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ON THE THEORY OF BIORTHOGONAL POLYNOMIALS

A. ISERLES AND S. P. N0RSETT

ABSTRACT. Let ip(x,n) be a distribution in x 6 R for every p. in a real

parameter set fi. Subject to additional technical conditions, we study mth

degree monic polynomials pm that satisfy the biorthogonality conditions

/oo
pm(i) d<p(x, ßi) = 0,        I = 1,2,... ,m, m > 1,

■oo

for a distinct sequence m,ii2,... G f¡. Necessary and sufficient conditions

for existence and uniqueness are established, as well as explicit determinan-

tal and integral representations. We also consider loci of zeros, existence of

Rodrigues-type formulae and reducibility to standard orthogonality. The pa-

per is accompanied by several examples of biorthogonal systems.

1. Introduction. The theme of the present paper is a generalization of the

classical concept of orthogonality into the following framework: Let <p(x, p) be, for

every p in a real parameter set Q, a distribution in x—a real monotonically nonde-

creasing, right-continuous function with all moments bounded and with an infinite

number of points of increase. Given m > 1 and m distinct points pi,..., pm £ 0,

we consider mth degree monic polynomials pm =pm(x;pi,..., pm) that satisfy the

biorthogonality conditions

/OO

pm(x;pi,...,pm) dip(x,pi) = 0,        1 = 1,2,...,m.
-oo

Biorthogonal polynomials include, as a special case, the familiar orthogonal poly-

nomials. Hence, it is legitimate to ask what are the known properties of orthogonal

polynomials that are shared in the present, more general, setting. We address our-

selves to this question, exploring existence and uniqueness, explicit representation,

location of zeros and the existence of Rodrigues-type formulae and of recurrence

relations. A future paper will be devoted to extensions of the Christoffel-Darboux

formula and to a general recurrence relation which holds for all biorthogonal poly-

nomials.

Our motivation in the present work is threefold. Firstly, by elucidating properties

of biorthogonal polynomials we throw light on orthogonal polynomials and show

that some familiar properties of the latter are not generic, being rather a manifes-

tation of biorthogonality. Secondly, biorthogonal polynomials are applicable to a

whole range of problems in computational and applied analysis. Indeed, our original

motivation in studying this construct came from a problem in designing multistep

numerical methods for ordinary differential equations [Iserles & N0rsett, 1987a].
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450 A. ISERLES AND S. P. N0RSETT

Since then, applications have been found to studying zeros of polynomials [Iserles

& N0rsett, 1987b] and to rational approximation of Stieltjes functions [Iserles

& Saff, 1987]. A forthcoming paper of the authors, joint with P. E. Koch, will

present applications to numerical quadrature. Finally, biorthogonal polynomials

deserve attention on their own merit and present a whole spectrum of intriguing

and challenging problems.

In §2 we define formally biorthogonal polynomials. We introduce the concept of

regularity, which is equivalent to existence and uniqueness. Finally, we present two

explicit formulae for general biorthogonal polynomials, one determinantal and one

integral.

§3 is devoted to the study of loci of zeros. By introducing the interpolation prop-

erty we generalize a standard technique from the theory of orthogonal polynomials

to the present framework.

It is well known that classical orthogonal polynomials are characterized by the

existence of a Rodrigues formula. In §4 we demonstrate that a similar concept,

that of a Rodrigues-type formula, exists for some sets of biorthogonal polynomials.

We characterize all such sets. This entails discussion of inclusion and equivalence

relations among pairs of the form {<p, Q}.

A property that characterizes orthogonal polynomials is a three-term recurrence

relation. In §5 we ask whether such a relation can be valid for a biorthogonal

system—in that case, by the Favard theorem [Chichara, 1978], the system will be

orthogonal (in the usual sense) with respect to some distribution function, possibly

with a different support. We show that this is highly unlikely and provide restrictive

necessary and sufficient conditions.

Finally, in §6 we present several different examples of biorthogonal systems of

polynomials. Some of these are straightforward generalizations of familiar orthogo-

nal polynomials, while others are of a different nature. We examine their properties

and, in most cases, present explicit formulae.

We mention in passing that the phrase "biorthogonal polynomials" has been

already used in the literature in reference to two polynomial sequences, {r„}^L0

and {snj^o, say, which are mutually orthogonal with respect to some distribution

<p:

/oo
rn(x)sm(x) dip(x) = cn,mó„!m,        n,m > 0,

-oo

where ôn,m is the Kronecker delta [Pastro, 1984; Szegö, 1982]. Indeed, polyno-

mials that are biorthogonal in both senses will be featured in a forthcoming paper.

However, no confusion should arise between the two concepts.

2. Existence and uniqueness. There are three equivalent ways to introduce

biorthogonal polynomials. First, consider a distribution <p(x,p), x £ (a,b), p£Ü,

where (a,b) Ç R and Q is a real set. A sequence {/¿;}£2i of points in Q will be

called a D-sequence if p¡ ^ pk for all / / k. We henceforth assume that Q contains

at least one 7)-sequence. The set of all D-sequences in f] will be denoted by QD.

Let TTm[x] denote the set of all mth degree polynomials. Given {p¡} £ ÜD, we

say that monic pm £ irm[x], pm = pm(x;pi,... ,pm), is biorthogonal if

(1) /   pm{x;pi,...,pm)dip(x,pi) =0,        l<l<m.
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BIORTHOGONAL POLYNOMIALS 457

Moreover, p0(x) = 1. The set {pm}^=0, where pm = pm(x;pi,... ,pm)— if it

exists—will be called the biorthogonal polynomial system (BOPS) with respect to

the distribution (p.

An alternative way is to consider generalized positive functions uj(x,p), instead

of distributions <p(x,p). (1) now has the form

fJ a

pm(x;pi,...,pm)uj(x,pi) dx = 0,        1 < I < m.

uj can be interpreted as the Radon-Nikodym derivative of <p [Halmos, 1950].

