right-hand side of (5.14) equals∑

σ

sgn σ
∏

( j∗,i∗)∈σ1

ai j

∏
(i∗, j)∈σ2

ki j

∏
(i, j)∈σ3

Ci j

summed over all perfect matchings σ ∈ F(V ) on V . Here ki j is the (i, j)th entry of Kn,N = Jn+N Ẽn,N . From the
definition of Ẽn,N ,

∏
(i∗, j)∈σ2

ki j vanishes unless σ2 is a collection of arcs (i∗, i) (i = n + 1, . . . , n + N ). Thus we
can assume that σ1 is a perfect matching on I ∗ ] V ∗0 and σ3 is a perfect matching on V0 ] I where I is a subset
V1. Here, if I = {i1, . . . , it } ∈ V1, then we write I ∗ = {i∗t , . . . , i∗1 } according to convention. Thus n + t must
be even, and

∏
(i, j)∈σ3

Ci j = z(n+t)/2γ |I0]I |∏
(i, j)∈σ3

bi j . Note that σ2 is composed of arcs (i, i). This implies that
sgn σ = sgn σ1 sgn σ3 since the number of crossing between arcs in σ1 and arcs in σ2 equals the number of crossing
between arcs in σ1 and arcs in σ2. Thus the above sum is equal to∑

t
z(t+n)/2

∑
I∈
(

I1
t

) γ n+|I |
∑
(σ1,σ3)

sgn σ1 sgn σ3

∏
(i, j)∈σ1

ai j

∏
(i, j)∈σ3

bi j .

This is equal to the left-hand side of (5.14). �
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For a non-negative integer N , let µN
= (N , . . . , 1, 0), and let ΓµN denote the n × (N + 1) matrix(

x N− j
i

)
1≤i≤n,0≤ j≤N

. Let

An,N =

(
An ΓµN JN+1

−JN+1
tΓ

µN ON+1

)
which is a skew-symmetric matrix of size n + N + 1. For example, if n = 4 and N = 3, then

A4,3 =



0
x1 − x2

x1 + x2

x1 − x3

x1 + x3

x1 − x4

x1 + x4
1 x1 x1

2 x1
3

x2 − x1

x1 + x2
0

x2 − x3

x2 + x3

x2 − x4

x2 + x4
1 x2 x2

2 x2
3

x3 − x1

x1 + x3

x3 − x2

x2 + x3
0

x3 − x4

x3 + x4
1 x3 x3

2 x3
3

x4 − x1

x1 + x4

x4 − x2

x2 + x4

x4 − x3

x3 + x4
0 1 x4 x4

2 x4
3

−1 −1 −1 −1 0 0 0 0
−x1 −x2 −x3 −x4 0 0 0 0
−x1

2
−x2

2
−x3

2
−x4

2 0 0 0 0
−x1

3
−x2

3
−x3

3
−x4

3 0 0 0 0



.

Let βi j be as in (2.14). Let BN denote the (N+1)×(N+1)matrix (βi j )0≤i, j≤N and let B ′N denote the (N+2)×(N+2)
matrix (βi j )−1≤i, j≤N .

Theorem 5.5. Let n and N be integers such that n ≥ N ≥ 0. Then

ζN (a, b, c, d; z; Xn) = Pf
(

Cn,N
)
/Pf∅(Xn), (5.15)

where

Cn,N =

 ON+1
tΓ

µN Jn JN+1

−JnΓµN Jn
t An Jn On,N+1

−JN+1 ON+1,n BN

 , (5.16)

if n is even, and

Cn,N =

 ON+1
tΓ

µN Jn J ′N+1

−JnΓµN Jn
t An Jn On,N+2

−
t J ′N+1 ON+2,n B ′N

 (5.17)

where J ′N+1 =
(
ON+1,1 JN+1

)
if n is odd.

Proof. Let Bn,N be the skew-symmetric matrix of size (n + N + 1) defined by

Bn,N =

(
Sn On,N+1

ON+1.n BN

)
if n is even, and

Bn,N =

(
Sn−1 On,N+2

ON+2.n B ′N

)
if n is odd. Fix a strict partitionµ = (µ1, . . . , µl) such thatµ1 > · · · > µl ≥ 0, and let Kn(µ) = {n+µl , . . . , n+µ1}.
From the definition of Bn,N and Theorem 2.2, we have

Pf
(
∆[n]]Kn(µ)

[n]]Kn(µ)

(
Bn,N

))
= ω(µ) z`(µ)
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if n + l is even. Thus Lemma 5.4 immediately implies that Pf∅(Xn)ζN (a, b, c, d; z; Xn) is equal to

Pf
(

Jn+N+1
t An,N Jn+N+1 Kn,N+1
−

t Kn,N+1 Bn,N

)
. (5.18)

By simple elementary transformations on rows and columns, we obtain the desired results (5.16) and (5.17). �

Corollary 5.6. Let n and N be integers such that n ≥ N ≥ 0. Then

ζN (a, b, c, d; z; Xn) = Pf
(

Dn,N
)
/Pf∅(Xn), (5.19)

where

Dn,N =

(
xi − x j

xi + x j
+

∑
0≤k,l≤N

βkl x
l
i xk

j

)
1≤i, j≤n

, (5.20)

if n is even, and

Dn,N =


0

N∑
k=0

β−1,k xk
j

N∑
k=0

βk,−1xk
i

xi − x j

xi + x j
+

∑
0≤k,l≤N

βkl x
l
i xk

j


0≤i, j≤n

, (5.21)

if n is odd.

