SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Nurettin IRMAK ${ }^{*}$, Murat ALP ${ }^{\dagger}$

Received 14:06:2012 : Accepted 18:02:2013

Abstract

In this study, we define a generalization of Lucas sequence $\left\{p_{n}\right\}$. Then we obtain Binet formula of sequence $\left\{p_{n}\right\}$. Also, we investigate relationships between generalized Fibonacci and Lucas sequences.

Keywords: Extended Binet Formulas, Generalized Fibonacci and Lucas Sequences 2000 AMS Classification: 11B39,11B37

1. Introduction

For $n \geq 2$, the Fibonacci and Lucas numbers are defined by following recurrence relations

$$
F_{0}=0, \quad F_{1}=1, \quad F_{n}=F_{n-1}+F_{n-2}
$$

and

$$
L_{0}=2, \quad L_{1}=1, \quad L_{n}=L_{n-1}+L_{n-2} .
$$

And Fibonacci and Lucas numbers' Binet formulas are known as,

$$
F_{n}=\frac{\tau^{n}-\gamma^{n}}{\tau-\gamma} \quad \text { and } \quad L_{n}=\tau^{n}+\gamma^{n}
$$

where $n \geq 0$ and τ, γ are roots of $x^{2}-x-1=0$.
These sequences have been generalized in many ways. For example, in [1], the author generalized the sequences $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$ as follows,

$$
W_{n}=A W_{n-1}+B W_{n-1}, \quad W_{0}=a, \quad W_{1}=b \quad \text { for } \quad n \geq 2,
$$

where a, b, A and B are arbitrary integers.

In [2] and [3], the authors introduced and studied a new kind generalized Fibonacci sequence and its properties that depends on two real parameters as defined below, for $n>1$

$$
q_{0}=0, \quad q_{1}=1 \quad q_{n}= \begin{cases}a q_{n-1}+q_{n-2} & \text { if } n \text { is even } \\ b q_{n-1}+q_{n-2} & \text { if } n \text { is odd }\end{cases}
$$

Its extended Binet's formula was given by

$$
q_{n}=\left(\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\right) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

where $\alpha=\frac{a b+\sqrt{a^{2} b^{2}+4 a b}}{2}, \beta=\frac{a b-\sqrt{a^{2} b^{2}+4 a b}}{2}$ and $\xi(n):=n-2\left\lfloor\frac{n}{2}\right\rfloor$. Note that α and β are roots of the quadratic equation $x^{2}-a b x-a b=0$ and $\xi(n)=0$ when n is even, $\xi(n)=1$ when n is odd. Also, authors generalized some identities as follows;

- Cassini Identity

$$
a^{1-\xi(n)} b^{\xi(n)} q_{n-1} q_{n+1}-a^{\xi(n)} b^{1-\xi(n)} q_{n}^{2}=a(-1)^{n}
$$

- Catalan's Identity

$$
a^{\xi(n-r)} b^{1-\xi(n-r)} q_{n-r} q_{n+r}-a^{\xi(n)} b^{1-\xi(n)} q_{n}^{2}=a^{\xi(r)} b^{1-\xi(r)}(-1)^{n+1-r} q_{r}^{2}
$$

- d'Ocagne's Identity

$$
a^{\xi(m n+m)} b^{\xi(m n+m)} q_{m} q_{n+1}-a^{\xi(m n+m)} b^{\xi(m n+m)} q_{m+1} q_{n}=(-1)^{n} a^{\xi(m-n)} q_{m-n}
$$

- Additional Identities

$$
\begin{aligned}
a^{\xi(m n+m)} b^{\xi(m n+m)} q_{m} q_{n+1}+a^{\xi(m n+m)} b^{\xi(m n+m)} q_{m-1} q_{n} & =a^{\xi(m n+m)} q_{m+n} \\
a^{\xi(k m)} b^{\xi(k m+k)} q_{m} q_{k-m+1}+a^{\xi(k m+k)} b^{\xi(k m)} q_{m-1} q_{k-m} & =a^{\xi(k)} q_{k} \\
a^{1-\xi(n+k)} b^{\xi(n+k)} q_{n+k+1}^{2}+a^{\xi(n-k)} b^{1-\xi(n-k)} q_{n-k}^{2} & =a q_{2 n+1} q_{2 k+1}
\end{aligned}
$$