Finally, biorthogonality may be introduced by considering a family of positive

linear functionals £M, p G Í1 Condition (1) now reads

CßlPm{-;Pl,---,Pm) = 0, l<l<m,

and the link with the original definition is provided via the Riesz representation

theorem.

In the sequel we will, as a rule, use the formulation of distributions.

The distribution <p is called regular if for every {p¡} £ QD there exists a unique

BOPS.

THEOREM   1.   Let

Ik

and

fb
(p) := /   xk

J a

dip(x,p),        p£fl, k>0,

(2)    Dm(pi,...,pm) :=det

Jo (Mi)     h(Vi)
7o(M2)     h{P2)

h{Pm)    h{Pm)

Im-l(Pl)

Im-\{P2)

'm-1 (Mm)

m > 1.

Regularity is equivalent to the condition that Dm(p\,... ,pm) ^ 0 for every m > 1

and every {pi} £ QD.    Furthermore,  in the case of regularity pm possesses the

explicit representation

(3)
Io(Pl)       h(Pl)      ■■■       Im(Pl)

Pm(x;pi,.-.,pm) =
1

Dm(P\- ■ ■ ■ ,Pr,
det

Io{P2)      7i(/i2)

lodern)      h{Pm
1 X

Lm(p2)

*m(Pm)

PROOF. Let pm(x) = xm + X^r=o akXk. Hence (1) is equivalent to

m — 1

Lm(pi) + J2 akh{Hl) =0, 1 < / < m.

fe=0

The theorem follows at once by Kramer's rule.    D
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458 A. ISERLES AND S. P. N0RSETT

COROLLARY. <p is regular if and only if for all m > 0 and p £ U the set

{Io(p),Ii(p),... ,Im(p)} is a Chebyshev system.

PROOF. Follows at once from (2) by the standard definition of a Chebyshev

system [Karlin & Studden, 1966].    D

The representation (3) is similar to the standard determinantal form of monk or-

thogonal polynomials [Chichara, 1978]. Our second representation has a different

character.

THEOREM 2.   Subject to regularity, it is true that

(4) Dm(pi,....pm)

rb rb

-       •■•/ (xj-Xi)dip(xi,pi)dip(x2,p2)---dip(xm,pm)
Ja Ja    ,<¿<J<m

and

(5) pm(x;pi,...,pm)

=  fa"' Sg UlKiKjKmfa ~ X') II™ 1 fo ~ Xi) df(xi,Pi) • • • d<p(xm, pm)

Dmi.Pl, ■ ■ ■ ,Pm)

PROOF. We write dm(xi,... ,xm) := rii<î<7<m(3:J — x*) as a Vandermonde

determinant,

"ml^l, - - • , %r, det

1      X\
jrn—l

rm —1
1      Xjyi      • • •       Xr

Multiplying the last expression by df(xi,pi) and integrating in x\ from a to 6

yields

h(pi)    h(pi)     ■■■     Im-l{Pl)

/   dm(xi.xm)dip(xi,pi) = det
Ja

X2

Subsequent multiplications by d<p(xi,pi) and integration in x\, I = 2,3,... ,m,

lead to the identity (4). Similarly, (5) can be obtained from (3) by starting with

dm+i(xi,... ,xm,x), instead oï dm(xi,... ,xm).    D

Subject to regularity, we define the mth generator as the integral

Hm(p) = Hm(p;pi,...,pm)

:=  /   pm(x;pi,...,pm)dip(x,p),        p£i1.
Ja

LEMMA 3.   (a) Let <p be regular.  Then it is true that

(6) Hm(p) = Dm+i(pi,.--,pm,p)/Dm(pi,...,pm),        m > 1.

(b) If for every x £ (a.b) <p(x,p) £ C1(fl), where Í7 is an interval, then Hm(p) £

C1(Q) and there exists a function hm(p) = hm(p;pi,... ,pm) such that hm(p) ^ 0

for all p G 0, hm £ 6^(0) and

(7) Hm(p) = hm(p)qm(p),     where qm{p) ■= JJÍM - Mí)-
í=i
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PROOF. Identity (6) follows at once by multiplying (5) by d<p(x,p) and inte-

grating in x.

To prove (7) we note that Hm(p) £ Sp{Io(p),h(p), ■ ■ • ,7m(/x)}. Since f is in

Cl(ÇÏ), so are the Ik(pYs. By regularity {70(/i),..., Im(p)} is a Chebyshev set, and

hence the number of roots of the equation J2T=o akh{p), where a0, ■ ■ ■, am are any

real constants, in Q is at most m [Powell, 1981]. Note that the number of roots is

well defined, since all 7fc(/¿)'s are in C1(Q). From the definition of biorthogonality

Hm(pi)=0,        l<l<m.

Hence 77m has m simple zeros in pi,...,pm, and does not vanish elsewhere in

fi.     D

Generators will be useful in §6, in the derivation of explicit forms of biorthogonal

polynomials.

3. Loci of the zeros. The standard proof that zeros of orthogonal polynomials

reside in the support of the underlying distribution and are distinct impinges on the

fact that it is possible to interpolate with polynomials; in other words, successive

powers of x form a Chebyshev system. In the present section we exploit a similar

argument to investigate zeros of biorthogonal polynomials.

Throughout this section we assume that d<p(x,p) — uj(x,p)da(x), where a is a

distribution, independent of p. We say that uj has the interpolation property if for

all m > 1, {pi} £ fiD, distinct xi,... ,xm £ (a,b), and yi,- ■ ■ ,ym £ R there exist

real constants ßi,...,ßm so that

m

(8) ^2ßluj(xk,pi) = yk, l<k<m.
l=i

LEMMA 4.   u possesses the interpolation property if and only if

E- (;:::::£) *"

for every m > 1, distinct sequence Xi,x2,--- £ (a,b) and {p¡} £ UD.   Here, in

accordance with [Karlin & Studden, 1966],

I Xl>'->Xm

Pi, ■ ■ ■ ,Pr,

uj(xi,pi)     uj(xi,p2)     ■■■     uj(xi,pm)

uj(x2,pi)     uj(x2,p2)     ■■■     uj(x2,pm)

.uj(xm,pi)    uj(xm,p2)    ■■■     uj(xm,pm)}

PROOF. By standard solution of linear algebraic equations (8).    D

COROLLARY, uj has the interpolation property if and only if, subject to possible

rearrangement of xi,x2,..., the function uj(x,p) is strictly totally positive of all

orders m > 1.