For instance, if n = 4 and N = 2, then D4,2 looks as follows:

0 0 0 x2
4 x2

3 x2
2 x2

1 0 0 1
0 0 0 x4 x3 x2 x1 0 1 0
0 0 0 1 1 1 1 1 0 0

−x2
4 −x4 −1 0

x3 − x4

x3 + x4

x2 − x4

x2 + x4

x1 − x4

x1 + x4
0 0 0

−x2
3 −x3 −1

x4 − x3

x4 + x3
0

x2 − x3

x2 + x3

x1 − x3

x1 + x3
0 0 0

−x2
2 −x2 −1

x4 − x2

x4 + x2

x3 − x2

x3 + x2
0

x1 − x2

x1 + x2
0 0 0

−x2
1 −x1 −1

x4 − x1

x4 + x1

x3 − x1

x3 + x1

x2 − x1

x2 + x1
0 0 0 0

0 0 −1 0 0 0 0 0 az abz
0 −1 0 0 0 0 0 −az 0 abcz2

−1 0 0 0 0 0 0 −abz −abcz2 0



.

Proof of Corollary 5.6. When n is even, annihilate the entries in tΓ
µN Jn of (5.16) by elementary transformation of

columns, and annihilate the entries in −JnΓµN of (5.16) by elementary transformation of columns. Then expand the
Pfaffian Pf

(
Cn,N

)
along the first N + 1 rows. For the case when n is odd, perform the same operation on (5.17). �

Proof of Theorem 5.1. Perform the summations∑
0≤k<l

βkl det
(

x l
i xk

i
x l

j xk
j

)
and

∞∑
k=0

β−1,k xk
j ,

and apply Corollary 5.6. The details are left to the reader (cf. Proof of Theorem 2.1 in [6]). �
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To prove Theorems 5.2 and 5.3, we need to cite a lemma from [6]. (See Corollary 3.3 of [6] and Theorem 3.2
of [7].)

Lemma 5.7. Let n be a non-negative integer. Let X = (x1, . . . , x2n), A = (a1, . . . , a2n), B = (b1, . . . , b2n),
C = (c1, . . . , c2n) and D = (d1, . . . , d2n) be 2n-tuples of variables. Then

Pf
[
(ai b j − a j bi )(ci d j − c j di )

(xi − x j )(1− t xi x j )

]
1≤i< j≤2n

=
V n(X, 1+ t X2

; A, B)V n(X, 1+ t X2
;C, D)∏

1≤i< j≤2n
(xi − x j )(1− t xi x j )

, (5.22)

where 1+ t X2
= (1+ t x2

1 , . . . , 1+ t x2
n).

In particular, we have

Pf
[

ai b j − a j bi

1− t xi x j

]
1≤i< j≤2n

= (−1)(
n
2 )t(

n
2 )

V n(X, 1+ t X2
; A, B)∏

1≤i< j≤2n
(1− t xi x j )

. � (5.23)

Proof of Theorem 5.2. First, assume that n is even. Using the formula

Pf(A + B) =
bn/2c∑
r=0

∑
I∈
(
[n]
2r

)(−1)|I |−r Pf(AI
I )Pf(B I

I
), (5.24)

where I denotes the complementary set of I , we see that ξ(a, b, c, d; Xn) is equal to

bn/2c∑
r=0

∑
I∈
(
[n]
2r

)(−1)|I |−r
∏
i, j∈I
i< j

xi + x j

xi − x j
Pf(̃vi j )i, j∈I .

Apply Lemma 5.7 to obtain (5.11). When n is odd, first expand the Pfaffian along the first row/column and repeat the
same argument. �

Proof of Theorem 5.3. Note that the rank of the matrix (ui j )1≤i, j≤n is at most two. Thus we have

Pf(ui j )1≤i, j≤n =


a(x1 − x2){1+ b(x1 + x2)+ abx1x2}

(1− abx2
1)(1− abx2

2)
if n = 2,

0 otherwise.

Using (5.24), we obtain

Pf
(
γi j
)

1≤i, j≤n = Pf
(

xi − x j

xi + x j
+ vi j z

2
)

1≤i, j≤n

+

∑
1≤k<l≤n

(−1)k+l−1 az(xk − xl){1+ b(xk + xl)+ abxk xl}

(1− abx2
k )(1− abx2

l )
Pf
(

xi − x j

xi + x j
+ vi j z

2
)

1≤i, j≤n
i, j 6=k,l

.

Use (5.24) again to see that ζ(a, b, c, d; z; Xn) is equal to

bn/2c∑
r=0

z2r
∑

I∈
(
[n]
2r

)(−1)|I |−r
∏
i, j∈I
i< j

xi + x j

xi − x j
· Pf(vi j )i, j∈I

+

∑
1≤k<l≤n

(−1)k+l−1 az(xk − xl){1+ b(xk + xl)+ abxk xl}

(1− abx2
k )(1− abx2

l )

×

bn/2c∑
r=1

z2r−2
∑

I ′∈
(
[n]−{k,l}

2r−2

)(−1)|I
′
|−r+1

∏
i, j∈I ′

i< j

xi + x j

xi − x j
· Pf(vi j )i, j∈I ′ .

Put I = I ′ ∪ {k, l} and apply Lemma 5.7 to obtain (5.13). �
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