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Abstract

In this study, we define a generalization of Lucas sequence {pn}. Then
we obtain Binet formula of sequence {pn} . Also, we investigate rela-
tionships between generalized Fibonacci and Lucas sequences.
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1. Introduction

For n ≥ 2, the Fibonacci and Lucas numbers are defined by following recurrence
relations

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

and

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2.

And Fibonacci and Lucas numbers’ Binet formulas are known as,

Fn =
τn − γn
τ − γ and Ln = τn + γn

where n ≥ 0 and τ, γ are roots of x2 − x− 1 = 0.
These sequences have been generalized in many ways. For example, in [1], the author

generalized the sequences {Fn} and {Ln} as follows,

Wn = AWn−1 +BWn−1, W0 = a, W1 = b for n ≥ 2,

where a, b, A and B are arbitrary integers.
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In [2] and [3], the authors introduced and studied a new kind generalized Fibonacci
sequence and its properties that depends on two real parameters as defined below, for
n > 1

q0 = 0, q1 = 1 qn =

{
aqn−1 + qn−2 if n is even,

bqn−1 + qn−2 if n is odd .

Its extended Binet’s formula was given by

qn =

(
a1−ξ(n)

(ab)bn2 c

)
αn − βn
α− β ,

where α =
ab+
√
a2b2+4ab

2
, β =

ab−
√
a2b2+4ab

2
and ξ (n) := n − 2

⌊
n
2

⌋
. Note that α and

β are roots of the quadratic equation x2 − abx − ab = 0 and ξ (n) = 0 when n is even,
ξ (n) = 1 when n is odd. Also, authors generalized some identities as follows;

• Cassini Identity

a1−ξ(n)bξ(n)qn−1qn+1 − aξ(n)b1−ξ(n)q2n = a (−1)n

• Catalan’s Identity

aξ(n−r)b1−ξ(n−r)qn−rqn+r − aξ(n)b1−ξ(n)q2n = aξ(r)b1−ξ(r) (−1)n+1−r q2r

• d’Ocagne’s Identity

aξ(mn+m)bξ(mn+m)qmqn+1 − aξ(mn+m)bξ(mn+m)qm+1qn = (−1)n aξ(m−n)qm−n

• Additional Identities

aξ(mn+m)bξ(mn+m)qmqn+1 + aξ(mn+m)bξ(mn+m)qm−1qn = aξ(mn+m)qm+n

aξ(km)bξ(km+k)qmqk−m+1 + aξ(km+k)bξ(km)qm−1qk−m = aξ(k)qk

a1−ξ(n+k)bξ(n+k)q2n+k+1 + aξ(n−k)b1−ξ(n−k)q2n−k = aq2n+1q2k+1

For more details, we refer to [2]. Also, in [7], author gave the Gelin-Cesaro
identity as

a2ξ(n)−1b1−2ξ(n)q4n − qn−2qn−1qn+1qn+2 = (−1)n+1
(a
b

)ξ(n)
q2n (ab− 1) + a2

In [6], author defined k−periodic second order linear recurrence as;

(1.1) qn =





a0qn−1 + b0qn−2 if n ≡ 0 (mod k)
a1qn−1 + b1qn−2 if n ≡ 0 (mod k)
...

...
ak−1qn−1 + bk−1qn−2 if n ≡ 0 (mod k)

and investigated the combinatorial interpretation of the coefficients Ak and Bk appearing
in the recurrence relation qn = Akqn−k+Bkqn−2k. And in [8], we found (1.1)’s exclipt for-
mula for arbitrary coefficient and arbitrary initial conditions. The generalized Fibonacci
and Lucas sequences have word combinatorial interpretation and they are closely related
to continued expansion of quadratic irrationals (see in [2]).

There are lots of combinatorial identities between Fibonacci and Lucas numbers. For
example,
· FnLn = F2n

· FmFn − Fm+kFn−k = (−1)n−k Fm+k−nFk
· Fn = FmFn−m+1 + Fm−1Fn−m
· Ln = LmFn−m+1 + Lm−1Fn−m
· FmLn + FnLm = 2Fm+n
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· Ln = Fn+1 + Fn−1

· 5Fn = Ln+1 + Ln−1

For more identities, they can be found in [4]. (page 87-93).
Up to now, authors gave some identities which are only contains Fibonacci general-

izations. In this study, we define generalized Lucas sequences and give extended Binet’s
formula for generalized Lucas sequences. Moreover we investigate some properties which
are involving generalized Fibonacci and Lucas numbers.