PROOF. Follows at once from the definition of strict total positivity [Karlin &

Studden, 1966].    D

Lemma 4 provides a handy method to check for the interpolation property. It

will be used extensively in §6.

The interpolation property is important because of the following result.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



460 A. ISERLES AND S. P. N0RSETT

THEOREM 5. If uj is C1 in p, possesses the interpolation property and corre-

sponds to a regular distribution then each pm{x; pi, - ■ ■, pm) has m distinct zeros in

(0,6).

PROOF. We extend the standard argument that demonstrates that all the ze-

ros of an orthogonal polynomial are distinct and reside within the support of the

underlying distribution.

Because of the interpolation property and Lemma 4 the function w is positive

almost everywhere for x £ (a,b). Hence

-6

pm(x)uj(x, pi)da(x) =0
/Ja

implies that pm changes sign at least once in (a,b). Let Ci < ç2 < • • ■ < çn be all

the points in (a, b) where pm changes sign and çn+i be any point on (a, b) such that

Pm(fn+i) 7^ 0. Of course n < m.

Let us assume that n < m — 1.  Due to the interpolation property there exist

real ßi,..., ßn+i such that

n+l

(9) ^2, ßiuj(ck, pi) = 6n+uk,        l<k<n+l.
i=i

Certainly, ß\ + ß2 + ■ ■ ■ + ß2+1 > 0. Let us consider the function

n + l

1=1

By Lemma 4 {uj(x, pi)}™^1 is a Chebyshev system. Thus, since uj is in Cx(n), /

has at most n zeros in (a, b) [Powell, 1981]. However, (9) implies that f(çk) = 0,

1 < k < n. Consequently, without loss of generality,

Pm(x)f(x) > 0, x£ (a,b)

and is positive on a set of positive measure. Therefore

n + l"Ti pO

Y^ßiHm(pi)= I   Pm{x)f(x)da(x)>Q,
1=1 Ja

because a is a distribution.

This contradicts the biorthogonality condition, since Hm(pi) = 0, 1 < / < m,

and n+l < m. Therefore the assumption that n < m — 1 is false and pm has m

distinct zeros in (a, b).    D

It is worthwhile to note two points about the scope of the last theorem. Firstly,

it is perfectly possible for the interpolation property to hold in the absence of

regularity; cf. Example G. In that case biorthogonal polynomials, in general, do

not exist. Secondly—and this is much more important—regularity does not imply

the interpolation property; cf. Example E. Hence, there is an important gap in the

totality of biorthogonal polynomials that is not covered by Theorem 5. It is, indeed,

perfectly possible for some of the zeros of pm to lie outside the support of p (cf.

Example E). The characterization of all distributions <p that give rise to regular

BOPS with all zeros distinct and within the support is presently an open problem.
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BIORTHOGONAL POLYNOMIALS 461

4. Rodrigues-type formulae. It is well known that the classical orthogonal

polynomials (Jacobi, Laguerre and Hermite) are the only orthogonal polynomials

that possess a Rodrigues representation of the form

dm
Pm{x) = Cm{w(x)}~1 —{(P(x))mw(x)},

where w is the underlying weight function, cm is a normalizing constant and p £

ir2[x] is independent of m [Cryer, 1970; Chichara, 1978]. In the present section

we explore a Rodrigues-type representation for biorthogonal polynomials. It will

transpire that formulae of this kind exist for essentially just two BOPS, given by

<p(x,p) = xß/p, x £ (0,1), fi = (0, ce), and by <p(x,p) = -e~x/ß, x £ (0, oo),

fi = (0,oo).

Let g(x, p) be a function which is smoothly differentiable, monotone and inte-

grable in z G (a, b) for all p £ fi. We define the differential operator Tß : Cl(a, b) —>

L(a,b), p £ fi, by

(d/dx){g(x,p)f(x)} _ g{x,p)

dg(x,p)/dx dg(x,p)/dx'

The function g is said to be admissible if both following conditions are satisfied:

(I) Tß : TTm[x] —* TTm[x]    for all p £ fi and m > 0;

(II) TßTu = T„Tß    for every p,u £Ü.

THEOREM 6A.   Let b < oo and <p be continuous in x. Define g as

g(x,p) :=  /    dtp(x,p).
Ja

If g is admissible then the Rodrigues-type formula

(11) pm(x;pi,...,pm) = cm I Y\Tßl J {(b-x)m}, m > 1,

is valid. Here
m

Cm = (-l)mll(l + ß(pi)m)-1,        m>l,

(10) Tßf(x) := K  ' ZrZZ:       = /(*) + J:   ZixM*)-

i=i
where

^-{s^Mdx \dg(x,p)/dx

PROOF. We define pm by (11) and demonstrate that it obeys the definition of a

biorthogonal polynomial. The proof will then follow by regularity.

First we note that it follows from (I) that pm £ 7rm. Moreover, admissibility

implies that

„   ,    , fb(d/dx){g(x,pl)Uk¥ilTpk(b-xr} ,   ,       ,
Hm(pt)=cm       -^—-f—-d(p(x,pi)

Ja dg(x,pi)/dx
b

= cmg(x,pi)Y[Tltk(b-x)m
kjtl
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462 A. ISERLES AND S. P. N0RSETT

Thus, since Wk^iTßk(b — x)m vanishes for x = b and g(x,p) vanishes for x = a,

Hm(pi) = 0 for all 1 < / < m, hence biorthogonality.