For more details, we refer to [2]. Also, in [7], author gave the Gelin-Cesaro identity as

$$
a^{2 \xi(n)-1} b^{1-2 \xi(n)} q_{n}^{4}-q_{n-2} q_{n-1} q_{n+1} q_{n+2}=(-1)^{n+1}\left(\frac{a}{b}\right)^{\xi(n)} q_{n}^{2}(a b-1)+a^{2}
$$

In [6], author defined k-periodic second order linear recurrence as;

$$
q_{n}=\left\{\begin{array}{lc}
a_{0} q_{n-1}+b_{0} q_{n-2} & \text { if } n \equiv 0(\bmod k) \tag{1.1}\\
a_{1} q_{n-1}+b_{1} q_{n-2} & \text { if } n \equiv 0(\bmod k) \\
\vdots & \vdots \\
a_{k-1} q_{n-1}+b_{k-1} q_{n-2} & \text { if } n \equiv 0(\bmod k)
\end{array}\right.
$$

and investigated the combinatorial interpretation of the coefficients A_{k} and B_{k} appearing in the recurrence relation $q_{n}=A_{k} q_{n-k}+B_{k} q_{n-2 k}$. And in [8], we found (1.1)'s exclipt formula for arbitrary coefficient and arbitrary initial conditions. The generalized Fibonacci and Lucas sequences have word combinatorial interpretation and they are closely related to continued expansion of quadratic irrationals (see in [2]).

There are lots of combinatorial identities between Fibonacci and Lucas numbers. For example,

$$
\begin{aligned}
& \cdot F_{n} L_{n}=F_{2 n} \\
& \cdot F_{m} F_{n}-F_{m+k} F_{n-k}=(-1)^{n-k} F_{m+k-n} F_{k} \\
& \cdot F_{n}=F_{m} F_{n-m+1}+F_{m-1} F_{n-m} \\
& \cdot L_{n}=L_{m} F_{n-m+1}+L_{m-1} F_{n-m} \\
& \cdot F_{m} L_{n}+F_{n} L_{m}=2 F_{m+n}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot L_{n}=F_{n+1}+F_{n-1} \\
& \cdot 5 F_{n}=L_{n+1}+L_{n-1}
\end{aligned}
$$

For more identities, they can be found in [4]. (page 87-93).
Up to now, authors gave some identities which are only contains Fibonacci generalizations. In this study, we define generalized Lucas sequences and give extended Binet's formula for generalized Lucas sequences. Moreover we investigate some properties which are involving generalized Fibonacci and Lucas numbers.

2. Main Results

2.1. Definition. For any two nonpozitive real numbers a and b, the generalized Lucas sequence $\left\{p_{n}\right\}$ is defined as follows;

$$
p_{0}=2, \quad p_{1}=1, \quad p_{n}= \begin{cases}a p_{n-1}+p_{n-2} & \text { if } n \text { is even } \\ b p_{n-1}+p_{n-2} & \text { if } n \text { is odd } .\end{cases}
$$

We note that, these new generalizations is in the fact of a family sequences where each new choise of a and b produces a distinct sequences. For example, when we take $a=b=1$ in $\left\{q_{n}\right\}$, the sequence produce Fibonacci numbers. When taking $a=b=1$ in $\left\{p_{n}\right\}$, it produces Lucas numbers. When we take $a=b=2$ in $\left\{p_{n}\right\}$, it produces Pell-Lucas numbers.

We derive some identities involving the generalized Fibonacci and Lucas sequences. From the definitions of α and β, we note that

$$
(\alpha+1)(\beta+1)=1, \quad \alpha+\beta=a b, \quad \alpha \beta=-a b, \quad a b(\alpha+1)=\alpha^{2}, \quad-\beta(\alpha+1)=\alpha .
$$

Now we give the generalized Binet formula for the generalized Lucas sequences $\left\{p_{n}\right\}$:

2.2. Theorem. For $n>1$,

$$
p_{n}=\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}+\beta^{n}}{a}+(1-b) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)
$$

where $\alpha=\frac{a b+\sqrt{a^{2} b^{2}+4 a b}}{2}, \beta=\frac{a b-\sqrt{a^{2} b^{2}+4 a b}}{2}$ and $\xi(n):=n-2\left\lfloor\frac{n}{2}\right\rfloor$.
Proof. In order to prove the theorem, we use following equation given in [2] :

$$
Q_{n}=D q_{n}+C\left(\frac{b}{a}\right)^{\xi(n)} q_{n-1}
$$

where

$$
Q_{n}= \begin{cases}a Q_{n-1}+Q_{n-2} & \text { if } n \text { is even }, \\ b Q_{n-1}+Q_{n-2} & \text { if } n \text { is odd }\end{cases}
$$

$Q_{0}=C$ and $Q_{1}=D$ are initial conditions of the sequence $\left\{Q_{n}\right\}$. When $C=2$ and $D=1$, we obtain

$$
\begin{aligned}
p_{n} & =q_{n}+2\left(\frac{b}{a}\right)^{\xi(n)} q_{n-1} \\
& =\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)+2\left(\frac{b}{a}\right)^{\xi(n)} \frac{a^{1-\xi(n-1)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor}}\left(\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}\right) \\
& =\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)+2 b \frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}\left(1+2 b \alpha^{-1}\right)-\beta^{n}\left(1+2 b \beta^{-1}\right)}{\alpha-\beta}\right) \\
& =\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}\left(\frac{\alpha-\beta}{a}+(1-b)\right)-\beta^{n}\left(-\frac{\alpha-\beta}{a}+(1-b)\right)}{\alpha-\beta}\right) \\
& =\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}+\beta^{n}}{a}+(1-b) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right),
\end{aligned}
$$

as claimed.

When we take $a=b=1$, we obtain Binet formula for Lucas sequences.

3. Several Identities Involving the Generalized Fibonacci And Lucas Numbers

In this section, we derive several identities involving the generalized Fibonacci and Lucas numbers. We start with the following result:
3.1. Theorem. For $n \geq 0$

$$
p_{n} q_{n}=\left(\frac{b}{a}\right)^{\xi(n)} q_{2 n}+(1-b) q_{n}^{2}
$$

Proof. By using the Binet formulas of $\left\{q_{n}\right\}$ and $\left\{p_{n}\right\}$, we have

$$
\begin{aligned}
p_{n} q_{n} & =\left(\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\right)^{2}\left(\frac{\alpha^{n}+\beta^{n}}{a}+(1-b) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) \\
& =\left(\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\right)^{2}\left(\frac{\alpha^{2 n}-\beta^{2 n}}{a(\alpha-\beta)}+(1-b)\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)^{2}\right) \\
& =\left(\frac{b}{a}\right)^{\xi(n)} \frac{a^{1-\xi(2 n)}}{(a b)^{\left\lfloor\frac{2 n}{2}\right\rfloor}}\left(\frac{\alpha^{2 n}-\beta^{2 n}}{\alpha-\beta}\right)+(1-b)\left(\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)^{2} \\
& =\left(\frac{b}{a}\right)^{\xi(n)} q_{2 n}+(1-b) q_{n}^{2} .
\end{aligned}
$$

Thus the proof is complete.

When $a=b=1$, we obtain the well known result for the usual Fibonacci and Lucas numbers:

$$
L_{n} F_{n}=F_{2 n} .
$$

3.2. Theorem. For $n \geq 0$

$$
q_{n+1}+q_{n-1}=a b^{-\xi(n)}\left(p_{n}-(1-b) q_{n}\right) .
$$

Proof. In order to prove the claim, we again use the extended Binet formulas of the sequences $\left\{q_{n}\right\}$ and $\left\{p_{n}\right\}$:

$$
\begin{aligned}
q_{n+1}+q_{n-1} & =\frac{a^{1-\xi(n+1)}}{(a b)^{\left\lfloor\frac{n+1}{2}\right\rfloor}}\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right)+\frac{a^{1-\xi(n-1)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor}}\left(\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}\right) \\
& =\frac{a^{1-\xi(n-1)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor}(\alpha-\beta)}\left(\frac{\alpha^{n+1}-\beta^{n+1}}{a b}+\alpha^{n-1}-\beta^{n-1}\right) \\
& =\frac{a^{1-\xi(n-1)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor}(\alpha-\beta)}\left(\alpha^{n}\left(\frac{\alpha}{a b}-\frac{\beta}{a b}\right)+\beta^{n}\left(\frac{\alpha}{a b}-\frac{\beta}{a b}\right)\right) \\
& =\frac{a^{1-\xi(n-1)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor} b}\left(\frac{\alpha^{n}+\beta^{n}}{a}+(1-b) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) \\
& -\frac{a^{1-\xi(n-1)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor}} \frac{(1-b)}{b} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \\
& =\left(\frac{a}{b}\right)^{\xi(n)}\left(p_{n}-(1-b) q_{n}\right),
\end{aligned}
$$