2. Main Results

2.1. Definition. For any two nonpozitive real numbers a and b, the generalized Lucas
sequence {pn} is defined as follows;

p0 = 2, p1 = 1, pn =

{
apn−1 + pn−2 if n is even,

bpn−1 + pn−2 if n is odd .

We note that, these new generalizations is in the fact of a family sequences where
each new choise of a and b produces a distinct sequences. For example, when we take
a = b = 1 in {qn} , the sequence produce Fibonacci numbers. When taking a = b = 1
in {pn} , it produces Lucas numbers. When we take a = b = 2 in {pn}, it produces
Pell-Lucas numbers.

We derive some identities involving the generalized Fibonacci and Lucas sequences.
From the definitions of α and β, we note that

(α+ 1) (β + 1) = 1, α+β = ab, αβ = −ab, ab (α+ 1) = α2, −β (α+ 1) = α.

Now we give the generalized Binet formula for the generalized Lucas sequences {pn} :

2.2. Theorem. For n > 1,

pn =
a1−ξ(n)

(ab)bn2 c

(
αn + βn

a
+ (1− b) α

n − βn
α− β

)

where α =
ab+
√
a2b2+4ab

2
, β =

ab−
√
a2b2+4ab

2
and ξ (n) := n− 2

⌊
n
2

⌋
.

Proof. In order to prove the theorem, we use following equation given in [2] :

Qn = Dqn + C

(
b

a

)ξ(n)
qn−1

where

Qn =

{
aQn−1 +Qn−2 if n is even,

bQn−1 +Qn−2 if n is odd,

Q0 = C and Q1 = D are initial conditions of the sequence {Qn}. When C = 2 and
D = 1, we obtain

pn = qn + 2

(
b

a

)ξ(n)
qn−1

=
a1−ξ(n)

(ab)bn2 c

(
αn − βn
α− β

)
+ 2

(
b

a

)ξ(n)
a1−ξ(n−1)

(ab)b
n−1
2 c

(
αn−1 − βn−1

α− β

)

=
a1−ξ(n)

(ab)bn2 c

(
αn − βn
α− β

)
+ 2b

a1−ξ(n)

(ab)bn2 c

(
αn−1 − βn−1

α− β

)
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=
a1−ξ(n)

(ab)bn2 c

(
αn
(
1 + 2bα−1

)
− βn

(
1 + 2bβ−1

)

α− β

)

=
a1−ξ(n)

(ab)bn2 c

(
αn
(
α−β
a

+ (1− b)
)
− βn

(
−α−β

a
+ (1− b)

)

α− β

)

=
a1−ξ(n)

(ab)bn2 c

(
αn + βn

a
+ (1− b) α

n − βn
α− β

)
,

as claimed. �

When we take a = b = 1, we obtain Binet formula for Lucas sequences.

3. Several Identities Involving the Generalized Fibonacci And
Lucas Numbers

In this section, we derive several identities involving the generalized Fibonacci and
Lucas numbers. We start with the following result:

3.1. Theorem. For n ≥ 0

pnqn =

(
b

a

)ξ(n)
q2n + (1− b) q2n.

Proof. By using the Binet formulas of {qn} and {pn} , we have

pnqn =

(
a1−ξ(n)

(ab)bn2 c

)2(
αn + βn

a
+ (1− b) α

n − βn
α− β

)(
αn − βn
α− β

)

=

(
a1−ξ(n)

(ab)bn2 c

)2(
α2n − β2n

a (α− β)
+ (1− b)

(
αn − βn
α− β

)2
)

=

(
b

a

)ξ(n)
a1−ξ(2n)

(ab)b 2n2 c

(
α2n − β2n

α− β

)
+ (1− b)

(
a1−ξ(n)

(ab)bn2 c
αn − βn
α− β

)2

=

(
b

a

)ξ(n)
q2n + (1− b) q2n.

Thus the proof is complete. �

When a = b = 1, we obtain the well known result for the usual Fibonacci and Lucas
numbers :

LnFn = F2n.