It remains to demonstrate that pm is monic. Since

Tßxm=xm+m-^\-xm-1
dg(x,p)/dx

admissibility implies that g(x,p)/(dg(x,p)/dx) is linear in x, 'y(p) + xß(p), say,

where ß is given by (12). Hence

Tß(b - x)m = (-l)m(l + mß(p))xm(l + 0(x~1))        (x » 0).

Consequently, the coefficient of xm in YlTLi Tßt (b — x)m is c"1. This concludes the

proof.    □

The present theorem seemingly fails when ß(pi) — —1/m for some /, since

then cm becomes unbounded. However, it is then obvious from the proof that

Y17= i Tpi(b — x)m is biorthogonal to ip for pi,... ,pm, but belongs to 7rm_i[a;]. This

is ruled out by regularity.

THEOREM 6B.   Let a < —oo and tp be regular and continuous in x. Set

g(x,p) := /   d<p(x,p).
J X

If g is admissible then the Rodrigues-type formula

pm(x,pi,...,pm) = cm I Y\Tßt j {(x-a)m},        m > 1,

is valid. Here
m

cm = Yl(l+ß{pi)m)-1,        m>l,
l=i

and ß(p) has been defined in (12).

PROOF. A replica of the proof of Theorem 6A.

It is now natural to ask what are all the admissible functions. This is answered

in the following lemma.

LEMMA 7.   All admissible functions are necessarily of the form

(i)g(x,p) = (x + C)6^e(p); or

(n)g(x,p) = es^xe(p),

where 6(p), e(p) are nonvanishing functions of p and C is a constant, arbitrary

subject to g being C1  and integrable in x.   Moreover, subject to integrability, all

functions given by (i) and (ii) are admissible.

PROOF. By (10) condition (I) is equivalent to

(13) „ f(X'^,    =l(p) + xß(p).
dg(x,p)/dx

We have already used this in the proof of Theorem 6A. Hence, g satisfies the

ordinary differential equation

^-g{x,p) =    ,   .  ,—-^-^g(x,p),
dx ~i(p) + xß(p)
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whose solutions are

(14) g(x,p) = (1(p) + xß(p))1^^o(p)

if ß(p) ¿ 0 and

(15) g(x,p)=exl^a(p)

otherwise. Here a is an arbitrary nonvanishing function of p £ fi.

Given any / G C2(a, b), (13) implies that

TpTvf(x) = f(x) + ((-y(/i) + l(v)) + x(ß(p) + ß(v)))f'(x)

+ (1(p) + xß(p))(1(u) + xß(v))f"(x)

+ (1(p)+xß(p))ß(u)f'(x),        p,u£Ü.

By (II) the above expression must be symmetric in p and v. This is equivalent to

(16) ß(p)1(v) = ß(v)~1(p),        p,v£Ü.

Let us suppose that for some p, v £ fi, ß(p) = 0, ß(u) ^ 0. Hence, by (16),

7(/i) = 0. This is impossible since g is monotonie in x. Hence either ß(p) / 0 for

every p £ fi or ß = 0 in fi.

In the first case we have f(p)/ß(p) = i(v)/ß(v) = C. Case (i) now follows by

substituting this value of -7 into (14) and setting e(p) := \ß(p)\l^^<j(p), 6(p) :=

l/ß(p).
In the second case, ß = 0, (15) yields (ii), upon the substitution s(p) :— o(p),

6(p) := l/i(p); note that, by monotonicity, if ß = 0 then i(p) ^ 0 for all p £ fi.

Finally, straightforward manipulation verifies admissibility of (i) and (ii), subject

to integrability.    D

We can now proceed to identify all distributions ¡p that give, within the frame-

work of Theorems 6A and 6B, rise to admissible functions g. First, however, we

need to introduce partial ordering into the pairs {ip, fi} of distributions and pa-

rameter sets. So far, there has been to some extent, some redundancy implicit

in our theory; e.g., the pairs {<p(x, p), (0, 00)} and {p <p(x, e^), (—00, 00)} yield

isomorphic — and virtually identical BOPS, whereas the pair {<p(x,p),(0,l)} is,

in a sense, "subordinate" to the pair {<p(x, p), (0,2)}-

More formally, given {<pi,fii} and {<P2,fi2}, we say that {v^i,fii} is subordinate

to {<p2,02}, denoting this relation by {^i,fii} =< {^2^2}, if there exists a positive

function ß(p), p £ fii, such that for every p £ fii, there exists v £ ÍI2 which satisfies

the equation

<pi(x,p) = ß{p)ip2(x,v),        x£(a,b).

Intuitively, tp2 will generate a BOPS which is "richer" than the BOPS which is

generated by ipi and includes that system as a restricted case. Subordination

imposes partial order on all pairs of the form {<p, fi}, where <p is regular.

We say that {^>i,fii} and {^2^2} are equivalent if both {<pi,Qi} ^ {^2^2}

and {^2^2} > {'Pi,fii}- This relation factorizes pairs {<p,Q} into equivalence

classes.

Finally a pair {tp, fi}, where <p is regular, is called maximal if it is not subordinate

to any nonequivalent pair {^i,fii}, <Pi regular, over the interval (a,b).
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464 A. ISERLES AND S. P. N0RSETT

In our characterization of all regular <p that yield themselves to the conditions of

Theorems 6A and 6B it is sufficient to restrict attention to maximal pairs. More-

over, as is the standard practice with orthogonal polynomials, we specialize our

results to the finite interval (0,1) and the singly infinite interval (0, oo). (Note that

the interval (-00,00) is outside the scope of these theorems. The choice of (0,1),

rather than ( — 1,1), is dictated by an intention to present more elegant formulae.)

THEOREM 8. All the nonequivalent maximal sets that lead to admissible func-

tions are exactly

(a) <p(x, p) — x^/p, (a, b) = (0,1); fi = (0,00); and

(b) <p{x,fi) = -e-*/", (a,b) = (0,oo); fi = (0,oo).