as claimed.
When $a=b=1$ in Theorem 3, we obtain the well known the formula:

$$
F_{n+1}+F_{n-1}=L_{n} .
$$

3.3. Theorem. For $n \geq 0$,

$$
p_{n+1}+p_{n-1}=\left(\frac{a}{b}\right)^{\xi(n)}\left(\left(\frac{\alpha-\beta}{a}\right)^{2} q_{n}+(1-b) p_{n}-(1-b)^{2} q_{n}\right)
$$

Proof. Consider

$$
\begin{aligned}
p_{n+1}+p_{n-1} & =\frac{a^{1-\xi(n+1)}}{(a b)^{\left\lfloor\frac{n+1}{2}\right\rfloor}}\left(\frac{\alpha^{n+1}+\beta^{n+1}}{a}+(1-b) \frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right) \\
& +\frac{a^{1-\xi(n-1)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor}}\left(\frac{\alpha^{n-1}+\beta^{n-1}}{a}+(1-b) \frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}\right) \\
& =\frac{a^{1-\xi(n-1)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor}}\left(\frac{1}{a} \alpha^{n}\left(\frac{\alpha}{a b}-\frac{\beta}{a b}\right)+\frac{1}{a} \beta^{n}\left(\frac{\beta}{a b}-\frac{\alpha}{a b}\right)\right. \\
& \left.+\frac{1-b}{\alpha-\beta} \alpha^{n}\left(\frac{\alpha}{a b}-\frac{\beta}{a b}\right)-\frac{(1-b)}{\alpha-\beta} \beta^{n}\left(\frac{\beta}{a b}-\frac{\alpha}{a b}\right)\right) \\
& =\frac{a^{1-\xi(n-1)}}{(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor}}\left(\frac{(\alpha-\beta)^{2}}{a^{2} b} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}+(1-b) \frac{\alpha^{n}+\beta^{n}}{a b}\right) \\
& =\frac{(\alpha-\beta)^{2}}{a^{2} b} a^{\xi(n)} b^{\xi(n-1)} \frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \\
& +\frac{1-b}{b} a^{\xi(n)} b^{\xi(n-1)} \frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}+\beta^{n}}{a}+(1-b) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) \\
& -a^{\xi(n)} b^{\xi(n-1)} \frac{(1-b)^{2}}{b} \frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}}
\end{aligned}
$$

$$
=\left(\frac{a}{b}\right)^{\xi(n)}\left(\left(\frac{\alpha-\beta}{a}\right)^{2} q_{n}+(1-b) p_{n}-(1-b)^{2} q_{n}\right) .
$$

When we take $a=b=1$, we obtain $L_{n+1}+L_{n-1}=5 F_{n}$.
3.4. Theorem. For $m, n \geq 0$

$$
q_{m} p_{n}+q_{n} p_{m}=2\left(\frac{b}{a}\right)^{\xi(m n)} q_{m+n}+2(1-b) q_{n} q_{m}
$$

Proof. Using the Binet formulas, and the identity follows easily from definition $\xi(m+n)$ $=\xi(m)+\xi(n)-2 \xi(m) \xi(n)$. Then consider