3.2. Theorem. For n ≥ 0

qn+1 + qn−1 = ab−ξ(n) (pn − (1− b) qn) .
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Proof. In order to prove the claim, we again use the extended Binet formulas of the
sequences {qn} and {pn} :

qn+1 + qn−1 =
a1−ξ(n+1)

(ab)b
n+1
2 c

(
αn+1 − βn+1

α− β

)
+
a1−ξ(n−1)

(ab)b
n−1
2 c

(
αn−1 − βn−1

α− β

)

=
a1−ξ(n−1)

(ab)b
n−1
2 c (α− β)

(
αn+1 − βn+1

ab
+ αn−1 − βn−1

)

=
a1−ξ(n−1)

(ab)b
n−1
2 c (α− β)

(
αn
(
α

ab
− β

ab

)
+ βn

(
α

ab
− β

ab

))

=
a1−ξ(n−1)

(ab)b
n−1
2 c b

(
αn + βn

a
+ (1− b) α

n − βn
α− β

)

− a1−ξ(n−1)

(ab)b
n−1
2 c

(1− b)
b

αn − βn
α− β

=
(a
b

)ξ(n)
(pn − (1− b) qn) ,

as claimed. �

When a = b = 1 in Theorem 3, we obtain the well known the formula:

Fn+1 + Fn−1 = Ln.

3.3. Theorem. For n ≥ 0,

pn+1 + pn−1 =
(a
b

)ξ(n)
((

α− β
a

)2

qn + (1− b) pn − (1− b)2 qn
)
.

Proof. Consider

pn+1 + pn−1 =
a1−ξ(n+1)

(ab)b
n+1
2 c

(
αn+1 + βn+1

a
+ (1− b) α

n+1 − βn+1

α− β

)

+
a1−ξ(n−1)

(ab)b
n−1
2 c

(
αn−1 + βn−1

a
+ (1− b) α

n−1 − βn−1

α− β

)

=
a1−ξ(n−1)

(ab)b
n−1
2 c

(
1

a
αn
(
α

ab
− β

ab

)
+

1

a
βn
(
β

ab
− α

ab

)

+
1− b
α− βα

n

(
α

ab
− β

ab

)
− (1− b)

α− β β
n

(
β

ab
− α

ab

))

=
a1−ξ(n−1)

(ab)b
n−1
2 c

(
(α− β)2

a2b

αn − βn
α− β + (1− b) α

n + βn

ab

)

=
(α− β)2

a2b
aξ(n)bξ(n−1) a

1−ξ(n)

(ab)bn2 c
αn − βn
α− β

+
1− b
b

aξ(n)bξ(n−1) a
1−ξ(n)

(ab)bn2 c

(
αn + βn

a
+ (1− b) α

n − βn
α− β

)

− aξ(n)bξ(n−1) (1− b)2
b

a1−ξ(n)

(ab)bn2 c
αn − βn
α− β
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=
(a
b

)ξ(n)
((

α− β
a

)2

qn + (1− b) pn − (1− b)2 qn
)
.

�

When we take a = b = 1, we obtain Ln+1 + Ln−1 = 5Fn.

3.4. Theorem. For m,n ≥ 0

qmpn + qnpm = 2

(
b

a

)ξ(mn)
qm+n + 2 (1− b) qnqm.

Proof. Using the Binet formulas, and the identity follows easily from definition ξ (m+ n)
= ξ (m) + ξ (n)− 2ξ (m) ξ (n) . Then consider

qmpn + qnpm =

(
a1−ξ(m)

(ab)bm2 c
αm − βm
α− β

)(
a1−ξ(n)

(ab)bn2 c

(
αn + βn

a
+ (1− b) α

n − βn
α− β

))

+

(
a1−ξ(n)

(ab)bn2 c
αn − βn
α− β

)(
a1−ξ(m)

(ab)bm2 c

(
αm + βm

a
+ (1− b) α

m − βm
α− β

))

= 2
a2−ξ(m)−ξ(n)

(ab)bn2 c+bm2 c

(
αm+n − βm+n

α− β

)

+ 2 (1− b)
(
a1−ξ(n)

(ab)bn2 c
αn − βn
α− β

)(
a1−ξ(m)

(ab)bm2 c
αm − βm
α− β

)

= 2

(
b

a

)ξ(mn)
a1−ξ(m+n)

(ab)b
m+n

2 c

(
αm+n − βm+n

α− β

)

+ 2 (1− b)
(
a1−ξ(n)

(ab)bn2 c
αn − βn
α− β

)(
a1−ξ(m)

(ab)bm2 c
αm − βm
α− β

)

= 2

(
b

a

)ξ(mn)
qm+n − (1− b) qnqm.