PROOF. Follows at once by differentiating the expressions in the statement of

Lemma 7.    D

The BOPS that correspond to the cases (a) and (b) will be presented in detail

in §6, in Examples A and E respectively. In line with the standard terminology for

orthogonal polynomials, we call them the classical biorthogonal polynomials.

5. Biorthogonality and orthogonality. In the present section we investigate

the possibility of a biorthogonal system being orthogonal with respect to some

distribution on the real line. If such a situation occurs then the standard theory of

orthogonal polynomials provides a wealth of information on the underlying BOPS—

a three-term recurrence relation, a Christoffel-Darboux identity, etc.

Perhaps unsurprisingly, it turns out that this state of affairs is unlikely: in gen-

eral, biorthogonal polynomials are not orthogonal polynomials under disguise! In

the sequel we provide both necessary and sufficient conditions for the identification

of biorthogonality with orthogonality.

LEMMA 9. Let <p be regular and {pm} be the underlying BOPS. Further, let us

suppose that {pi} G ClD and a distribution rp exist such that {pm(- ;pi,. ■., pm)}m=o

is orthogonal with respect to tjj;

/

00

k
x pm(x\ pi,... ,pm) dtp(x) = 0,        0 < A; < m — 1, m > 1.

Then each pm(- ; Pi, ■ • ■, pm), m > 1, satisfies the orthogonality conditions

rb

(17) /   xkpm(x;pi,...,pm)d<p(x,pl) = 0,        0 < k < m - I, 1 < I < m.
Ja

In particular, it is the monic orthogonal polynomial with respect to d<p(-,pi).

PROOF.    Orthogonality with respect to ip and monicity imply that the set

(pm(-, pi,..., Pm)} obeys a three-term recurrence relation

,     . Pm+l{x;Pl,.--,Pm+l) = (cm + x)pm(x; ßi, . . . , pm)

-dmpm-i(x,pi,...,pm-i),        m > 1,

where cm and dm > 0, m > 1, are the elements of the corresponding Jacobi matrix.

Our proof proceeds by induction:  Biorthogonality implies that (17) is true for

k = 0, 1 < I < m. Let us assume that (17) is valid for all 0 < k < fci, 1 < / < m-1,
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where k¡ < m — I — 1. We multiply (18) by xkl d<p(x, pi) and integrate from a to b.

This yields
6

xk, + 1Pm(x; pi,...,pm) d<p(x,pi) = 0.

The proof now follows.    D

To rephrase the statement of the last lemma, all we need to do to check for the

coincidence of biorthogonality and orthogonality is to compare the BOPS with the

monic orthogonal system with respect to <p(x, pi). Moreover, since the solution of

(18) is unique, Lemma 9 also identifies %¡j as ¡p(-,pi).

LEMMA 10. Let ip be regular and assume that {pi} £ ClD exists such that, for

some real constants Co, ci,...

(19) Im-k{Pk) = Cm-i, 1 < k < m, m > 1,

and

(20) Dm(pi,...,pm)>0,        m>l.

Then the set {pm(-; pi, ■ ■ ■, pm)} is orthogonal with respect to some distribution ip.

PROOF. Since (19) is true, Dm(pi,... ,pm) is a Hankel determinant. Thus, by

the positivity (20), the Hamburger moment problem for the sequence {cfc}j£L0 is

soluble [Akhiezer, 1965]: a distribution ip exists such that

/oo xkdtp(x),        k > 0.
-oo

A comparison of (3) with the standard determinantal representation of the monic

polynomials which are orthogonal with respect to ip [Chichara, 1978] leads readily

to a proof of the lemma.    D

A closer examination of (19) reveals the structure that it imposes on the distri-

bution <p. Operating within the conditions of the last lemma, we set

<Pt(x) ■— tp(x,pi), x G (a,b),  I > 1.

We denote the fcth moment of ¡p¡ by dk , k > 0.   In other words, the sequence

{dk }fc^0 is a Hamburger sequence and corresponds to the distribution <pi, I > 1.

Further, note that (19) is satisfied for dtp¡(x) = xl~x dipi(x), I > 1.   This,

together with

4° =cfc+,_i,        k>0, l>l,

and the uniqueness of the solution of the determinate moment problem imply that

d<p(x,pi) = xl~x d<p(x,pi), I > 1, providing the link between Lemmas 9 and 10.

It also implies that, besides the most obvious generalization of orthogonality into

biorthogonality by setting dp>(x,p) := xß d<p(x,p), no coincidence is possible.

6. Examples of biorthogonal polynomials. Throughout the present section

we will denote by <7m(x) the polynomial IlfcLi^ _ Mfc) and by uj(x, p) the Radon-

Nikodym derivative of (p(x,p),

L

uj(x,p)dx = d<p(x,p).
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Besides presenting examples that illustrate the results of this paper, we also attempt

an initial classification of several interesting families of BOPS.

If a regular <p is of the form

d<p(x, p) = xß d%b(x),        p £ fi, x £ (a, b),

where %b is independent of p, we say that the corresponding BOPS belongs to family

I:

EXAMPLE A. <p(x, p) = x^/p, p £ (0, oo), x £ (0,1).

This BOPS, which is classical in the sense of §4, has been already introduced in

[Iserles & N0rsett, 1987a]. The explicit form is

Pm(X) =
9m (

1       JT(-ir-k(™)qm(-k)xk,m>l.
' k=0 ^      '

This can be ascertained, for example,  from the Rodrigues-type representation

(cf. §4)

,  , 1
(21)

where

Pm(X)
qm(-m

Tp,Tß2---Tßtn{(l-x)m},        m>l,

Tßf(x) = pf(x) + xf'(x),        p>0, f£C1(0,oo).