$$
\begin{aligned}
q_{m} p_{n}+q_{n} p_{m} & =\left(\frac{a^{1-\xi(m)}}{(a b)^{\left\lfloor\frac{m}{2}\right\rfloor}} \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right)\left(\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}+\beta^{n}}{a}+(1-b) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)\right) \\
& +\left(\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)\left(\frac{a^{1-\xi(m)}}{(a b)^{\left\lfloor\frac{m}{2}\right\rfloor}}\left(\frac{\alpha^{m}+\beta^{m}}{a}+(1-b) \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right)\right) \\
& =2 \frac{a^{2-\xi(m)-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor}}\left(\frac{\alpha^{m+n}-\beta^{m+n}}{\alpha-\beta}\right) \\
& +2(1-b)\left(\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)\left(\frac{a^{1-\xi(m)}}{(a b)^{\left\lfloor\frac{m}{2}\right\rfloor}} \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right) \\
& =2\left(\frac{b}{a}\right)^{\xi(m n)} \frac{a^{1-\xi(m+n)}}{(a b)^{\left\lfloor\frac{m+n}{2}\right\rfloor}}\left(\frac{\alpha^{m+n}-\beta^{m+n}}{\alpha-\beta}\right) \\
& +2(1-b)\left(\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)\left(\frac{a^{1-\xi(m)}}{(a b)^{\left\lfloor\frac{m}{2}\right\rfloor}} \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right) \\
& =2\left(\frac{b}{a}\right)^{\xi(m n)} q_{m+n}-(1-b) q_{n} q_{m} .
\end{aligned}
$$

When we take $a=b=1$, we obtain $2 F_{m+n}=F_{m} L_{n}+F_{n} L_{m}$.
3.5. Theorem. For $n, m \geq 0$,

$$
\left(\frac{b}{a}\right)^{\xi(n)} a^{2 \xi(m n)} p_{m} q_{n-m+1}+\left(\frac{b}{a}\right)^{\xi(m n)} p_{m-1} q_{n-m}=p_{n}
$$

Proof. If we use the Binet formulas of generalized Fibonacci and Lucas sequences and by using the identity $\xi(m+n)=\xi(m)+\xi(n)-2 \xi(m) \xi(n)$, we obtain that

$$
\begin{aligned}
& \left(\frac{b}{a}\right)^{\xi(n)} a^{2 \xi(m n)} p_{m} q_{n-m+1}+\left(\frac{b}{a}\right)^{\xi(m n)} p_{m-1} q_{n-m} \\
= & \frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}} \frac{\alpha^{n-m+1}-\beta^{n-m+1}}{\alpha-\beta}\left(\frac{\alpha^{m}+\beta^{m}}{a}+(1-b) \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right) \\
& +\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor-1}} \frac{\alpha^{n-m}-\beta^{n-m}}{\alpha-\beta}\left(\frac{\alpha^{m-1}+\beta^{m-1}}{a}+(1-b) \frac{\alpha^{m-1}-\beta^{m-1}}{\alpha-\beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}\left(\alpha+\frac{a b}{\alpha}\right)-\beta^{n}\left(\beta+\frac{a b}{\alpha}\right)}{a(\alpha-\beta)}+(1-b) \frac{\alpha^{n}\left(\alpha+\frac{a b}{\alpha}\right)+\beta^{n}\left(\beta+\frac{a b}{\beta}\right)}{(\alpha-\beta)^{2}}\right) \\
& =\frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}+\beta^{n}}{a}+(1-b) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)=p_{n},
\end{aligned}
$$

as claimed.
When $a=b=1$ in Theorem above, we deduce the following well known formula:

$$
L_{n}=L_{m} F_{n-m+1}+L_{m-1} F_{n-m}
$$

3.6. Theorem. For $n \geq 0$

$$
\frac{1}{a} p_{2 n+1}+b(-1)^{n}+\frac{(1-b)}{a} q_{2 n+1}+(1-b)^{2} q_{n} q_{n+1}=p_{n} p_{n+1} .
$$

Proof. Consider

$$
\begin{aligned}
p_{n} p_{n+1}= & \frac{a^{1-\xi(n)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}+\beta^{n}}{a}+(1-b) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) \\
& \times \frac{a^{1-\xi(n+1)}}{(a b)^{\left\lfloor\frac{n+1}{2}\right\rfloor}}\left(\frac{\alpha^{n+1}+\beta^{n+1}}{a}+(1-b) \frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right) \\
= & \frac{a}{(a b)^{\left\lfloor\frac{2 n+1}{2}\right\rfloor}}\left(\frac{\alpha^{2 n+1}+\beta^{2 n+1}}{a^{2}}+\frac{1-b}{a} \frac{\alpha^{2 n+1}-\beta^{2 n+1}}{\alpha-\beta}\right) \\
& +b(-1)^{n}+(1-b) \frac{a^{1-\xi(2 n+1)}}{(a b)^{\left\lfloor\frac{2 n+1}{2}\right\rfloor}} \frac{\alpha^{2 n+1}-\beta^{2 n+1}}{\alpha-\beta} \\
& +(1-b)^{2} \frac{a^{2-(\xi(n)+\xi(n+1))}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n+1}{2}\right\rfloor} \frac{\alpha^{n}}{\alpha-\beta} \beta^{n}} \frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta} \\
& =\frac{1}{a} p_{2 n+1}+b(-1)^{n}+\frac{(1-b)}{a} q_{2 n+1}+(1-b)^{2} q_{n} q_{n+1} .
\end{aligned}
$$