�

When we take a = b = 1, we obtain 2Fm+n = FmLn + FnLm.

3.5. Theorem. For n,m ≥ 0,

(
b

a

)ξ(n)
a2ξ(mn)pmqn−m+1 +

(
b

a

)ξ(mn)
pm−1qn−m = pn.

Proof. If we use the Binet formulas of generalized Fibonacci and Lucas sequences and
by using the identity ξ (m+ n) = ξ (m) + ξ (n)− 2ξ (m) ξ (n) , we obtain that

(
b

a

)ξ(n)
a2ξ(mn)pmqn−m+1 +

(
b

a

)ξ(mn)
pm−1qn−m

=
a1−ξ(n)

(ab)bn2 c
αn−m+1 − βn−m+1

α− β

(
αm + βm

a
+ (1− b) α

m − βm
α− β

)

+
a1−ξ(n)

(ab)bn2 c−1

αn−m − βn−m
α− β

(
αm−1 + βm−1

a
+ (1− b) α

m−1 − βm−1

α− β

)
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=
a1−ξ(n)

(ab)bn2 c


α

n
(
α+ ab

α

)
− βn

(
β + ab

α

)

a (α− β)
+ (1− b)

αn
(
α+ ab

α

)
+ βn

(
β + ab

β

)

(α− β)2




=
a1−ξ(n)

(ab)bn2 c

(
αn + βn

a
+ (1− b) α

n − βn
α− β

)
= pn,

as claimed. �

When a = b = 1 in Theorem above, we deduce the following well known formula:

Ln = LmFn−m+1 + Lm−1Fn−m.

3.6. Theorem. For n ≥ 0

1

a
p2n+1 + b (−1)n +

(1− b)
a

q2n+1 + (1− b)2 qnqn+1 = pnpn+1.

Proof. Consider

pnpn+1 =
a1−ξ(n)

(ab)bn2 c

(
αn + βn

a
+ (1− b) α

n − βn
α− β

)

× a1−ξ(n+1)

(ab)b
n+1
2 c

(
αn+1 + βn+1

a
+ (1− b) α

n+1 − βn+1

α− β

)

=
a

(ab)b
2n+1

2 c

(
α2n+1 + β2n+1

a2
+

1− b
a

α2n+1 − β2n+1

α− β

)

+ b (−1)n + (1− b) a
1−ξ(2n+1)

(ab)b
2n+1

2 c
α2n+1 − β2n+1

α− β

+ (1− b)2 a
2−(ξ(n)+ξ(n+1))

(ab)bn2 c+b
n+1
2 c

αn − βn
α− β

αn+1 − βn+1

α− β

=
1

a
p2n+1 + b (−1)n +

(1− b)
a

q2n+1 + (1− b)2 qnqn+1.

So the proof is complete. �

When a = b = 1 in Theorem above, we obtain well known identity:

LnLn+1 = L2n+1 + (−1)n

In the following theorem, we list Binomial sums with {pn} sequence. And we proved one
of them. The other one can be prove in the same way.

3.7. Theorem. The sequence {pn} satisfies the following identities.

(a)
∑n
k=0

(
n
k

)
aξ(k) (ab)b k2 c pk = p2n

(b)
∑n
k=0

(
n
k

)
aξ(k+r) (ab)b k2 c+ξ(r)ξ(k) pk+r = p2n+r.

Proof. (b) Using Binet formula of {pn} ,
n∑

k=0

(
n

k

)
aξ(k+r) (ab)b k2 c+ξ(r)ξ(k) pk+r =

n∑

k=0

(
n

k

)
aξ(k+r) (ab)b k2 c+ξ(r)ξ(k)

×
(
a1−ξ(k+r)

(ab)b
k+r
2 c

(
αk+r + βk+r

a
− (1− b) α

k+r − βk+r
α− β

))
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=

n∑

k=0

(
n

k

)
a

(ab)b r2 c

(
αk+r + βk+r

a
+ (1− b) α

k+r − βk+r
α− β

)

=
a1−ξ(2n)

(ab)b
2n+r

2 c

(
α2n+r + β2n+r

a
+ (1− b) α

2n+r − β2n+r

α− β

)

= p2n+r.

�

When we take a = b = 1, we obtain
∑n
k=0

(
n
k

)
Lk = L2n and

∑n
k=0

(
n
k

)
Lk+r = L2n+r.
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