Both regularity and the interpolation property are easy to verify. We see that

Dm(pi,..., pm) is a determinant of a Cauchy matrix, whose value can be readily

determined by a formula in [Gregory & Karney, 1969],

,IIl<fc</<m(M¡ - ßk)
ßm(Mi,...,Mm)=0!l!2!-.-(m-l)!- m

n*=o iii=i(fc+w)

Thus, by (6),

Hm(p) = (-1)
m\qm(p)

(p)m+i(¡m(-m)

Regularity follows. Likewise,

E„ XX, ... , Xfi

Pi, ■ ■ ■ ,Pr,
= MlM2 • • ■ PmFrr

where
r^i

X\,... , Xr

Vl,---,Vr,
det

Xl,•■ •, xn

Pi — 1,... ,pr,

r\2 r\m

r'l2

is nonzero for all m > 1, distinct xi,x2, ■ ■ ■ £ (0,1) and distinct r¡i,r¡2, ■ ■ ■ £ ( —l,oo)

[Karlin & Studden, 1966]. Hence the interpolation property. Thus, each pm

has m distinct zeros in (0,1). It has been proved in [Iserles & N0rsett, 1987a]

that, subject to pi < p2 < ■■■ < pm, the zeros of pm-i(-',Pi, ■ ■ ■ ,Pm-i) and

Pm{-;Pi,---,Pm) interlace.

We now present two differential recurrence relations that are obeyed by the

present BOPS. The first follows by differentiating (21). Since, in the present case,

-T  = T1+ -
dx   M M dx
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it is true that

d      , .Id
—Pm(x;pi,-.-,Pm)= (_m)Jx—Pm{x;pi,...,Pm) =      ,   ^—Tp, ■■■Tßm(l -x)

^~Ti+P,---Ti+ßm(l-xr-x

m
Tl+ßmpm-l(x; 1 + pi,...,l + Pm-l)-

m + p.

Hence, it is true that

(m + Pm)-j-Pm{x; (ii,.. .,Pm) = m(l + Pm)Pm-l{x; 1 + Ml, • • •, 1 + Mm-l)

d . .
+ mx—pm-i(x;l + Pi,...,l + pm-i).

To derive the second recurrence relation we multiply the m-degree polynomial

rt\ (-l)m~l ,  ^  ,   Mm(-l)m ,,       (-IT  Pm-i(l)     ,,,
fm{x) := -:-——Pm{x) + --.-r-pm-i(x) - —-r--±—Xp'm(x)

qm{-m+l) qm(-m) qm{-m)   pm(l)

(-l)m
+ ÜÑI?:-l(l)

by dip(x,pi) = dxß'/pi for / between 1 and m and integrate in x from 0 to 1.  It

follows easily from integration by parts and biorthogonality that

/   fm(x)dx»' =0,        1 </<m.
Jo

Hence fm is a multiple of pm. Moreover, /m(0) = 0, whilst pm(0) ^ 0, since all the

zeros of pm reside in (0,1). Consequently fm = 0 and

(-I)*»"1 ,  ,  ,   Mm(-l)m ,  .
rPm(x) H-?--Pm-l(x)

,22, qm-i(-m+l) qm{-m)

_   (-1)™  Pm-i(l)     i  ,  ,       (~l)m      ,       , ,

"<7m(-m)   pm(l)   lP-(lj      ?m(-m)lPm~lW'

To simplify (22) we need to evaluate

LEMMA 11.   Letr(x) = J2j=or3xJ be an arbitrary mth degree polynomial. Then

jr(-l)h(™)r(k) = (-irm\rm-
fc=o ^     '

PROOF. We can write r in a unique way as

m    .
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where f„ ■l)mm\rm- Hence

m /      \ m /      ,     m    ,

EH)' I -(')=Ei-')' ; Em
k=0 v       ' k=0 x       '   ]=QJ'

=E(-dm7 He<-u
3=0'

( m-j

k-j
= fm.-      □

j=0 x       7 fc=j

Setting r(i) = gm(—z) leads to pm(l) = (-T)mm\/qm(—m) and (22) simplifies

to

/ x gm_i(-m + l)
Pm(x) - Pm-1-;-Pm-l(z)

qm(-m)

= -xpm(x) +      qm{_m)     xpm_i(x).

The two recurrence relations can be combined into

qm{-m){mpm(x; pi,..., pm) - x—pm(x,pi,..., pm)}

= qm-i(-m + l)(m + pm - T)—pm(x;pi - l,...,pm - 1).

EXAMPLE B. uj(x,p) = e"^x^, fi = (0, oo), (a,b) = (0, oo).

We have

h(p) = T(k + p + i) = r(i + p)(i + p)k,     k > o,

m

Dm(pi, - . ■ ,Pm) = X\T(1 + Pi) dm((ii, . . . ,(im),
1=1

!l + Mi)o      (1+Mi)i      •■•      (1+Ml)m-1

l + Mm)o      (1+Mm)l      ■■■       (1 + Mm)m-1

»"o(Mi)      ri(pi)     ■■■      rm-i(pi

therefore

where

dm(pi,... ,pm) ■= det

Lemma 12. Let

(23) em(Pi,---,Pm) :=det

m> 1.

JoiPm)    ri(pm)     ■■■     rm-l(Pm)

where each rk is a monic kth degree polynomial.  Then

ero(Mi,..-,Mm)=     n     (pi-Pk)-
l<k<l<m

PROOF. The matrix in (23) can be brought to a Vandermonde form by elemen-

tary column operations.    G

We now have
m

Dm(pi,...,pm) = Yl^{l + Pi)     Yl     (Mi-Mfc),
1 = 1 l<k<l<m
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hence regularity and

Hm(p) =T(l + (i)qm((i).

The interpolation property is obvious, being valid for all BOPS in family I.