So the proof is complete.
When $a=b=1$ in Theorem above, we obtain well known identity:

$$
L_{n} L_{n+1}=L_{2 n+1}+(-1)^{n}
$$

In the following theorem, we list Binomial sums with $\left\{p_{n}\right\}$ sequence. And we proved one of them. The other one can be prove in the same way.
3.7. Theorem. The sequence $\left\{p_{n}\right\}$ satisfies the following identities.
(a) $\sum_{k=0}^{n}\binom{n}{k} a^{\xi(k)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor} p_{k}=p_{2 n}$
(b) $\sum_{k=0}^{n}\binom{n}{k} a^{\xi(k+r)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor+\xi(r) \xi(k)} p_{k+r}=p_{2 n+r}$.

Proof. (b) Using Binet formula of $\left\{p_{n}\right\}$,

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k} a^{\xi(k+r)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor+\xi(r) \xi(k)} p_{k+r}=\sum_{k=0}^{n}\binom{n}{k} a^{\xi(k+r)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor+\xi(r) \xi(k)} \\
& \times\left(\frac{a^{1-\xi(k+r)}}{(a b)^{\left\lfloor\frac{k+r}{2}\right\rfloor}}\left(\frac{\alpha^{k+r}+\beta^{k+r}}{a}-(1-b) \frac{\alpha^{k+r}-\beta^{k+r}}{\alpha-\beta}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{n}\binom{n}{k} \frac{a}{(a b)^{\left\lfloor\frac{r}{2}\right\rfloor}}\left(\frac{\alpha^{k+r}+\beta^{k+r}}{a}+(1-b) \frac{\alpha^{k+r}-\beta^{k+r}}{\alpha-\beta}\right) \\
& =\frac{a^{1-\xi(2 n)}}{(a b)^{\left\lfloor\frac{2 n+r}{2}\right\rfloor}}\left(\frac{\alpha^{2 n+r}+\beta^{2 n+r}}{a}+(1-b) \frac{\alpha^{2 n+r}-\beta^{2 n+r}}{\alpha-\beta}\right) \\
& =p_{2 n+r} .
\end{aligned}
$$

When we take $a=b=1$, we obtain $\sum_{k=0}^{n}\binom{n}{k} L_{k}=L_{2 n}$ and $\sum_{k=0}^{n}\binom{n}{k} L_{k+r}=L_{2 n+r}$.

References

[1] Horadam, A. F. A generalized Fibonacci Sequence, Amer. Math. Monthly, 68, 455-459, 1961.
[2] Edson, M. and Yayenie, O. A new generalization of Fibonacci sequences and extended Binet's Formula, Integer 9, (\#A48), 639-654, 2009.
[3] Yayenie, O. A note on generalized Fibonacci sequences, Applied. Math. Comp. 217 (12), 5603-5611, 2011.
[4] Koshy, T. Fibonacci And Lucas Numbers with Applications, Wiley, New York, 2001.
[5] Vajda, S. Fibonacci $छ$ Lucas Numbers and the Golden Section, Theory and Applications, Ellis Horwood Ltd., Chishester, 1989.
[6] Cooper, C. An identity for period k second order linear recurrence systems, Cong. Numer. 200, 95-106, 2010.
[7] Sahin, M. The Gelin-Cesaro identity in some conditional Sequences, Hacettepe Journal of Mathematics and Statistics, 40, 855-861, 2011.
[8] Irmak, N. and Szalay, L. On k-periodic Binary Recurrence, Ann. Math. Inform. 40, 25-35, 2012.