We will now derive the explicit form of pm:  Let pm(x) — J2T=oP™-kXk-   By

Lemma 12 and (3)

Qm(x) = Y[(x-(n)
i=i

rii<fc<i<m(M; -Mfc
det

(l + Mi)o

(l + Mm)o

(1 + Pl)r,

(1 + pm)r

{l + x)m

= ^Pm,k{l + X)k.

fc=0

Thus, the pm,fc's are the unique coefficients in the expansion of qm in the (m + T)-

dimensional basis {(1 + x)o, (1 + x)i,..., (1 + x)m}- By applying the backward

difference operator A_ on both sides we find

P™<k = ¿ Ei"1)' (¡) 1m(-l - 1) = ¿AÎLgm(-l),        0 < k < m.
' i=o ^    '

We now continue in the classification of BOPS. A BOPS is said to belong to

family II if the underlying distribution <p is of the form

dtp(x,p) = px dip(x),        fiC(0, oo),

where ip is independent of p. Again, the interpolation property is valid throughout

this family, since the determinant Em is of the form Fm (cf. Example A).

EXAMPLE C. d<p(x,p) = pxdtp\(x), fi = (0,A), (a,b) = (-|,oo), where A > 0

is fixed and ip\ is a step function with jumps of ((\)k/k\)\k at k = 0,1,_

Let

I*k(p) := (-l)k /   (-x)kd<p(x,p), pGfi, k>0,
Ja

^o(Ml)       •••       Im-l(ßl)

D*m(pi,...,pm) := det m > 1.

Jo(Pm)      ■■■      Im-l(Pm).

Since (-l)k(-x)k £ TTk[x] and is monic for all k > 0, we can use Lemma 12 to

obtain at once

^m(Ml,---,Mm) = Dm(Pl,.--,Pm), m > 1.

Likewise, the representation

70*(Ml) rm(pi)

Pm(x;pi,...,pm) =
Dm(pi,...,pm)

det
^Ô(Mm)

(-1)° x)o

^o(Mm)
(-I)m(-X)r

m > 1,
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is an immediate consequence of (3) and Lemma 12.

In the present case

i To
l = k

X + k;   p
—,      A

(A)*

(l-p/XV \X-p
Therefore we get

Dm(pi,..-,Pm) = D*m(pi,...,ßm)

"n^i(i-Mi/AV

k > 0.

VDM Mi
A - pi X- Pr,

A^(m-l)mnm-l(A)¿

T (pi-pk),IEi(i-«A)*IEi(a-w)«

where VDM denotes a Vandermonde determinant. Hence regularity and

(24) 77m(p) = (A),

We will now prove that

\ m+\ ,    s

A      \ 9m (M)

X — p qm(X)'

- m

Pm{x) = —7VT ^(-l)fc(-z)it(A + x)m-kXkqm,k,

qm[Á> k=0

where qm(x) = XX=o qm,kXk■ By regularity, it is enough to show that for the above

definition of pm

I-1/2

Pm(x)pX dlpx(x) = Hm(p),

the generator having been given by (24). But

'   Wl /M\'

/
Pm(x)px dMx) ± —\tt Yl ~ir (l)   ¿(-^HMA + l)m-kXkqm,k

1/2 9"*Wfeí     Z!      VA/    fc=0

_j_f   ifWm-W   fVl  \kn
*-wesleí c-fc)!
(A)m

<7m(A)
2_, 9m,fcM    l-fo
fc=0

A + tn; p
-;   Ä

= (A)r
A    \m+X qm{p)

X — p <?m(A)'

as required.

EXAMPLE D. d<p(x,p) — px dip(x), fi = (0,oo), (a,b) = (-¿,oo), where ip is a

step function with jumps of l/k\ at k = 0,1,....

The present BOPS is a limiting case of the BOPS from Example C when A —» oo

in a similar sense as the Charlier polynomials are a limiting case of the Meixner

polynomials of the first kind [Chichara, 1978].
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Hence, by letting A tend to oo,

Dm(pi,...,pm) = exp I ^p; 1      Yi     {(il-ßk),
\l = l      /   l<i;<i<m

Hm{p) =eßqm{p),

the distribution is regular and

m

Pm{x) = Y^(-l)k(-x)kqm,k-

k=0

Our third and last family is different in character: we say that a BOPS belongs

to family III if each Ik(p) is a fcth degree polynomial in p for all k > 0.

EXAMPLE E. p(x,p) = tb(x/p), fi = (0,oo), (a, b) = (0,oo). Here V is an

arbitrary distribution. It follows at once that

Ik(p)= xkdtp Í-J = pk J     xkdtb(x) = ckpk,        k>0,

where ck > 0 is the kth moment of ip.  Note that {cfc}£L0 is a Stieltjes sequence

[Akhiezer, 1965].

Since Dm(pi,..., pm) can be easily brought to a Vandermonde form, it follows

at once that

m—1

Dm(pi,---,Pm) = ] J cfc (pi-pfc),    Hm(p) = cmqm{p)-

k=0        l<k<l<m

Regularity is obvious. Moreover,

m
I   \ _ V"* 9m,fc    k

Pm\X) — Cm / j X   .

k=o   Ck

This is true since for every 1 <l <m

/•oo /     \ m ~oo

/     pm(x)dxp ( - I = cm Yl -2h£Mfc /     xk dip(x) = cmqm(p) = 77m(p).
7o VM/ f^Q   ck       Jo

The interpolation property is not always valid; for example, it fails if the support

of ip is finite. Fortunately, it holds for the particular example oit¡j(x) — —e~x, which

corresponds to our classical BOPS (cf. §4), since then Em is of the form Fm from

Example A.

An interesting case is

ip(x)=        ^(l-r^dr,        0<z<l,
Jo

xjj(x) = T(ß + l)r(7 + 1)/T(ß + 7 + 2)    for 1 < x.

Here ß, 7 > — 1 are constants. The underlying biorthogonal polynomials are

(25)   p(^)=ZV+)m2) £{1ê+^^ ^°-
(P + 7 + 2)m^     (ß+l)k
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The interpolation property fails, since xjj is constant in [l,oo). However, if 7 is an

integer then we can prove that all the zeros are distinct and in (0,00) (but not

necessarily in the true support (0,1)):

To emphasize that 7 is an integer, we replace it by n > 0. It is an easy matter

to show from (25) by direct expansion that

c-0 dn+l

(ß + m+l)n+i~dxr
W Mn)W = r* + : + n...^^+B+1ftn(*)}.

Positivity and distinctness of the zeros of pm follow by n + 1 consecutive appli-

cations of the Rolle theorem to the function x&+n+lqm(x). Note that (26) is not of

the same "kind" as Rodrigues' formulae—the degree of differentiation is dependent

on n, rather than m.

Further, we prove that the zeros of pm      and pm'n~    interlace for all m > 1,

n > 1 and ß > 1: Let v :— xd/dx. Given / G C°°, it is elementary that

f_
dxi

Acting on (26) with the Leibnitz rule and using the last identity leads to

ß n+l   / v.     (    ,n+l-k

xJ^f(x) = (-iy(-^Kx),    j > 0.

n+l

E

k=0

Q9+l)n-H       \lf
(ß + m + l)n+i k

(ß+l)n+l       r/'H

(ß + m + l)n+1 f^V    k    )    (ß+l)k
-qm(x)

(ß+l)n+l F
2^1

(ß + m + l)n+i

(ß+l + v)n+i

-n — 1,    —v;

ß+T,
qm(x)

qm{x),
(ß + m + l)n+i

where we have used the Vandermonde theorem [Rainville,  1967] to sum up a

hypergeometric function with unit argument.

Since
(ß + l + v)n+i    _ ß + n + l+u (ß+l + v)n

(ß + m + l)n+1 ~ ß + m + n + l(ß + m + T)n

it now follows that

¿ß,")(x) =  ß + n+l + v   (ß,n-l)(x)
Pm      W       ß + m + n+1Pm (Xh

or, after simplification,

(27)        (ß + m + n+ l)p<i>n\x) = (ß + n + l)p^n~l](x) + x±p^-^(x).

Let Çk      , 1 < k < m, denote the zeros of pJn     , monotonically arranged; we

already know that they are positive and distinct. It follows from (27) that

(ß + m + n + l)p^HUß'n-1]) = Ú0'n-l)iPm(d0'n-% l<k<m.
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Since all f¿ s are positive and the derivative of pm'"~    changes sign at the

zeros Çfc , it follows that between Çk  n~     and c¿+™~     there is exactly one

zero of pin    , 1 <k <m — 1. The interlace is proved.

In the absence of the interpolation property it is perfectly possible for some

zeros of pm to reside outside the support of ip. For example, let us consider the

sequence ck — (k + l)/(2k + 1), k > 0. It is Stieltjes determinate by a theorem in

[Brezinski, 1980], hence it corresponds to a distribution ip. The corresponding

biorthogonal polynomial with >p(x, p) = ip(x/p), m = 3 and pi = 1, P2 = 2, p3 = 3

is x3 - y~x2 + yx - y, with one positive and two complex conjugate zeros.

All distributions <p of the form tp(x/p) share the property that 7fc(p) = ckpk,

k > 0. In fact, they are also the only distributions that possess this property:

LEMMA 13. Let 1 G fi Ç (O,oo) and without loss of generality (a,b) = R.

Suppose that Ik{p) = ckpk, k > 0, where {ck} is a given sequence of real numbers.

Then {ck} is a Hamburger moment sequence and if it is determinate then ¡p(x,p) =

ip(x/p), where ip is the unique distribution with moments Cq,Ci,_

PROOF. Since Ik(p) is the fcth moment of a distribution it follows that {ckpk}

is a Hamburger moment sequence for all p G fi, in particular for p = 1. We expand

dp(r,p) .
F(x,p) := —

J — oo    •*■ TX

in formal powers of x. This yields

oo

F(x, p) = J2 ck(ßx)k = F(px, 1)
fc=0

But

7-00 ! - (irx     J.oo     1

d<p(r/(i, 1)

TX

Note that since the solution of the determinate Hamburger moment problem is

unique [Akhiezer, 1965], it follows that

tp(x,p) = <p(x/p, 1) := ip(x/p)

for all x £ R, p £ fi.    O

EXAMPLE F. ip(x, p) = ip{x - p), fi = (-oo, oo), (a, b) = (-oo, oo).

Here xp is an arbitrary distribution with moments crj,ci,_   Without loss of

generality c0 = 1. Regularity follows at once from Lemma 12:

k

Ik(p) = Yà(kl)cipk-l£iTk[p], k>0,

1=0   ^       '

Dm{pi,...,pm)= (Mi-Mfc),

l<fc<Km

Hm{p) = qm{p)-

Some BOPS of this form satisfy the interpolation property, although this need

be checked in every specific instance. E.g., let

ÇX
%b(x) = I   e-'2 dt,        x £ R.

Jo
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Then uj(x,p) = e  (x  M'   and

\Pl,...,Pm J \     k~fi iZl       ) ^    Ml,---,Mm     /

for all distinct Xi,... ,xm;pi,... ,pm G R, m > 1.

Many interesting distributions ip fall outside the scope of our three families. The

present classification of BOPS is, at best, tentative. However, in general one has

to exercise vigilance, since many fairly "innocent" distributions lack regularity.

Example G. d<p(x,p) = dx/(x2 + p2), fi = (0,oo), [a,b) = (-1,1).

It is straightforward that I2k+i(p) = 0 for all k > 0 and p G fi. However, the in-

terpolation property is, nonetheless, valid (if irrelevant): uj(x, p) = l/(x2+p2) leads

to a Cauchy matrix Em, which is nonsingular for all distinct xi,...,xm; pi,..., pm,

m > 1.

To sum up our examples, they are neither an exhaustive list of BOPS—since this

is, clearly, an impossible task—nor a list of all interesting instances of biorthogo-

nality: it is much too early to anticipate what might be the applications of this

construct. Nonetheless, they help to highlight the theory of this paper.
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